Mapping and Scheduling Streaming
Applications using SMT Solvers

Pranav Tendulkar

Supervisors:
Dr. Oded Maler Dr. Peter Poplavko

\/m

Verimag, FRANCE

13 October 2014

Tendulkar Mapping/scheduling for many-core 1/52

Multi-core Processors Everywhere

7 Cameras
~ Smart-TV o \/

Tendulkar Mapping/scheduling for many-core 2/52

Multi-core Processors Everywhere

107 L Intel 48-Core Transistors
Prototype (Thousands)
6 [AMD 4-Core 3
10 i X Parallel Proc
Opteron Performance
10° - Intel: Sequential
Pentium 4 Processor
4 3 Performance
10 : DEC Alpha [E
21264 |- Frequency
3 - (MHZ)
10" wips Rk =
5 Typical Power
10" - (Watts)
1 Number
10 ¢ of Cores
10° ¢
1975 1980 1985 1990 1995 2000 2005 2010 2015 \/
source : http://www.csl.cornell.edu/courses/ece5745/handouts.html

Tendulkar Mapping/scheduling for many-core 3/52

Multi-core Processors Everywhere

107 L Intel 48-Core Transistors
Prototype (Thousands)
6 [AMD 4-Core 3
10 i X Parallel Proc
Opteron Performance
10° - Intel: Sequential
Pentium 4 Processor
4 3 Performance
10 : DEC Alpha [E
21264 |- Frequency
3 - (MHZ)
10" wips Rk =
5 Typical Power
10" - (Watts)
1 Number
10 ¢ of Cores
10° ¢
1975 1980 1985 1990 1995 2000 2005 2010 2015 \/
source : http://www.csl.cornell.edu/courses/ece5745/handouts.html

Tendulkar Mapping/scheduling for many-core 3/52

Motivation

Multi-core systems

How To:

Mapping/scheduling for many-core

Multi-core systems

How To:
@ Deploy the application to the platform

Tendulkar Mapping/scheduling for many-core 4/52

Multi-core systems

How To:
@ Deploy the application to the platform

@ Decide number of processors to use?

Tendulkar Mapping/scheduling for many-core 4/52

Multi-core systems

How To:
@ Deploy the application to the platform

@ Decide number of processors to use?

o Allocate tasks to processors and schedule them \/

Tendulkar Mapping/scheduling for many-core 4/52

Our Deployment Framework

Tendulkar Mapping/scheduling for many-core 5/52

Our Deployment Framework
L &

v ¥ 3

Tendulkar Mapping/scheduling for many-core 5/52

Our Deployment Framework
L &

5

T ¥
HEN

Tendulkar Mapping/scheduling for many-core 5/52

Our Deployment Framework
&

t
Platform Model ;2

&
HEBN

Optimization
Techniques

Tendulkar Mapping/scheduling for many-core 5/52

Our Deployment Framework
L &

5

T ¥
HEN

Optimization
Techniques
Solution
I I
1) I
| Vi

Tendulkar Mapping/scheduling for many-core 5/52

Our Deployment Framework
L &

v ¥ 3

Optimization
Techniques

\ Code

%

Solution

=

Tendulkar Mapping/scheduling for many-core 5/52

Motivation

Application Model

Task Graph

Mapping/scheduling for many-core

Application Model

Task Graph

@ Tasks : Software procedure

Tendulkar Mapping/scheduling for many-core 6/52

Application Model

Task Graph

@ Tasks : Software procedure

@ annotated with execution time)

Tendulkar Mapping/scheduling for many-core 6/52

Application Model

Task Graph

®_
®/®\®

@
wlooe

@ Tasks : Software procedure

@ Edges : Precedence relations

Tendulkar Mapping/scheduling for many-core 6/52

Deployment Problem

Task Graph Deployment Solution

®._
®/®\®

®\ \ Time
S 4

@ Tasks : Software procedure

o]
©

Alelal1]

e FlE]D[H]V]

fad

Processors

@ Edges : Precedence relations

Tendulkar Mapping/scheduling for many-core 7152

Deployment Problem

Task Graph Deployment Solution

®._
®/®\®

®\ \ Time
S 4

@ Tasks : Software procedure @ Mapping : Task = Processor

Processors

@ Edges : Precedence relations

%

Tendulkar Mapping/scheduling for many-core 7152

Deployment Problem

Task Graph

oW
®/®\®
S 4

@ Tasks : Software procedure

@ Edges : Precedence relations

Tendulkar

Processors

Deployment Solution

o]
©

Alelal1]

[c]FElD[H[J]

fad

‘ xC Time

@ Mapping : Task = Processor

@ Scheduling : Task = Time

Mapping/scheduling for many-core 7152

Deployment Problem

Solution1:
[AlB[G[1]

lcF[E]D [H]y]

a~]
e

ol

Processors

‘ Time

Tendulkar Mapping/scheduling for many-core 8/52

Deployment Problem

Solution1:

@
2 r [RIsleli]
S P [c[FIE]D[H]J]
o
‘ Time
Solution2:
| [AlB]c[p[EJF[G[H[IT]J]

Processors

‘ Time

Tendulkar Mapping/scheduling for many-core 8/52

Motivation

()
(@]
=
o
()
(&)
©
o
(%)
c
e
—
=
(@)
n

o
=

o
=]

2
=]

2
=]

o o
[i=N=}

la]
=]

a o
[i=H=]

o
=]

a o
[=H=]

o
=]

a a
[=H=]

2
=]

o o
= =

2
=]

o
=]

o
=

2
=]

o
=]

2
=]

o a
=N =}

2
=]

(= IT B = = N
=il = == ==l =]

(=T BT =]
el = =]

(=BT =]
=l =1 =]

oo
=il =1 =]

[BT = T
= =1 =]

[T = I T = = N 1= = N =]
e s] s T == = T == =T =}

[a]
=]

2
=]

T I =t = T eI e SN = N Y I = N = N B o S R = = = = B = T RN = T R = = N
Dloojolopoomoo/oooloo(ooo|(o/o|o|o oo |o|o|g

2
=]

o
=]

la]
=]

[a]
=]

o
=]

la]
=]

o
=]

o
=]

o
=

o
=]

la]
=]

[a]
=]

(=]
[l]

o
=]

o
=]

[a]
=]

o
=

la]
=]

[a]
=]

o
=]

o
=

o
=]

la]
=]

[a]
=]

o
=]

la]
=]

2
=]

o
=]

o
=]

=]
f

=]
|

[=]
=]

=]
f

o
=]

o
=]

=]
|

o
=]

=]
f

[=IT=]
=il =]

=)
|

o
=]

=]
f

=)
|

[=]
=]

=]
f

fa]
=]

o
=]

=]
|

o
=]

=]
f

=]
|

[=]
=]

2
=]

T I =t = T eI e SN = N Y I = N = N B o S R = = = = B = T RN = T R = = N
Dloojolopoomoo/oooloo(ooo|(o/o|o|o oo |o|o|g

