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OUTLINE

• Embedded systems challenge

• Metropolis project

• Representing time

• Representing timing requirements 

• Relation to UML



3

� Product Specification & Architecture Definition
(e.g., determination of Protocols and Communication standards)

� System Partitioning and Subsystem Specification
� Critical Software Development
� System Integration

Automotive Supply Chain:
Car Manufacturers
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Cell-Based ASICs becoming 
prohibitively expensive for all but 
highest volume applications

Shift to
• Re-use Strategy at all levels
• Higher Level of Abstractions
• Software !!!
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Platform-based design

Platform
Design-Space

Export

Platform
Mapping

Architectural Space

Application Space
Application Instance

Platform Instance

System
Platform (HW and SW)
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Platform Architectures: Hardware is not 
enough!
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The Next Level of Abstraction in the 
Architecture Space
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Embedded SW  Challenges

FABIO ROMEO, Magneti-Marelli
DAC, Las Vegas, June 20th, 2001
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It’s embedded

⇒Need functional model for the rest 
of the system

It’s real-time

⇒Need performance model for the 
implementation platform
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We need a System Design Platform

• To deal with heterogeneity:

– Where we can deal with Hardware and Software

– Where we can mix digital and analog

• To handle the design chain 

– Where we can assemble internal and external IPs

– Where we can integrate tools

• To explore the design space

– Where we can quickly evaluate alternatives

– Where we can move seamlessly between levels of abstraction all the way  
to implementation
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System Design Platform

Function Constraints

•Power
•Latency
•…

Architecture

SW HW

CPU Mem DSP

CPU Mem DSP

Rational /
IBMMathworks

SPW

Virtio 
Axys 

Lisatek
Vast 

CoWare
Incisive 

Seamless

Arm, Xilinx
WindRiver
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OUTLINE

• Embedded systems challenge

• Metropolis project

• Representing time

• Representing timing requirements 

• Relation to UML
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Metropolis Structure

Meta-model

• language

• modeling mechanisms
•compiler

Library

• Models of computation

(levels of abstraction)

Library

• Implementation Options

(Architecture platforms)

Simulator Scheduling Synthesis Estimators Verifiers

Tools

Methodologies

embedded controllers, multi-media, wireless communication, processors

Function Architecture Constraints

CPUMemDSP

CPUMemDSP
CPUMemDSP
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Metropolis meta-model

• Computation :  f : X " Z

• Communication :  state evaluation and manipulation

• Coordination :  constraints over concurrent actions

- process : generates a sequence of events

- medium : defines states and methods

- quantity : annotated with events

- logic : relates events wrt quantities, defines axioms on quantities

- q-manager : algorithms to realize annotation subject to relations

Concurrent specification with a formal execution semantics:
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Meta-model : function netlist

process P{

port reader X; 

port writer Y;

thread(){

while(true){ 

...

z = f(X.read());

Y.write(z);

}}}

medium M implements reader, writer{
int storage;
int n, space;
void write(int z){

await(space>0; this.writer ; this.writer)
n=1; space=0; storage=z;

}
word read(){ ... }

}

interface reader extends Port{

update int read();

eval int n();

}

interface writer extends Port{

update void write(int i);

eval int space();

}

M
P1X Y P2X Y

Env1 Env2

MyFncNetlist
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Meta-model: execution semantics

• Processes take actions.

– Calls to port methods:

port.f()

• An execution of a given netlist is a sequence of vectors of events.

– event : the beginning of an action, e.g. B(port.f()), 

the end of an action, e.g. E(port.f()), or null N

– each process has a component in the network

• An execution is legal if

– it satisfies all coordination constraints, and

– it is accepted by “action automata”.
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OUTLINE

• Embedded systems challenge

• Metropolis project

• Representing time

• Representing timing requirements 

• Relation to UML
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Architecture modeling

An architecture is a service provider characterized by:
• what a service can do

• how much a service costs

Services are:
• declared by interfaces 
• modeled by media implementing the interfaces
• media are parts of architecture network that may include other 

media and processes

Costs are modeled as annotations to behaviors
• various types of annotations are specified by quantities
• quantity managers are objects that decide annotations
• time is yet another quantity
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Architecture model: example 

Bus
Arbiter

Bus

Mem

Cpu OsSched

Arch. 
network

Master

CPU + 
OS

Slave

Mem

Arbiter

Architecture network specifies 
configurations of architecture 
components.

