Validating Real-Time Behavioral Patterns of
Embedded Controllers

Jagannath Aghav, Claude Petitpierre

School of Computer and Communication Sciences
Swiss Federal Institute of Technology
CH-1015 Lausanne Switzerland
{jagannath.aghav,claude.petitpierre}@epfl.ch

Abstract. The functional complexity of hardware and software systems
is growing exponentially. This demands an integration of system valida-
tion in the design phase to guarantee that a concrete implementation
conforms to the modeled requirements. System validation process in-
volves use of advanced systematic techniques and tools. In this paper
we present a method for validating the real-time behavioral patterns
of control intensive applications. The real-time behavioral patterns of
embedded controllers are modeled using Statechart diagrams of Uni-
fied Modeling Language (UML). Concrete implementation of the State-
chart diagrams consists of active objects in Java programming language
with synchronous communication. In the implementation using specified
timed annotations, we validate the real-time constraints to be satisfied
by embedded controllers. We shall illustrate the validation process with
an example of a gear controller used in automobiles, and furthermore,
provide an algorithmic solution.

Keywords

Unified Modeling Language, Statechart diagrams, Design Patterns, Embedded
Systems, Reactive Systems, Validation and Verification.

1 Introduction

Growth in the technology of manufacturing microprocessors and decline in the
prices have made a revolution of supplanting all electronic systems to single chip
computers. The application-specific single chip computers or embedded systems
[4] are often utilized in control intensive applications. Such systems or embedded
controllers behaving with multiple functionality are fanned out in everyday life.
The high cost of failures makes validation of system essential. These hardware-
software co-designed systems are substantially increasing in complexity and size.
Thus forming system validation a formidable challenge. The rapid development
in this area makes it necessary to have systematic methods and tools for design-
ing and validation.

Unified Modeling Language (UML) [7] is used by software developers in the
early stages of software development for expressing object oriented models and
designs. The generalized solutions are mined in form of architectural patterns
and behavioral patterns [8] or broadly as design patterns [9]. Various real-time
models [2] and their finite state formalisms [3] are employed for validation of
real time systems specified in different programming languages. We consider
the design and validation of controllers for timed systems [1,15] in UML. The
integration of validation methods in development phase of UML will assist in
devising the design patterns of complex systems with high reliability.

Design Pattern|
of controller

v

Synchronous
Java
(active
objects)

s

Time
computation

Desgin pattern
of environment

Execution time
of methods

AR

Redesign cycle { T

Fig. 1. Validation Process Cycle for Designing Controllers.

In this paper we describe a method for validating real-time behavioral pat-
terns in the design of embedded controllers. The reactive nature of controllers
allow the classification of the behavioral patterns into two categories: behav-
ioral patterns of program controllers and of components in environment. The
specification of environment as model for validation originates from Sifakis [6]
where non-computing regions of program are specified using event relations such
as cumulative, separate and coalescent. We continue to apply the environment
modeling for identifying the length of execution sequences in the UML frame-
work. Figure 1 shows the general view of validation process of our approach
which is a cyclic process like different play-in-scenarios in [10]. The steps in
validation process are as follows:

(i) Model the behavioral pattern of the program controller in Statechart dia-
grams of UML including time constraints.
(ii) Model the behavioral pattern of corresponding component being controlled
in the environment.
(iii) Implement the code from Statecharts diagrams as active objects having syn-
chronous communication.

(iv) Read execution times in Java code. The time values are based on selected
target architecture. Either the compiler supports the reading of time values
or the designer supplies. Labels are annotated based on notations of TimeC
in [11] or in [6, 16] for synchronous programming language ESTEREL [5].

(v) Construct a finite state automaton with time annotated labels on transitions
from the concrete realization.

(vi) Compute the longest response time on each stimuli of the environment.

(vii) Check the real-time constraints in all possible execution paths for satisfac-
tion. The longest time response of all paths is displayed on the transition of
Statechart diagram of the controller.

The main contributions of the paper are, a method for validating real-time
behavioral patterns of embedded controllers and an algorithmic solution to the
validation process. We provide an illustration of our method with an industrial
case study example of a gear controller. The rest of the paper is structured as
follows: In the sequel we present briefly an example of a gear controller used in
automobiles. In Section 3 we describe the modeling of architectural, behavioral
patterns of the example and demonstrate timed annotations in code implementa-
tion. Section 4 presents the validation of real-time constraints and an algorithmic
solution for computing time responses. In Section 5 we present the conclusions
of the paper.