2
=]

| @& @ @ @ @ @ @ @ @8 @ @

=]

@ @ @ @

=]

ol ol
ol o

1
1

2 proc., 10 tasks ~ 1000+ potential solutions

o
=]

o
=]

=]
f

=]
|

o
=]

=]
f

o
=]

o
=

=]
|

o
=]

=]
f

=]
[

o
=]

=)
|

o
=]

=]
f

=)
|

o
=]

=]
f

o
=]

o
=

=]
|

o
=]

=]
f

=]
|

o
=]

2
=]

(=T = = = T N ix I HN = I = Y= I = = N B S = O N1 = = B = T = T R = N = N
Dloojolopoomoo/oooloo(ooo|(o/o|o|o oo |o|o|g

2
=]

[:]
=]

o
=]

=)
f

=)
|

o =
==}

o
=]

a =]
[f=H=]

o
=]

a o
[=Nl=]

la]
=]

a a
[=H=]

=)
f

= o
[=H=]

la]
=]
f

o
=]

la]
=

=)
|

o
=]

=)
f

= a
==}

2
=]

[T = e T = = = I = = I = I = I = = = N s B = A B = S = N = B 1= N = R
L e LEEELEEEEEEEEEELGEBELGEGEEGGS

[a]
=]

2
=]

%

o
=]

o
=]

o
=]

o o o o a a o a o =] a o a o o a
i T e e T e e e B e B B e B B e R e B B

o
=]

o
=

o
=]

o
=]

2
=]

o a
=N =}

2
=]

9/52

Mapping/scheduling for many-core

endulkar

Deployment problem

How to:
e find optimal solutions in exponential design space.

Tendulkar Mapping/scheduling for many-core 10/52

Deployment problem

How to:
e find optimal solutions in exponential design space.

@ model complex hardware which has Processors, Network, DMA

Tendulkar Mapping/scheduling for many-core 10/52

Deployment problem

How to:
e find optimal solutions in exponential design space.

@ model complex hardware which has Processors, Network, DMA

@ evaluate multiple criteria
o Latency

Memory used

Processors used

Tendulkar Mapping/scheduling for many-core 10/52

Outline

o Motivation

e Application Model

Q Deployment using SMT

e Symmetry elimination

e Distributed memory scheduling
Q@ sMT Solving

e Conclusions

Tendulkar Mapping/scheduling for many-core 11/52

Application Model

[S

e Application Model

Tendulkar Mapping/scheduling for many-core 12/52

Model of Computation

Synchronous Dataflow graphs (SDF)
by Edward Lee and David Messerschmitt in 1987

Tendulkar Mapping/scheduling for many-core 13/52

Model of Computation

Synchronous Dataflow graphs (SDF)
by Edward Lee and David Messerschmitt in 1987

represents Streaming Applications

Tendulkar Mapping/scheduling for many-core 13/52

Model of Computation

Synchronous Dataflow graphs (SDF)
by Edward Lee and David Messerschmitt in 1987

represents Streaming Applications

Input output

Computation

Tendulkar Mapping/scheduling for many-core 13/52

Application Model

Synchronous DataFlow

images
EEEE

images
EEEN

Tendulkar Mapping/scheduling for many-core 14/52

Application Model

Synchronous DataFlow

(D) S

Post

N
SDF Graph ' .

Pre

Task Graph

Tendulkar Mapping/scheduling for many-core 15/52

Application Model

Synchronous DataFlow

@ © ©
SDF Graph @

Task Graph

Tendulkar Mapping/scheduling for many-core 15/52

Application Model

Synchronous DataFlow

SDF Graph '|

@ Actors v
@ Edges @

Task Graph

Tendulkar Mapping/scheduling for many-core 15/52

Application Model

Synchronous DataFlow

ORON®

SDF Graph

@ Actors v
@ Edges @

@ Rates Task Graph

Tendulkar Mapping/scheduling for many-core 15/52

Application Model

Synchronous DataFlow

4 1@1

Post

()=
SDF Graph '|
e Blury @

@ Actor Blur is compact representation of data parallel tasks. J

Pre

Task Graph

Tendulkar Mapping/scheduling for many-core 15/52

Application Model

Synchronous DataFlow

4 1@1 H

Post

()=
SDF Graph @
TS

@ Actor Blur is compact representation of data parallel tasks.
@ All Blur tasks have same properties such as execution time. J

Task Graph

Pre

Tendulkar Mapping/scheduling for many-core 15/52

Split-Join Graphs

we use split-join graphs : restriction of SDF
still covering perhaps 90% of use cases in the literature

Tendulkar Mapping/scheduling for many-core 16/52

Split-Join Graphs

we use split-join graphs : restriction of SDF
still covering perhaps 90% of use cases in the literature

a simple example:

()" —(c)
a : spawn and split

1/«: wait and join

Tendulkar Mapping/scheduling for many-core 16/52

Split-Join Graphs

we use split-join graphs : restriction of SDF
still covering perhaps 90% of use cases in the literature

a simple example:

()" —(c)
a : spawn and split

1/«: wait and join

D
/@

Tendulkar Mapping/scheduling for many-core 16/52

Restrictions compared to general SDF

Split-join does not support:

@ Stateful actors

Tendulkar Mapping/scheduling for many-core 17/52

Restrictions compared to general SDF

Split-join does not support:

@ Stateful actors

2 3
@ Non-proportional rates

Tendulkar Mapping/scheduling for many-core 17/52

Restrictions compared to general SDF

Split-join does not support:

@ Stateful actors

@ Non-proportional rates

@ Initial tokens and cyclic paths

Tendulkar Mapping/scheduling for many-core 17/52

Deployment using SMT
view

e Deployment using SMT

Tendulkar Mapping/scheduling for many-core 18/52

Deployment using SMT

SATisfiability solver (SAT / SMT)

Mapping/scheduling for many-core

Deployment using SMT

SATisfiability solver (SAT / SMT)

@ Boolean variables
’E‘Z ’E‘Z ’E‘Z 4 ino, inl, ing ...
> @ outg, outy, outs ...
—

Tendulkar Mapping/scheduling for many-core 19/52

Deployment using SMT

SATisfiability solver (SAT / SMT)

@ Boolean variables
’E‘Z ’E‘Z ’E‘Z 4 ino, inl, ing ...

> @ outg, outy, outs ...
; @ Constraints

@ outp = ing V in; P ins ...

Tendulkar Mapping/scheduling for many-core 19/52

Deployment using SMT

SATisfiability solver (SAT / SMT)

@ Boolean variables
’E‘Z ’E‘Z ’E‘Z 4 ino, inl, ing ...

> @ outg, outy, outs ...
; @ Constraints

@ outp = ing V in; P ins ...

variables

constraints

]

—— SAT solver ——

Tendulkar Mapping/scheduling for many-core 19/52

Deployment using SMT

SATisfiability solver (SAT / SMT)

@ Boolean variables
’E‘Z ’E‘Z ’E‘Z 4 ino, inl, ing ...