Time
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Quantities: annotation and  coordination 

• If two process attempt to use 
the CPU, one must be 
annotated as CPU owner, the 
other must be disabled

• If two events concurrently 
require different time stamps, 
the lower must be granted, and 
the higher must rejected

• Certain system behaviors are 
eliminated because they 
cannot be consistently 
annotated  

Bus
Arbiter

Bus

Mem

Cpu OsSched

Arch. 
network

Time
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Scheduled and scheduling networks 

• Architecture components form 
scheduled network

• Quantity managers form 
scheduling network

• Scheduling network

• annotates events in the 
scheduled network with 
quantities

• disables events that cannot 
be annotated

Bus
Arbiter

Bus

Mem

Cpu OsSched

Arch. 
network

Time

Scheduled  Scheduling
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Interactions between scheduled and 
scheduling networks 

• Scheduled network may make 
requests to scheduling network 

• When all the scheduled process 
make their requests, the execution 
moves into resolution phase:

• quantity managers are executed until 
they agree on set of annotations

• they may probe the state of the 
scheduled network

• They may use services of separate 
meta-model network

Key for multiple levels of abstraction

Bus
Arbiter

Bus

Mem

Cpu OsSched

Arch. 
network

Time

Scheduled  Scheduling
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Example

medium Bus implements BusMasterService …{
port BusArbiterService Arb;
port MemService Mem; …
update void busRead(String dest, int size) {

if(dest== … ) Mem.memRead(size);
[[Arb.request(B(thisthread, this.busRead)); 

Time.request(B(thisthread, this.memRead),
BUSCLKCYCLE + 
GTime.A(B(thisthread, this.busRead))); 

]]
}
…

scheduler BusArbiter extends Quantity 
implements BusArbiterService {

update void request(event e){ … }
update void resolve() { //schedule }

}

interface BusMasterService extends Port {

update void busRead(String dest, int size);

update void busWrite(String dest, int size);

}

interface BusArbiterService extends Port {

update void request(event e);

update void resolve();

}

BusArbiter

Bus

Time
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OUTLINE

• Embedded systems challenge

• Metropolis project

• Representing time

• Representing timing requirements

• Relation to UML
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Goals for constraint language

• solid math foundation

• natural to designers

• compatible with functional specification formalism

• expressive

• easy to simulate and verify formally
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Logic Of Constraints syntax

Terms are

• constants of any sort 

• variable i

• e[t], a(e[t]), where e is  event, a is annotation, t is term

• expressions with operators, e.g. y[i+2]-a(x[i])

LOC formulas are

• expressions with relations, e.g x[i]>y[i+2]

• Boolean combinations of formulas
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Logic Of Constraints semantics

Interpreted over an annotated behavior:

(ve,1, ae,1, a’e,1 ...), (ve,2, ae,2, a’e,2 ...)

(ve’,1, ae’,1, a’e’,1 ...),(ve’,2, ae’,2, a’e’,2 ...) …

…

• variable i evaluates to any integer

• e[t] evaluates to ve, eval(t)

• a(e[t]) evaluates ae, eval(t)

• operators, relations, Boolean connectives as usual

An annotated behavior satisfies the formula if it does not 
evaluate to FALSE for any value of i
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Typical properties

rate

• time(message[i+1]) = time(message[i])+7

latency

• time(play[i])+2 > time(sample[i])

• time(play[i])+2 > time(sample[resp[play[i]])

message

play

sample

hello bye

h e l l o

1

3

8

4 5 6 7 91resp
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Verification

by simulation

• not hard to build a simulation monitor from a formula

• cannot prove satisfaction, only disprove it

by formal methods

• undecidable in general

• a subset can be reduced to Presburger arithmetic

• a smaller subset can be reduced to finite state model 
checking
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OUTLINE

• Embedded systems challenge

• Metropolis project

• Representing time

• Representing timing requirements 

• Relation to UML
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UML Platform Profile

• A profile for specification of embedded system 
platforms

• Derived from  design of wireless protocols

• Supports design specification …

– Stereotypes like  <<Netlist>>, <<Process>> , <<Medium>>, …

• … and methodology specification

– Stereotype like <<Implement>> and <<Refine>>
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UML Platform Profile

• Semantics is defined by the equivalent Metropolis 
meta-model network

• Essentially, a translation of the Metropolis meta-model 
to UML, but not complete

• Remaining challenges:

– Add to the profile a mechanism to annotate behaviors 
including time

– Be precise and complete, while respecting the spirit of UML of 
being simple and intuitive
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Logic of Constraints

vs. UML profile for SPT

• SPT profile use tags to capture a fixed number of 
complex, parameterized formulas for which analysis 
has been developed

• LOC can capture many performance requirements, but 
complete analysis may not be available 

vs. OCL

• OCL much better to specify static relations between 
objects

• LOC much better in reasoning about execution 
sequences
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