2 Gear Controller

We take an example of a gear controller (for more details see [12]) proposed
by Mecel. The gear controller has five main components: Clutch, Gear Box,
Engine, Interface and Controller apart from the linking and plug in components.
The main controller is composed in parts or modules. These modules together
with corresponding components forms the complete gear controller as shown in
Figure 2. For the validation we categorize the composed system into two parts:

Environment Program Controllers Environment
TorqueZero/
8 M ; ‘SpeedSet ;
Gears: 8 Interface Engine =< Engine
) 3 Control Control »| E Timer
{0,1,..6} E — T
0- Neutral{ — ReqSpeed/
6-Reverse RegNewGear ReqTorque/
[| ReqZeroTorque
1-5 -Forward
ClutchOpen/
GearSet/
ClutchClose GearNeu
Clutch = Clutch CGear | Gear Box
C Timer »| Control Control »| GB Timer
OpenClutch/ ReqSet/
CloseClutch RegNeu

Fig. 2. Composition of Mecel’s Gear Controller.

controller part as program and component part as environment. The components
have time requirements to be satisfied for the correct functioning of the gear
controller. For example the time requirements on clutch operation is as follows.
The clutch should change state from close to open or vice versa within 100 to
150 time units.t Next we shall present the modeling and concrete realization of
the example.

3 Implementation

UML provides stereotype of classes, protocols and Statechart diagrams to model
event driven systems. Using capsule as a stereotype class, we model each indepen-
dent control element of gear controller forming the architectural class diagram.
The dynamic behavior of each element is modeled using a Statechart diagram. In
the following we present architectural patterns, behavioral patterns and timed
annotations of gear controller example.

3.1 Architectural Patterns

This is the static structure of the full gear controller that has a capsule for each
control part and protocol stereotype for communication. The architecture is
composed with main capsule MainGearController which comprises capsules of
all other components and controllers. Figure 3 shows architectural class diagram
of gear controller.

3.2 Behavioral Patterns

The dynamic behavior of program controller part and its corresponding com-
ponent is specified using Statechart diagrams. The component or environment,
behavior is specified to assist the validation. Figure 4 shows the behavioral pat-
tern of clutch controller or program part. Figure 5 shows behavioral pattern of
clutch component or environment. The behaviors of other components and pro-
gram controllers are modeled in a similar way. Figures are not shown due to lack
of space. The interactions between different program controllers are modeled
using collaboration diagrams.

3.3 Annotating Synchronous Active Objects

From the behavioral patterns the concrete implementation is generated as fol-
lows: For each controller and its corresponding component active objects are
created. These active objects communicate synchronously and such objects are
known as synchronous active objects [13,14]. The communication between the
controllers and its components is synchronized by having a common method
name in Java. We annotate the syntax of synchronization calls with following
label structure within the comments beginning with special symbol ‘!’.

 For validation purpose measurement is in time units instead of milliseconds. Based
on target architecture exact times are computed.

MainGeaCantioller

—_
GCTimer T —— | These are:
— | capsules
3 ‘titl;neout[] i
por
AL T fll |‘\
e
Enaine | GearBox |
[]
4 ks >
Epppiaa i
<< Pt
P E Tirner <epapey .
B T
; Stimeout)
IrterfaceControl CTimer
ControlE ngi
DReqiewGeal) Pimeaut] SRR
ShewGear] TR e——
antralClute peedSel :
| s th>> @Torquezerd] GETimer
SClutehOpen() 7 WReqZernT arquel) ;
This iz protocal SClutchClose() :Equmqude[%] Btimeaut]]
for Interface an SLloseClutchi] FopEe e
S0penCiutch() iy

Thiz iz protocal ™ CortolGeabox

for engine and

SGearteul]

Thiz iz protocal
far clutzh and
Thig iz protocal [y —— — ®GearSel]
for gearbox and SRegheul)
Phegsel]

Fig. 3. Class Diagram of Gear Controller.

\

(=% ControlClose

{CTimer=0}
ClozeClutch
=T}

ClutchCloze ClutchOpen

ErmorClosing

Y

Fig. 4. Statechart Diagram of Clutch Controller.