> @ outg, outy, outs ...
; @ Constraints

@ outp = ing V in; P ins ...

—
variables
constraints
outy = true l
& —— SAT solver ———
out; = frue

Tendulkar Mapping/scheduling for many-core 19/52

Deployment using SMT

SATisfiability solver (SAT / SMT)

@ Boolean variables
’E‘Z ’E‘Z ’E‘Z 4 ino, inl, ing ...

> @ outg, outy, outs ...
; @ Constraints

@ outp = ing V in; P ins ...

—
variables
constraints
outy = true l
& ——— SAT solver —— UNSAT
out; = frue

Tendulkar Mapping/scheduling for many-core 19/52

Deployment using SMT

SATisfiability solver (SAT / SMT)

@ Boolean variables
’E‘Z ’E‘Z ’E‘Z 4 ino, inl, ing ...

> @ outg, outy, outs ...
; @ Constraints

@ outp = ing V in; P ins ...

—
variables
constraints
outy = false l
& — SAT solver ——
out; = frue

Tendulkar Mapping/scheduling for many-core 19/52

Deployment using SMT

Tisfiability solver (S

@ Boolean variables
’E‘Z ’E‘Z ’E‘Z 4 ino, inl, ing ...

> @ outg, outy, outs ...
; @ Constraints

@ outp = ing V in; P ins ...

—
variables
constraints
outy = false l
& — SAT solver —— SAT
out; = frue

ing = true,
in; = false, ... \/

Tendulkar Mapping/scheduling for many-core 19/52

Deployment using SMT

SATisfiability solver (SAT / SMT)

@ Boolean variables
% % % @ ing, iny, ins ...
—) > @ outp, outy, outy ...
) @ Constraints

@ outp = ing V in; P ino ...

—
SMT extends SAT by numeric variables and constants J

LULIS U Al L)

—— SAT solver ——

Tendulkar Mapping/scheduling for many-core 19/52

Deployment using SMT

Encoding deployment with constraints

e Actor A B Cc
;6\ Tasks Ag By ‘ B, ‘ By ‘ Bj Co
=X Description Variables

Task Graph

Tendulkar Mapping/scheduling for many-core 20/52

Deployment using SMT

Encoding deployment with constraints

e Actor A B C

;6\ Tasks Ay By ‘ B, ‘ Bo ‘ Bs Co
0“@ Description Variables

W Start tlme XAQ XBO ‘ xB 1 XB2 XB3 ‘ XCO

Task Graph

Tendulkar Mapping/scheduling for many-core 20/52

Deployment using SMT

Encoding deployment with constraints

e Actor A B
By [Bi [B [B3 | G

[é\ Tasks Ag
0“@ Description Variables
W Start tlme XAQ XBO XB1 XB2 XB3 XCO
Allocated proc. | pA, | pB, [pB; | pB, | pB; | pCy

Task Graph

20/52

Tendulkar Mapping/scheduling for many-core

Deployment using SMT

Encoding deployment with constraints

e Actor A B Cc
;6\ Tasks Ay By ‘ B, ‘ Bo ‘ Bs Co

0“@ Description Variables
W Start tlme XAQ XBO XB1 XB2 XB3 XCO
e Allocated proc. | pA, | pB, [pB; | pB, | pB; | pCy
Duration dA dB dc

Task Graph

20/52

Tendulkar Mapping/scheduling for many-core

Deployment using SMT

Encoding deploym

Task Graph

Actor A B Cc
Tasks Ay By ‘ B, ‘ Bo ‘ Bs Co
Description Variables
Start time xAp | xBg xB; | xB2 | xBs xCp
Allocated proc. | pA, | pB, [pB; | pB, | pB; | pCy
Duration dA dB dc

@ Precedence Constraints

o XBO Z (XAO + dA)

Tendulkar

%]
=
o
[7]
[%]
[0
[&]
]
=
o

Mapping/scheduling for many-core

20/52

Deployment using SMT

Encoding deployment with constraints

e Actor A B C
;6\ Tasks Ay By ‘ B, ‘ Bo ‘ Bs Co
0“@ Description Variables
W Start time XAQ XBO XB1 XB2 XB3 XCO
e Allocated proc. | pA, | pB, [pB; | pB, | pB; | pCy
Duration dA dB dc
Task Graph
% @
. (o] o
@ Precedence Constraints 2 OR ¢
e xBo > (xAo + dA) § §
@ Mutual Exclusion Constraints & a

e if (pB; = pB,) then Time Time

XB1 2 (XB2 +dB) V XB2 2 (XBl +dB)

Tendulkar Mapping/scheduling for many-core 20/52

Deployment using SMT

Encoding deployment with constraints

e Actor A B C

;6\ Tasks Ay By ‘ B, ‘ Bo ‘ Bs Co
0“@ Description Variables

W Start tlme XAQ XBO xB 1 XB2 XB3 XCO

e Allocated proc. | pA, | pB, [pB; | pB, | pB; | pCy
Duration dA dB dC
Task Graph
Latency
1 .
. 5 .
@ Precedence Constraints 2l Ay m :
o XB“ 2 (XAu + (JA) 8 :
. . o
@ Mutual Exclusion Constraints a

o if (pB, = pB,) then
xB1 > (xB2 +dB) V xBa > (xB1 + dB)
@ Latency Cost

@ Latency = (xCo + dC) \/

Time

Tendulkar Mapping/scheduling for many-core 20/52

Multi-criteria Problem

SIS
P

Time
Latency = 4
#Proc =2
%
o
17
Q
3
J S EEEEEEERESSEE 1(4.2)
Latency \/

Tendulkar Mapping/scheduling for many-core 21/52

Multi-criteria Problem

P4 B3

Pii 2

SIS e [B]

Time Time
Latency = 4 Latency =3
#Proc = 2 #Proc =4
Sl R
2 :
® 1
8 |
o Fe
Latency \/

Tendulkar Mapping/scheduling for many-core 21/52

Multi-criteria Problem

3
P, A [B 5] 3

Py

Py
Conflicting Criteria

Latency = 4 Latency =3
#Proc =2 #Proc =4

Processors

Latency

Tendulkar Mapping/scheduling for many-core 21/52

Multi-criteria Problem

P4 B3

Pii 2

SIS e [B]

Time Time
Latency = 4 Latency =3
#Proc = 2 #Proc =4
© (340"
Qr-------- + Pareto Set
17} N
0] S
8 L
-l TTohe2)
Latency \/

Tendulkar Mapping/scheduling for many-core 21/52

Deployment using SMT

Problem Monotonicity

Upper Bound

J
punog Jaddn

Processors

Latency \/

Tendulkar Mapping/scheduling for many-core 22/52

Problem Monotonicity

P

Time
Latency = 4
#Proc =2
Upper Bound
””””” r s
n |]
o 1 g
D | =
2] : :Q
S| IS .
e |
o |

