
1 CADENCE DESIGN SYSTEMS, INC.

Time for specification of embedded
systems

Felice Balarin
Cadence Berkeley Labs

2

OUTLINE

• Embedded systems challenge

• Metropolis project

• Representing time

• Representing timing requirements

• Relation to UML

3

� Product Specification & Architecture Definition
(e.g., determination of Protocols and Communication standards)

� System Partitioning and Subsystem Specification
� Critical Software Development
� System Integration

Automotive Supply Chain:
Car Manufacturers

4

Architecture

Verification

Physical

Validation

Prototype

0
2
4
6
8

10
12
14
16
18
20
22
24
26

0.35µm 0.25µm 0.18µm 0.13µm 90nm

C
os

t (
$M

)

6,000

6,500

7,000

7,500

8,000

8,500

9,000

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

-27%

Estimated

0

500

1000

1500

2000

2500

3000

3500

0.25 0.18 0.13

Process Geometry

E
ng

in
ee

ri
ng

 M
on

th
s

$0

$500,000

$1,000,000

$1,500,000

250 180 150 130 90

Technology (nm)

M
as

k
C

o
st

s

Challenges and Trends

D
es

ig
n

S
ta

rt
s

D
es

ig
n

C
os

ts
In

cr
ea

se
d

S
W

E

ffo
rt

M
as

k
C

os
ts

Cell-Based ASICs becoming
prohibitively expensive for all but
highest volume applications

Shift to
• Re-use Strategy at all levels
• Higher Level of Abstractions
• Software !!!

5

Platform-based design

Platform
Design-Space

Export

Platform
Mapping

Architectural Space

Application Space
Application Instance

Platform Instance

System
Platform (HW and SW)

6

Platform Architectures: Hardware is not
enough!

Hardware

TM-xxxx
D$

I$

TriMedia CPU

DEVICE IP BLOCK

DEVICE IP BLOCK

DEVICE IP BLOCK

.

.

.

DVP SYSTEM SILICON

P
I B

U
S

SDRAM

MMI

D
V

P
 M

E
M

O
R

Y
 B

U
SDEVICE IP BLOCK

PRxxxx
D$

I$

MIPS CPU

DEVICE IP BLOCK
.

.

.
DEVICE IP BLOCK

P
I B

U
S

TriMedia™MIPS™

Source: Philips

Middleware
JavaTV, TVPAK, OpenTV,
MHP/Java, proprietary ...

Applications

Nexperia Hardware

Streaming and
Platform Software
Streaming and

Platform Software K
er

ne
l:

pS
O

S
,V

xW
or

ks
, W

in
-C

E

Software

7

The Next Level of Abstraction in the
Architecture Space

ab
st

ra
ct

Transistor Model
Capacity Load

1970’s

cluster

ab
st

ra
ct

Gate Level Model
Capacity Load

1980’s

RTL

cluster

ab
st

ra
ct

SDF
Wire Load

1990’s

IP Blocks

cluster

ab
st

ra
ct

IP Block Performance
Inter IP Communication Performance Models

RTL
Clusters

SW
Models

Year 2000 +

8

Embedded SW Challenges

FABIO ROMEO, Magneti-Marelli
DAC, Las Vegas, June 20th, 2001

Memory

Lines Of Code

Changing Rate

Dev. Effort

Validation Time

Time To Market

INSTRUMENT
CLUSTER

Productivity

Residual Defect
Rate @ End Of Dev

256 Kb

50.000

3 Years

40 Man-yr

5 Months

24 Months

PWT UNIT

6 Lines/Day

3000 Ppm

128 Kb

30.000

2 Years

12 Man-yr

1 Month

18 Months

BODY
GATEWAY

10 Lines/Day

2500 ppm

184 Kb

45.000

1 Year

30 Man-yr

2 Months

12 Months

6 Lines/Day

2000ppm

8 Mb

300.000

< 1 Year

200 Man-yr

2 Months

< 12 Months

TELEMATIC
UNIT

10 Lines/Day

1000 ppm

It’s embedded

⇒Need functional model for the rest
of the system

It’s real-time

⇒Need performance model for the
implementation platform

9

We need a System Design Platform

• To deal with heterogeneity:

– Where we can deal with Hardware and Software

– Where we can mix digital and analog

• To handle the design chain

– Where we can assemble internal and external IPs

– Where we can integrate tools

• To explore the design space

– Where we can quickly evaluate alternatives

– Where we can move seamlessly between levels of abstraction all the way
to implementation

10

System Design Platform

Function Constraints

•Power
•Latency
•…

Architecture

SW HW

CPU Mem DSP

CPU Mem DSP

Rational /
IBMMathworks

SPW

Virtio
Axys

Lisatek
Vast

CoWare
Incisive

Seamless

Arm, Xilinx
WindRiver

11

OUTLINE

• Embedded systems challenge

• Metropolis project

• Representing time

• Representing timing requirements

• Relation to UML

12

Metropolis Structure

Meta-model

• language

• modeling mechanisms
•compiler

Library

• Models of computation

(levels of abstraction)

Library

• Implementation Options

(Architecture platforms)

Simulator Scheduling Synthesis Estimators Verifiers

Tools

Methodologies

embedded controllers, multi-media, wireless communication, processors

Function Architecture Constraints

CPUMemDSP

CPUMemDSP
CPUMemDSP

13

Metropolis meta-model

• Computation : f : X " Z

• Communication : state evaluation and manipulation

• Coordination : constraints over concurrent actions

- process : generates a sequence of events

- medium : defines states and methods

- quantity : annotated with events

- logic : relates events wrt quantities, defines axioms on quantities

- q-manager : algorithms to realize annotation subject to relations

Concurrent specification with a formal execution semantics:

14

Meta-model : function netlist

process P{

port reader X;

port writer Y;

thread(){

while(true){

...

z = f(X.read());

Y.write(z);

}}}

medium M implements reader, writer{
int storage;
int n, space;
void write(int z){

await(space>0; this.writer ; this.writer)
n=1; space=0; storage=z;

}
word read(){ ... }

}

interface reader extends Port{

update int read();

eval int n();

}

interface writer extends Port{

update void write(int i);

eval int space();

}

M
P1X Y P2X Y

Env1 Env2

MyFncNetlist

15

Meta-model: execution semantics

• Processes take actions.

– Calls to port methods:

port.f()

• An execution of a given netlist is a sequence of vectors of events.

– event : the beginning of an action, e.g. B(port.f()),

the end of an action, e.g. E(port.f()), or null N

– each process has a component in the network

• An execution is legal if

– it satisfies all coordination constraints, and

– it is accepted by “action automata”.

16

OUTLINE

• Embedded systems challenge

• Metropolis project

• Representing time

• Representing timing requirements

• Relation to UML

17

Architecture modeling

An architecture is a service provider characterized by:
• what a service can do

• how much a service costs

Services are:
• declared by interfaces
• modeled by media implementing the interfaces
• media are parts of architecture network that may include other

media and processes

Costs are modeled as annotations to behaviors
• various types of annotations are specified by quantities
• quantity managers are objects that decide annotations
• time is yet another quantity

18

Architecture model: example

Bus
Arbiter

Bus

Mem

Cpu OsSched

Arch.
network

Master

CPU +
OS

Slave

Mem

Arbiter

Architecture network specifies
configurations of architecture
components.

Time

19

Quantities: annotation and coordination

• If two process attempt to use
the CPU, one must be
annotated as CPU owner, the
other must be disabled

• If two events concurrently
require different time stamps,
the lower must be granted, and
the higher must rejected

• Certain system behaviors are
eliminated because they
cannot be consistently
annotated

Bus
Arbiter

Bus

Mem

Cpu OsSched

Arch.
network

Time

20

Scheduled and scheduling networks

• Architecture components form
scheduled network

• Quantity managers form
scheduling network

• Scheduling network

• annotates events in the
scheduled network with
quantities

• disables events that cannot
be annotated

Bus
Arbiter

Bus

Mem

Cpu OsSched

Arch.
network

Time

Scheduled Scheduling

21

Interactions between scheduled and
scheduling networks

• Scheduled network may make
requests to scheduling network

• When all the scheduled process
make their requests, the execution
moves into resolution phase:

• quantity managers are executed until
they agree on set of annotations

• they may probe the state of the
scheduled network

• They may use services of separate
meta-model network

Key for multiple levels of abstraction

Bus
Arbiter

Bus

Mem

Cpu OsSched

Arch.
network

Time

Scheduled Scheduling

22

Example

medium Bus implements BusMasterService …{
port BusArbiterService Arb;
port MemService Mem; …
update void busRead(String dest, int size) {

if(dest== …) Mem.memRead(size);
[[Arb.request(B(thisthread, this.busRead));

Time.request(B(thisthread, this.memRead),
BUSCLKCYCLE +
GTime.A(B(thisthread, this.busRead)));

]]
}
…

scheduler BusArbiter extends Quantity
implements BusArbiterService {

update void request(event e){ … }
update void resolve() { //schedule }

}

interface BusMasterService extends Port {

update void busRead(String dest, int size);

update void busWrite(String dest, int size);

}

interface BusArbiterService extends Port {

update void request(event e);

update void resolve();

}

BusArbiter

Bus

Time

23

OUTLINE

• Embedded systems challenge

• Metropolis project

• Representing time

• Representing timing requirements

• Relation to UML

24

Goals for constraint language

• solid math foundation

• natural to designers

• compatible with functional specification formalism

• expressive

• easy to simulate and verify formally

25

Logic Of Constraints syntax

Terms are

• constants of any sort

• variable i

• e[t], a(e[t]), where e is event, a is annotation, t is term

• expressions with operators, e.g. y[i+2]-a(x[i])

LOC formulas are

• expressions with relations, e.g x[i]>y[i+2]

• Boolean combinations of formulas

26

Logic Of Constraints semantics

Interpreted over an annotated behavior:

(ve,1, ae,1, a’e,1 ...), (ve,2, ae,2, a’e,2 ...)

(ve’,1, ae’,1, a’e’,1 ...),(ve’,2, ae’,2, a’e’,2 ...) …

…

• variable i evaluates to any integer

• e[t] evaluates to ve, eval(t)

• a(e[t]) evaluates ae, eval(t)

• operators, relations, Boolean connectives as usual

An annotated behavior satisfies the formula if it does not
evaluate to FALSE for any value of i

27

Typical properties

rate

• time(message[i+1]) = time(message[i])+7

latency

• time(play[i])+2 > time(sample[i])

• time(play[i])+2 > time(sample[resp[play[i]])

message

play

sample

hello bye

h e l l o

1

3

8

4 5 6 7 91resp

28

Verification

by simulation

• not hard to build a simulation monitor from a formula

• cannot prove satisfaction, only disprove it

by formal methods

• undecidable in general

• a subset can be reduced to Presburger arithmetic

• a smaller subset can be reduced to finite state model
checking

29

OUTLINE

• Embedded systems challenge

• Metropolis project

• Representing time

• Representing timing requirements

• Relation to UML

30

UML Platform Profile

• A profile for specification of embedded system
platforms

• Derived from design of wireless protocols

• Supports design specification …

– Stereotypes like <<Netlist>>, <<Process>> , <<Medium>>, …

• … and methodology specification

– Stereotype like <<Implement>> and <<Refine>>

31

UML Platform Profile

• Semantics is defined by the equivalent Metropolis
meta-model network

• Essentially, a translation of the Metropolis meta-model
to UML, but not complete

• Remaining challenges:

– Add to the profile a mechanism to annotate behaviors
including time

– Be precise and complete, while respecting the spirit of UML of
being simple and intuitive

32

Logic of Constraints

vs. UML profile for SPT

• SPT profile use tags to capture a fixed number of
complex, parameterized formulas for which analysis
has been developed

• LOC can capture many performance requirements, but
complete analysis may not be available

vs. OCL

• OCL much better to specify static relations between
objects

• LOC much better in reasoning about execution
sequences

33

Thanks to …

• Prof. Sangiovanni-Vincentelli, UC Berkeley

• Yoshi Watanabe, Cadence

• Luciano Lavagno, Cadence

• Guang Yang, UC Berkeley

• Prof. Hsieh, UC Riverside

• Xi Chen, UC Riverside

• Grant Martin, Cadence

• many others

• and last but not least …

34

THANK YOU!