\ Y,

//! { Calling active object number, receiving active object number, method
name, time units }

Initialization
2 CloseClutch ClutchClose

|

\. J

OpenClutch

Fig. 5. Statechart Diagram of Clutch Component

The structure of label is composed with the following information: (i) Caller
active object number. (ii) Receiver active object number. (iii) The name of the
method that is executed and (iv) The execution time of the method. The two cat-
egories of composition, the program controller and components of environment
are specified in annotations as even and odd numbers respectively. For the exam-
ple of simple clutch controller two active objects are created: ClutchController
and the component Clutch with synchronous communication. The annotated
source with the timing information appears as shown below:

public class Gear {
active class ClutchController{

accept OpenClutch;
//' {1, 0, OpenClutch, 35}

}

active class Clutch{

accept ClutchOpen;
//' {0, 1, ClutchOpen, 30}

}

As the code depicts the clutch controller is numbered with 0 and clutch compo-
nent with 1.

4 Validation

In this section we present the validation of the finite state model generated
from the java source implementation and from the timed annotations on syn-
chronous active objects. The generated finite state model is a directed graph that

represents sequential execution of active objects. The time annotated labels on
synchronization becomes the labels of the edges in the finite state model. For
validation we detect the transitions that have communication from environment
component to Program controller. Following algorithm computes time responses
for the input finite state model.

Time Computation Algorithm Let us denote program controller with P and
environment with E. (P 1 E) denotes a transition or edge that has communi-
cation from program controller to environment component. The input to the
algorithm is a file containing the description of finite state model. Output is the
sum of execution times for all possible paths that has starting transition (E 1 P)
and a terminating transition of either (P 1 E) or (P 1 P). Here (P 1 P) denotes
transition type within a program controller that has no outgoing edges. The
steps for computing time are as follows: Read the description of labels, edges,
and vertexes from the input file. Search the new edge that has communication
from environment to program controller, (E 1 P). For the selected new edge, find
the corresponding sinking vertex. From the sinking vertex find all possible paths
ending on next new edge of type (E 1 P). All the paths are terminating with
either (P 1 E) or (P 1 P) type of edge. Compute the time on all the paths by
summing up the execution times specified on the labels. Display the transition
that takes longest time response into Statechart diagram of controller.

EO
Initialization E 0 1 ClutchClose 25

E 1 0 CloseClutch_10
El

E _0_1_ClutchOpen_30
E_0_1 ClutchClose_25 E_0_1 ClutchOpen_30
E_1 0 OpenClutch_35

2@,

E_0_0_ErrorOpening_10

=@

Fig. 6. Finite State Model of Clutch Controller

Figure 6 shows the finite state model representing execution of two syn-
chronous active objects with timed annotated labels for the simple clutch con-
troller example. Composition with other controllers is not taken in account for
this simple case. The behavioral patterns of this model are shown in Figure 4
and Figure 5. The result of time computation for the model is as following:

E4—Eg: Time(E_1_0_OpenClutch_35 + E_0_1_ClutchOpen_30 +
E_0_1_ClutchClose_25 + E_0_0_ErrorClosing_ 10) = 100 units

The longest time taken by the controller for (E 1 P) transition having OpenClutch
method of Java is 100 units. The result is displayed in the Statechart diagram

of controller.

EO
Initialization
El
E_7_6_RegNewGear_35

E_4 5 _ReqgZeroTorque_25

E_0_1 Clutchopen 30 12 E 1 0 OpenClutch 35 El3
) O @)
E 5 4 TorqueZero_50 E_0_O_ErrorOpening_10

E 2 3 RegNeu 50

D) E16()

E_2 3 ReqNeu 50

N E_2 2 ErrorNeu_10 ~_ FE 22 ErrorNeu_10 ,)
N\ E14
E_3 2 GearNeu_50 E15

E_0_0_ErrorOpening_10
E_3 2 GearNeu_50

E_4 5 ReqSpeed 40

) E 0 1 ClutchOpen_30 A
E 5 4 SpeedSet 80

E_1 0_OpenClutch_35

E19

E 2 2 Frrorldle 20~ E 2 2 Errorldie 20
N

E 3 2 GearSet_80 E23 E 3 2 GearSet_80

E 1 0 CloseClutch 10 ~ E 0_1 ClutchClose 25 21

E22 E 0_0_ErrorClosing_10

E 4 5 ReqTorque 30 3 E_0_1 ClutchClose_25
E 0 _O_ErrorClosing_10

E_1 0 CloseClutch 10

E_6 7 NewGear 20

Fig. 7. Finite State Model of Gear Controller.