Latency \/

Tendulkar Mapping/scheduling for many-core 22/52

Problem Monotonicity

Py | Ap P,

P, -B1 -Bg -Co P, ‘ B, ‘ By | Co ‘
Time Time
Latency = 4 Latency = 5
#Proc =2 o #Proo = 3
,,,,,,,,, ‘ri 77!1?@7 Enﬂwj‘g
2 | X
o ‘ T
Gl e H
Bl ol !
2 Do !
e o !
Latency \/

Tendulkar Mapping/scheduling for many-core 22/52

Deployment using SMT

P Pl (8] [B]c]
I Tlime I I I I 'I:ime I I I
Latency = 4 Latency = 5
#Proc =2 #Proc =3

Upper Bound

punog Jaddn

Processors

Latency \/

Tendulkar Mapping/scheduling for many-core 22/52

Problem Monotonicity

Latency = 4
#Proc =2
Not Possible

Upper Bound

********* [N

| k]

& | 2

o ' g

n | =

(2] ! 1o
| |
S b .
] |
o | |
o l |
| |
| |
l l

Latency \/

Tendulkar Mapping/scheduling for many-core 22/52

Problem Monotonicity

Latency = 4 Latency = 2
#Proc =2 #Proc = 1
Not Possible Also Not Possible
77777777777 !pf)leE“ﬂ‘d
0 |
3 | =
s T I
al) |
Latency \/

Tendulkar Mapping/scheduling for many-core 22/52

Problem Monotonicity

Latency = 4 Latency = 2
#Proc =2 #Proc = 1
Not Possible Also Not Possible

Upper Bound

I
|
|
|
|
I
|
I

J
punog Jaddn

Processors

Latency \/

Tendulkar Mapping/scheduling for many-core 22/52

Design Space Exploration

Split-join Graph |

Tendulkar Mapping/scheduling for many-core 23/52

Design Space Exploration

Split-join Graph

SMT Constraints

Tendulkar Mapping/scheduling for many-core 23/52

Design Space Exploration

Split-join Graph

SMT Constraints =——> SMT Solver

Tendulkar Mapping/scheduling for many-core 23/52

Design Space Exploration

Design Space
Exploration Algorithm

Split-join Graph
cost

| constraints

SMT Constraints =——> SMT Solver

Tendulkar Mapping/scheduling for many-core 23/52

Design Space Exploration

Design Space
Exploration Algorithm

Split-join Graph
cost

| constraints

SMT Constraints =——> SMT Solver —>

solutions

Tendulkar Mapping/scheduling for many-core 23/52

Design Space Exploration

Design Space
Exploration Algorithm

Split-join Graph
cost

| ‘ constraints (x1,y1)
SAT)

SMT Constraints =——> SMT Solver —>

solutions

Tendulkar Mapping/scheduling for many-core 23/52

Design Space Exploration

Design Space
Exploration Algorithm

Split-join Graph

‘ cost (x)
| constraints 2:Y2
solutions
. NSAT
SMT Constraints =——> SMT Solver L) 1
*

Tendulkar Mapping/scheduling for many-core 23/52

Design Space Exploration

Split-join Graph

SMT Constraints

Design Space
Exploration Algorithm

cost (x5,Y5)
constraints 373

——> SMT Solver

Timeout:

Cannot decide SAT / UNSAT in a given TIME-BUDGET.

TIMEOUT
—

solutions

Tendulkar

Mapping/scheduling for many-core

23/52

Design Space Exploration

Split-join Graph

e

SMT Constraints

Design Space
Exploration Algorithm

cost
constraints

Tendulkar

Mapping/scheduling for many-core

—> SMT Solver —>

solutions

23/52

Exploration Algorithm

] e sat points = unsat points e not yet explored points \ \/

Tendulkar Mapping/scheduling for many-core 24 /52

Exploration Algorithm

e Divide cost space using grids

|
|
|
|
|
|
,,,,,,, ® - - - - — -
|
|
|
|
|
|
1

] e sat points = unsat points e not yet explored points \ \/

Tendulkar Mapping/scheduling for many-core 24 /52

Exploration Algorithm

e Divide cost space using grids
e One SMT query per point on the grid

|
|
|
|
|
|
,,,,,,, ® - - - - — -
|
|
|
|
|
|
1

] e sat points = unsat points e not yet explored points \ \/

Tendulkar Mapping/scheduling for many-core 24 /52

Exploration Algorithm

e Divide cost space using grids
e One SMT query per point on the grid

o Finer grid after every iteration

I
[
1

T
|
|

| |
| |
| +
| |
| |
- — — — — — . 777777777 “,,,

|

| |
| |
| *
| |
| |
1 1

T
1
T
1
1
:
-
+
I & J-d-L L
|

] e sat points = unsat points e not yet explored points \ \/

Tendulkar Mapping/scheduling for many-core 24 /52

Exploration Algorithm

e Divide cost space using grids
e One SMT query per point on the grid
o Finer grid after every iteration

@ Don't query in known area

I
[
1

T
|
|

| |
| |
| +
| |
| |
- — — — — — . 777777777 “,,,

|

| |
| |
| *
| |
| |
1 1

T
1
T
1
1
:
-
+
I & J-d-L L
|

] e sat points = unsat points e not yet explored points \ \/

Tendulkar Mapping/scheduling for many-core 24 /52

Symmetry elimination

Overview

e Symmetry elimination

Tendulkar Mapping/scheduling for many-core 25/52

®
k
@/
O ©

o>

task graph

@ all instances of actor C' are similar (symmetric)

Tendulkar Mapping/scheduling for many-core 26/52

Task Symmetry

a schedule
Pyl [A[By |Cu| D]

@D/ Py ‘ B, ‘Clo‘cm‘coo‘ Dy ‘ Eo ‘
(] =

o>

task graph

@ all instances of actor C' are similar (symmetric)

Tendulkar Mapping/scheduling for many-core 26/52

Task Symmetry

a schedule
p \AO\BO\CH\Dl\

@D/ Py ‘ B, ‘Clo‘cm‘coo‘ Dy ‘ Eo ‘
(] (=)

time
@\ a permuted schedule
@ Py| [Ay [By |Ci|D|
od Pl []CulCulCu Do]|

task graph

%)

®

—

time

@ all instances of actor C' are similar (symmetric)

Tendulkar Mapping/scheduling for many-core 26/52

Task Symmetry

a schedule
p \AO\BO\CH\Dl\

®
‘\ n| (Bl e o &)
o ©

time
@\ a permuted schedule
@ Py| [Ay [By |Ci|D|
od P[] I D0 | |

task graph

%)

®

—

time

@ all instances of actor C' are similar (symmetric)

Tendulkar Mapping/scheduling for many-core 26/52

Task Symmetry

a schedule
p \AO\BO\CH\Dl\

®
‘\ n| (Bl e o &)
o ©

time
@\ a permuted schedule
@ Py| [Ay [By |Ci|D|
od P[] I D0 | |

task graph

%)

®

—

time

@ all instances of actor C' are similar (symmetric)
e No change in latency !