Now consider the finite state model of the composition for all four con-
trollers.The environment statechart diagram of the respective components are
provided for the validation process. The active objects for controllers of clutch,
Gearbox, Engine and Interface are even numbered starting with 0, whereas the
corresponding environment components are odd numbered starting from 1. Fig-
ure 7 shows the finite state model representing the execution of all synchronous

active objects with time annotated labels for gear controller example. The result
of time computation for the model is as following:

Eg—Eg3: Time(E_5.4_SpeedSet_ 80 + E_2_3 ReqSet 60 +
E_2_2 ErrorIdle_20) =160 units

The longest time taken by program controller for path is 160 units. There are
two paths Ej9g — E; and E;o* — E; showing the same sinking vertex E;g with
two incoming (E 1 P) type of transitions. The sum of execution time for the
two paths is 130 units and 60 units respectively.

5 Conclusions

We have presented a method for validating real-time behavioral patterns of em-
bedded controllers specified in statecharts diagrams of UML. The validation
process is illustrated with an example of a gear controller. The method aims for
the integration into the design phase of UML to assist in predicting the run time
of behavioral patterns for a given target architecture and also in simplifying the
constructions of timed systems. The method validates only real-time behavioral
patterns and not the architectural patterns or internal inconsistencies.

References

1. E. Asarin, O. Maler, A. Pnueli and J. Sifakis. Controller synthesis for timed
automata. In Proc. System Structure and Control. Elsevier, 1998.

2. R. Alur and T.A. Henzinger. Logics and models of real time: a survey. In JJW.
de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg, editors, Real Time:
Theory in Practice, LNCS 600, pages 74-106. Springer-Verlag, 1992.

3. Rajeev Alur and David L Dill. A Theory of Timed Automata. Theoretical Com-
puter Science, 126:183-235, 1994.

4. F. Balarin, P. Giusto, A. Jurecska, C. Passerone, E. Sentovich, B. Tabbara,
M. Chiodo, H. Hsieh, L. Lavagno, A. Sangiovanni-Vincentelli, and K. Suzuki.
Hardware-Software Co-Design of Embedded Systems, The POLIS Approach.
Kluwer Academic Publishers, April 1997.

5. Gérard Berry and G Gonthier. The Esterel sychronous programming language:
Design, semantics, implementation. Science of Computer Programming, 19(2):87—
152, 1992.

6. Valérie Bertin, Michel Poize, and Joseph Sifakis. Towards validated real-time soft-
ware. In Proceedings of the 12 th Euromicro Conference on Real Time Systems,
pages 157-164, Stockholm, June 2000.

7. Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Lan-
guage User Guide. Addison-Wesley, Reading, Massachusetts, USA, 1 edition, 1999.

8. Bruce Powel Douglass. Doing Hard Time: Developing Real-time Systems with
UML, Objects, Frameworks, and Patterns. Object Technology Series. Addison-
Wesley, 1999.

9. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-
Wesley, 1995.

10.

11.

12.

13.
14.

15.

16.

David Harel. From play-in scenarios to code: An achievable dream. Computer,
34(1):53-60, January 2001.

Allen Leung, Krishna V Palem, and Amir Pnueli. TimeC: A time constraint lan-
guage for ILP processor compilation. In K A Hawick and H A James, editors, The
5% Australian Conference on Parallel and Real Time Systems, Australia, pages
57-T1. Springer Verlag, 1998.

Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal design and analysis of a
gear controller. In 4th International Workshop on Tools and Algorithms for the
Construction and Analysis of Systems, Lecture Notes in Computer Science, pages
281-297. Springer Verlag, March-April 1998.

Synchronous Java. available on web site http://ltiwww.epfl.ch/sJava/.

Claude Petitpierre. Synchronous C++, a Language for Interactive Applications.
IEEE Computer, pages 65—72, September 1998.

P. Ramadge and W. M. Wonham. The control of discrete event systems. Proceed-
ings of the IEEE, 77(1):81-89, January 1989.

R K Shyamasundar and J V Aghav. Validating real-time constraints in embed-
ded systems. In Proceedings of IEEE Pacific Rim International Symposium on
Dependable Computing, PRDC, pages 347-355, Seoul, Korea, December 2001.

10