Tendulkar Mapping/scheduling for many-core 26/52

Task Symmetry

a schedule
p \AO\BO\CH\Dl\

®
‘\ n| (Bl e o &)
o ©

time
@\ a permuted schedule
@ Py| [Ay [By |Ci|D|
od P[] I D0 | |

task graph

%)

®

—

time

@ all instances of actor C' are similar (symmetric)
e No change in latency !
e Huge number of such symmetric solutions \/

Tendulkar Mapping/scheduling for many-core 26/52

Task Symmetry

a schedule
p \AO\BO\CH\Dl\

®
‘\ n| (Bl e o &)
o ©

time
@\ a permuted schedule
@ Py| [Ay [By |Ci|D|
od P[] I D0 | |

task graph

%)

®

—

time

@ all instances of actor C' are similar (symmetric)

e No change in latency !

e Huge number of such symmetric solutions \/
@ Add constraints to eliminate all but one

Tendulkar Mapping/scheduling for many-core 26/52

Task Symmetry

a schedule
Py [A[By |Cu| D]

? Py ‘Bl ‘Cw‘cm‘coo‘ Dy ‘ Eo ‘
] ol

o 2>

task graph

Tendulkar Mapping/scheduling for many-core 27/52

Task Symmetry

a schedule
Py [A[By |Cu| D]

? Py ‘Bl ‘Cw‘cm‘coo‘ Dy ‘ Eo ‘
] ol

o 2>

task graph

@ lexicographic order : Cyy < Cp1 < C1p < Cy3

Tendulkar Mapping/scheduling for many-core 27/52

Task Symmetry

a schedule
Py [A[By |Cu| D]

? Py ‘Bl ‘Cw‘cm‘coo‘ Dy ‘ Eo ‘
] ol

o 2>

task graph

@ lexicographic order : Cyy < Cp1 < C1p < Cy3

@ enforce lexicographic order in schedule:
s(u) < s(u') foru < o’

Tendulkar Mapping/scheduling for many-core 27/52

Task Symmetry

a schedule
Py [A[By |Cu| D]

? Py ‘Bl ‘Cw‘cm‘coo‘ Dy ‘ Eo ‘
] ol

o 2>

task graph

@ lexicographic order : Cyy < Cp1 < C1p < Cy3
@ enforce lexicographic order in schedule:

s(u) < s(u') foru < o’
@ 5(Cqp) < s(Co1) < s(Cyp) < s(C11) \/

Tendulkar Mapping/scheduling for many-core 27/52

Task Symmetry

a schedule
Py [A[By |Cu| D]

@ Py ‘Bl‘cw‘cm‘coo‘Do‘EO‘
() (=)

‘ time

@\ a lexicographic schedule
a P, ‘A0‘30’C00|D0‘
@/ P, [B [Cu[Cu[Cu[Di] E]

task graph

‘ time

@ lexicographic order : Cyp < Cp1 < C19 < Cy3
@ enforce lexicographic order in schedule:

s(u) < s(u') foru < o’
@ 5(Cop) < 5(Co1) < 5(C10) < 5(C11) \/

Tendulkar Mapping/scheduling for many-core 27/52

Symmetry elimination

Task Symmetry : Theorem

Tendulkar Mapping/scheduling for many-core 28/52

Symmetry elimination

Task Symmetry : Theorem

Tendulkar Mapping/scheduling for many-core 28/52

Task Symmetry : Theorem

a schedule
v 4 50880 ¢
) “ “.‘ s, Py ‘ B: ‘CIO ‘ Cop ‘Coo‘ Dy ‘ Eo ‘
L ': v e
t e~ .,
’ g ‘ time
o

SR) .
aLt e a permuted schedule

Py [Bi [Cio [€o0] Cor] Do | Eo |

‘ time

%

Tendulkar Mapping/scheduling for many-core 28/52

Symmetry elimination

Task Symmetry : Theorem

Lexicographic Schedule

@ Theorem : Every group has a lexicographic schedule

Tendulkar Mapping/scheduling for many-core 28/52

Symmetry elimination

Task Symmetry : Theorem

Lexicographic Schedule

@ Theorem : Every group has a lexicographic schedule
@ Corollary : No feasible cost is lost \/

Tendulkar Mapping/scheduling for many-core 28/52

Processor Symmetry

P, [By [Ci[Cu [D]

BO COO COl DO EO

@\ AN A
) | Time
() @/.\

e

task graph

Tendulkar Mapping/scheduling for many-core 29/52

Processor Symmetry

P, [By [Ci[Cu [D]
@@\ Py o Bo Co Cuu Do Eo
| .
@/ Time
@ schedule

@\ 122 Ac By Cw Co Dy Eg
@/ P, ’BI‘CIO‘CII‘DI‘

task graph ‘

Time
swapped P; and P,

%

Tendulkar Mapping/scheduling for many-core 29/52

Processor Symmetry

P, [By [Ci[Cu [D]

Py Ap By Cyp Coi Dy Eg

o
(»] @/.\

e,

task graph ‘

Time
swapped P; and P,

%

Tendulkar Mapping/scheduling for many-core 29/52

eto Exploration

Exploration : Processors vs Latency o = 30

Tendulkar Mapping/scheduling for many-core 30/52

Symmetry elimination

Pareto Exploration

Processors

2 2 30

Latency
(e satPoints = Unsat Points. —— Pareto Curve]

without symmetry breaking
Takes no time Times out

0 g 16 2 2 m m 56

Exploration : Processors vs Latency o = 30

Tendulkar Mapping/scheduling for many-core 30/52

Symmetry elimination

Pareto Exploration

(e satPoints = Unsat Points —— Pareto Curve] (e satPoinis ® Unsat Points —— Pareto Curve |
without symmetry breaking with symmetry breaking
Takes no time Times out

0 g 16 2 2 m m 56

Exploration : Processors vs Latency o = 30

Tendulkar Mapping/scheduling for many-core 30/52

eto Exploration

Processors
Processors

2 2 30 o 5 10 15 2 % 30

% 5 10 15
Latency Latency

(e satPoints = Unsat Points —— Pareto Curve] (e satPoinis ® Unsat Points —— Pareto Curve |
without symmetry breaking with symmetry breaking
Takes no time Times out
\ TN

0 g 16 2 2 m m 56

Exploration : Processors vs Latency o = 30

Solver Performance
@ Timeouts reduce ! \/
@ The gap between SAT and UNSAT points is smaller.

Tendulkar Mapping/scheduling for many-core 30/52

Video Decoder

3D cost space (C.,Cp, Cp) exploration, Cp - total buffer size

MPEG video decoder:

Tendulkar Mapping/scheduling for many-core 31/52

Video Decoder

3D cost space (C.,Cp, Cp) exploration, Cp - total buffer size

140

120

MPEG video decoder:

100

Processor

Lat,
Ny, 2
oy u 150

I with symmetry I without symmetry V

31/52

Tendulkar Mapping/scheduling for many-core

Video Decoder

3D cost space (C.,Cp, Cp) exploration, Cp - total buffer size

MPEG video decoder:

Lare,
ey, 20
10y 2130

I with symmetry I without symmetry V

Tendulkar Mapping/scheduling for many-core 31/52

Video Decoder

3D cost space (C.,Cp, Cp) exploration, Cp - total buffer size

140

120

MPEG video decoder:

100

Processor

Lae,
Ny, 2
10 u 150

I with symmetry I without symmetry V

Better Pareto points

Mapping/scheduling for many-core

31/52

Tendulkar

Video Decoder

3D cost space (C.,Cp, Cp) exploration, Cp - total buffer size

MPEG video decoder:

Processor

Latene,, w P

24 150

I with symmetry I without symmetry V

Better Pareto points in same TIME-Budget !

31/52

Tendulkar Mapping/scheduling for many-core

Symmetry elimination

Distributed memory scheduling

@ So far we ignored the communication costs

Tendulkar Mapping/scheduling for many-core 32/52

Symmetry elimination

Distributed memory scheduling

@ So far we ignored the communication costs

@ For distributed memory, communication needs to be modeled

Tendulkar Mapping/scheduling for many-core 32/52

Distributed memory scheduling
view

e Distributed memory scheduling

Tendulkar Mapping/scheduling for many-core 33/52

Distributed memory scheduling

Kalray MPPA-256
- uevo | ot |

Tendulkar Mapping/scheduling for many-core 34/52

Distributed memory scheduling

Kalray MPPA-256

e 16 compute clusters

Tendulkar Mapping/scheduling for many-core 34/52

Distributed memory scheduling

Kalray MPPA-256

Shared
Memory

e 16 compute clusters

Tendulkar Mapping/scheduling for many-core 34/52

Distributed memory scheduling

Kalray MPPA-256

Shared
Memory

e 16 compute clusters
e 16 processors

Tendulkar Mapping/scheduling for many-core 34/52

Distributed memory scheduling

Kalray MPPA-256

Shared
Memory

e 16 compute clusters

e 16 processors
e 2 MB Shared Memory

Tendulkar Mapping/scheduling for many-core

34/52

Distributed memory scheduling

Kalray MPPA-256

Shared
Memory

e 16 compute clusters

e 16 processors
e 2 MB Shared Memory

e DMA \/

Tendulkar Mapping/scheduling for many-core 34/52

Kalray MPPA-256

Shared
Memory

e 16 compute clusters

e 16 processors
e 2 MB Shared Memory

o DMA \/

o Toroidal 2D network

Tendulkar Mapping/scheduling for many-core 34/52

Distributed memory scheduling
The problem?

@ Which cluster to allocate?

@ Which processor to allocate?

@ Connected tasks in same or different cluster?

@ Communicating tasks if to be added, which DMA?

@ And the constraints
o Precedence
o Mutual Exclusion

o Costs

For 10 tasks, 256 processors, J

1.20892582 x 10?4 potential solutions!

Tendulkar Mapping/scheduling for many-core 35/52

Distrbtted memory scheaunng o oo

The problem?

@ Which cluster to allocate?
@ Which processor to allocate?
@ Connected tasks in same or different cluster?

@ Communicating tasks if to be added. which DMA?
Split the problem into sub-problems.

o Precedence
o Mutual Exclusion

o Costs

For 10 tasks, 256 processors,

1.20892582 x 10?4 potential solutions!

;e

Tendulkar Mapping/scheduling for many-core 35/52

Distributed memory scheduling

Design Flow

Application
Graph

Mapping/scheduling for 36/52

Distributed memory scheduling
esign Flow
Application
Graph

Partitioning @\

Tendulkar Mapping/scheduling for many-core 36/52

Distributed memory scheduling
esign Flow
Application
Graph

Partitioning C{D\

@ Load balance the groups
@ Minimize data exchange \/

Tendulkar Mapping/scheduling for many-core 36/52

Distributed memory scheduling

esign Flow

Application

Graph @\
— 0.0

Partitioning
|

>~
.@\@

) Place the Groups
Placement

o
N W

Tendulkar Mapping/scheduling for many-core 36/52

Distributed memory scheduling

Design Flow

Application

Graph (9\
— 0 0

Partitioning
|

~
.@\@

) Place the Groups
Placement

i

O
‘NP

@ Minimize distance between communicating groups \/

Tendulkar Mapping/scheduling for many-core 36/52

Distributed memory scheduling

Design Flow

Application
Graph @\®\
) (] (v)

Partitioning @\
J Schedule
() ®/ m Tasks

Placement i/ P

) sl w [0 5] m Transfer
i,

——— H

Multi-cluster H P2

Scheduling p,| [ABa]Cn]
| S ——

‘ Time

Tendulkar Mapping/scheduling for many-core 36/52

Distributed memory scheduling

Design Flow

Application
Graph @\®\
) (] ()

Partitioning
C;>G/ Schedule

m Tasks
Placement i/ P
) sl w [0 5] m Transfer
o
Multi-cluster RO
Scheduling v [A]B]G]
—_—

| Time

@ Minimize Latency
@ Minimize Buffer size \/

Tendulkar Mapping/scheduling for many-core 36/52

put of Design Flo

@ Tasks and Transfers

Tendulkar Mapping/scheduling for many-core 37/52

Output of Design Flow

@ Tasks and Transfers
o Cluster Mapping

Tendulkar Mapping/scheduling for many-core 37/52

Output of Design Flow

@ Tasks and Transfers
o Cluster Mapping

e Processor and DMA Mapping

Tendulkar Mapping/scheduling for many-core 37/52

Output of Design Flow

@ Tasks and Transfers
o Cluster Mapping

e Processor and DMA Mapping

o Start time

Tendulkar Mapping/scheduling for many-core 37/52

Output of Design Flow

@ Tasks and Transfers
o Cluster Mapping

e Processor and DMA Mapping

o Start time

@ Edges
o Communication buffer size

Tendulkar Mapping/scheduling for many-core 37/52

Output of Design Flow

@ Tasks and Transfers
o Cluster Mapping

e Processor and DMA Mapping

o Start time

@ Edges
o Communication buffer size

@ Application
o Latency

Tendulkar Mapping/scheduling for many-core 37/52

Distributed memory scheduling

Tasks communicating via DMA:

,,,,,,,,,,,,,,,,,,,,,

Tendulkar Mapping/scheduling for many-core 38/52

Distributed memory scheduling

Tasks communicating via DMA:

Clustery
~
-

DMA,

®
©
©
®
d

,,,,,,,,,,,,,,,,,,,,,

Time

Tendulkar Mapping/scheduling for many-core 38/52

Distributed memory scheduling

Tasks communicating via DMA:

,,,,,,,,,,,,,,,,, oma icon
o S g [P L]
@—0O—0—0 { N
Time
Task Description Resources used Task duration
I Initialization Processor and DMA Constant

Tendulkar Mapping/scheduling for many-core 38/52

Tasks communicating via DMA:

77777777777777777 DMA g { ™
@ m @ @ 57‘? DMA, n
N N4 S PTA 1]
Time
Task Description Resources used Task duration
I Initialization Processor and DMA Constant
G Network Transfer Only DMA Transfer size dependent

Tendulkar Mapping/scheduling for many-core 38/52

Model Transformation

An example application graph:

0

Tendulkar Mapping/scheduling for many-core 39/52

Model Transformation

An example application graph:

O amn O

Tendulkar Mapping/scheduling for many-core 39/52

Model Transformation

An example application graph:

O amn O

Partition-Aware graph:

ewt : [1,w] /-\ ewn * (1] /-\ ert : (o, w) O
A Iwr G\Vr B
O)

Tendulkar Mapping/scheduling for many-core 39/52

Model Transformation

An example application graph:

O amn O

Partition-Aware graph:

ewt : [1,w] /-\ ewn * (1] /-\ ert : (o, w) O
A Iwr G\Vr B
O)

Buffer-Aware graph:

. 1 . .)
@ ewt : [1,w'] /IWI\ Cawn : [1] /G‘\ et : o, w]
v, 5.

Tendulkar Mapping/scheduling for many-core 39/52

Model Transformation

An example application graph:

O amn O

Partition-Aware graph:

ewt : [1,w] /-\ ewn * (1] /-\ ert : (o, w) O
A Iwr G\Vr B
O)

Buffer-Aware graph:
DMA : Data
Q Cwt [l,wTE] m Cun : [1]
A | Lur
v ' U\r,f}é .
6'“"‘ l--------"-a-/
@ y
s
’6&;"‘ [

Tendulkar Mapping/scheduling for many-core 39/52

Model Transformation

An example application graph:

O amn O

Partition-Aware graph:

ewt : [1,w] /-\ ewn * (1] /-\ ert : (o, w) O
A Iwr G\Vr B
O)

Buffer-Aware graph:

@ Cwt : [l,wT:]'/I;r\ ewn : [1] /G-\

DMA : flow-control

Tendulkar Mapping/scheduling for many-core 39/52

odel Transformation

An example application graph:

O amn O

Partition-Aware graph:

ewt : [1,w] /-\ ewn * (1] /-\ ert : (o, w) O
A Iwr G\Vr B
O)

Buffer-Aware graph:

DMA-Completion DMA : flow-control

Tendulkar Mapping/scheduling for many-core 39/52

Distributed memory scheduling

ecoder Example

12

Tendulkar Mapping/scheduling for many-core 40/52

JPEG Decoder Example

12

@ - ' 1

VLD : Variable Length Decoder

Tendulkar Mapping/scheduling for many-core 40/52

JPEG Decoder Example

12

VLD : Variable Length Decoder

IQ / IDCT : Inverse Quantization / Inverse Discrete Cosine Transform

Tendulkar Mapping/scheduling for many-core 40/52

JPEG Decoder Example

12

VLD : Variable Length Decoder

IQ / IDCT : Inverse Quantization / Inverse Discrete Cosine Transform

Color : Color Conversion

Tendulkar Mapping/scheduling for many-core 40/52

Distributed memory scheduling

JPEG Decoder Example

Partitioning Solutions:
JPEG

Decoder C, : No. of Groups

C,, : Total communication cost

Partitioning C. : Max. workload per group

 C—

Placement

-—

)
Multi-cluster
Scheduling
—

———

Tendulkar Mapping/scheduling for many-core 41/52

JPEG Decoder Example

Partitioning Solutions:

JPEG
Decoder C,, : No. of Groups
C,, : Total communication cost
PR
Partitioning .
C.- : Max. workload per group
Pl
acement Solution Allocated group Exploration Cost
vid iq color C, C, C,
Mulicloster) Py 0 1 2 3 12384 424012
Scheduling Py 0 0 1 2 2736 758116
Py 0 O 0 1 0 934288
P [1 2 9648 510276

Tendulkar Mapping/scheduling for many-core 41/52

JPEG Decoder Example

Partitioning Solutions:

JPEG
Decoder C,, : No. of Groups
C,, : Total communication cost
PR
Partitioning .
C.- : Max. workload per group
PI
acement Solution Allocated group Exploration Cost
vid iq color C, C, C,
Mulicloster) Py 0 1 2 3 12384 424012
Scheduling Py 0 0 1 2 2736 758116
[Py 0 0 0 [0 934288 |
Pss 0 1 1 2 9648 510276

%

Tendulkar Mapping/scheduling for many-core 41/52

JPEG Decoder Example

Partitioning Solutions:

JPEG
Decoder C, : No. of Groups
C,, : Total communication cost
PR
Partitioning .
C.- : Max. workload per group
PI
acement Solution Allocated group Exploration Cost
vid iq color C, C, C,
("Mult-cluster) Po o 1 2 (3 12384 424012]
Scheduling Py 0 0 1 2 2/36 /58116
[Py 0 0 0 [0 934288 |
Pss 0 1 1 2 9648 510276

%

Tendulkar Mapping/scheduling for many-core 41/52

JPEG Decoder Example

JPEG

Decoder

Partitioning

)

PI

acement Solution Allocated group Exploration Cost

vid iq color C, C, C,

("Mult-cluster) Po o 1 2 (3 12384 424012]

Scheduling Py 0 0 1 2 2/36 /58116

[Py 0 0 0 [0 934288 |
Py 0 1 1 2 9648 510276

%

Tendulkar Mapping/scheduling for many-core 41/52

Distributed memory scheduling

JPEG Decoder Example

Scheduling Solutions:

)
JPEG -10%
Decoder
| —
EE— 1.2
Partitioning g
-) %

3

w»n 1.1
Placement 5
D Solution E
Multi-cluster L 1
Scheduling Py

_ Po 04 05 06 07 08 09 1
Ps3

Latency (cycles) .108

-e- Py—+ Py = Py + Pg

Tendulkar Mapping/scheduling for many-core 41/52

JPEG Decoder Example

Butfer Size (bytes)

01

Distributed memory scheduling

JPEG decoder latency measured on Kalray platform

10!

e %
A 12 12f
] 8 g
&) B
8 2 2
B 11 @ 11 @
& H . H
3 a 2 a
1 1 — ===
= — =
05 06 07 08 09 01 05 06 07 08 09 01 05 06 07 08 09 04 05 06 07 08 09
Latency (cycles) 106 Latency (cycles) 108 Latency (cycles) 10° Latency (cycles) 10°
Peo P Pso P
-e- model —— measured-min. = measured-max.
Tendulkar Mapping/scheduling for many-core

42/52

JPEG Decoder Example

Butfer Size (bytes)

Distributed memory scheduling

JPEG decoder latency measured on Kalray platform

10!

" 1 1 X
L2l 2 \ IR 12|
\: 8 g i g
| g B 4 2z
3 H \i H
11 B 11 @ 11 . B 11
H H H
1 = 1 1 — 1 B =
~a-e . -e
01 05 06 07 08 09 01 05 06 07 08 09 01 05 06 07 08 09 04 05 06 07 05 09
Latency (cycles) 106 Latency (cycles) 106 Latency (cycles) 10° Latency (cycles) 10°
Pso Psy Pso P, 53
-e- model —— measured-min. = measured-max.
. . o
Maximum prediction error of 9%
Tendulkar Mapping/scheduling for many-core

42/52

Distributed memory scheduling

Streamlt Benchmarks

0
0
9
100
#Solutions N %error
80
60
40 g
[Ta]
Q 3
20
9] 0 0 ~ S 0 0
~ ‘°I<r < I © I
2] <
il EMEEE | i
P S SR S N R R R Y S R N
EIPSIC e S RO
& & o ASEER RPN
N Q)Q;b{\\ & W@ <F < N @’z}

Tendulkar Mapping/scheduling for many-core 43/52

Distributed memory scheduling

Streamlt Benchmarks

0
0
9
100
#Solutions N %error
80
60
40 g
[Ta]
Q 3
20
9] 0 0 ~ S 0 0
~ ‘°I<r < I © I
2]
il EMEEE | i
P S SR S N R R R Y S R N
& & %ec’ &+e° F ST E S PN <
& & o ASEER RPN
N Q)Q;b{\\ & W@ <F < N @’z}

Tendulkar Mapping/scheduling for many-core 43/52

SMT Solving

Overview

Q@ sMT Solving

Tendulkar Mapping/scheduling for many-core 44 /52

SMT Solving

Lessons learnt from SMT solver

optimal
lower bound upper bound

Tendulkar Mapping/scheduling for many-core 45/52

SMT Solving

Lessons learnt from SMT solver

optimal sAT

lower bound upper bound

Tendulkar Mapping/scheduling for many-core 45/52

SMT Solving

Lessons learnt from SMT solver

optimal sAT

lower bound upper bound

Tendulkar Mapping/scheduling for many-core 45/52

SMT Solving

Lessons learnt from SMT solver

optimal sAT

lower bound upper bound

Tendulkar Mapping/scheduling for many-core 45/52

SMT Solving

Lessons learnt from SMT solver

optimal sAT

lower bound upper bound

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
t

1 1 1
1 1 1

UNSAT

Tendulkar Mapping/scheduling for many-core 45/52

SMT Solving

Lessons learnt from SMT solver

optimal
lower bound upper bound

Tendulkar Mapping/scheduling for many-core 46 /52

SMT Solving

Lessons learnt from SMT solver

optimal
lower bound upper bound

Tendulkar Mapping/scheduling for many-core 46 /52

SMT Solving

Lessons learnt from SMT solver

optimal

lower bound upper bound

TIMEOUT

Tendulkar Mapping/scheduling for many-core 46 /52

SMT Solving

Lessons learnt from SMT solver

found
optimal optimal

lower bound upper bound

TIMEOUT

Tendulkar Mapping/scheduling for many-core 46 /52

SMT Solving

Lessons learnt from SMT solver

P3 B,

Py B, B;

P, | Ay | By Co
T'ime |

Tendulkar Mapping/scheduling for many-core 47/52

SMT Solving

Lessons learnt from SMT solver

P3 ‘L B2

Py B, B;

P, | Ay | By Co
T'ime |

Tendulkar Mapping/scheduling for many-core 47/52

SMT Solving

Lessons learnt from SMT solver

P3 ‘L B2 -

Py B, B;

P, | Ay | By Co
T'ime |

Tendulkar Mapping/scheduling for many-core 47/52

SMT Solving

Lessons learnt from SMT solver

P, aL B, I(_ Ps Optimized Schedule

P, B, B, Py B; | B3

P AO By Co Py AO Bo B, GCo
Time Time

Tendulkar Mapping/scheduling for many-core 47/52

SMT Solving

Lessons learnt from SMT solver

AL I(_ Ps Optimized Schedule

P3 B,

P, B, B, Py B; | B3

P AO By Co Py AO Bo B, GCo
Time Time

Such constraints makes the problem harder for SMT

Tendulkar Mapping/scheduling for many-core 47/52

Two-step optimization

Upper Bound

Loose

Solution

@ Get a loose schedule from the solver

punog Jaddn

Processors

Latency

Tendulkar Mapping/scheduling for many-core 48/52

Two-step optimization

Upper Bound

Loose

Solution

@ Get a loose schedule from the solver

punog Jaddn

@ Optimize it for: | |
o Latency ! !
@ Processors used | |

Processors

Latency

Tendulkar Mapping/scheduling for many-core 48/52

Two-step optimization

Upper Bound

Loose
Solution

punog Jaddn

@ Get a loose schedule from the solver

@ Optimize it for:
e Latency
@ Processors used

Processors

optimized

Latency

Tendulkar Mapping/scheduling for many-core 48/52

Two-step optimization

Upper Bound

punog Jaddn

@ Get a loose schedule from the solver

@ Optimize it for:
e Latency
@ Processors used

Processors

Latency

Tendulkar Mapping/scheduling for many-core 48/52

Conclusions

Overview

e Conclusions

Tendulkar Mapping/scheduling for many-core 49 /52

Conclusions and Future Work

Conclusions:

@ Symmetry elimination finds better solutions

Tendulkar Mapping/scheduling for many-core 50/52

Conclusions and Future Work

Conclusions:

@ Symmetry elimination finds better solutions

@ Combined Optimization with Communication modeling

Tendulkar Mapping/scheduling for many-core 50/52

Conclusions and Future Work

Conclusions:

@ Symmetry elimination finds better solutions
@ Combined Optimization with Communication modeling

@ Automated design flow for distributed memory

Tendulkar Mapping/scheduling for many-core 50/52

References

m P. Tendulkar, P. Poplavko, and O. Maler. “Symmetry Breaking for
Multi-criteria Mapping and Scheduling on Multicores”. In:
FORMATS. 2013

m P. Tendulkar, P. Poplavko, I. Galanommatis, and O. Maler.
“Many-Core Scheduling of Data Parallel Applications using SMT
Solvers”. In: DSD. 2014

m P. Tendulkar, P. Poplavko, and O. Maler. Strictly Periodic

Scheduling of Acyclic Synchronous Dataflow Graphs using SMT
Solvers. Tech. rep. Verimag Research Report, 2014

Tendulkar Mapping/scheduling for many-core 51/52

Thank You

Questions?

Tendulkar Mapping/scheduling for many-core 52/52

	Motivation
	Application Model
	Deployment using SMT
	Symmetry elimination
	Distributed memory scheduling
	SMT Solving
	Conclusions

