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Abstract—We consider compile-time multi-core mapping and
scheduling problem for synchronous dataflow (SDF) graphs,
proved an important model of computation for streaming appli-
cations, such as signal/image processing and video/image coding.
In general the real-time constraints for these applications include
both the task periods / throughput and the deadlines / latency.
The deadlines are typically larger than the periods, which
enables pipelined scheduling, allowing concurrent execution of
different iterations of an application. A majority of algorithms
for scheduling SDF graphs on a limited number of processors
do not consider both latency and period real-time constraints at
the same time. For this problem, we propose an efficient method
based on SMT (satisfiability modulo theory) solvers. We restrict
ourselves to periodic scheduling and acyclic graphs, giving up
some efficiency for the sake of simplicity. We present an approach
to encode the pipelined scheduling problem and demonstrate
its practicality on Kalray MPPA-256 multi-core platform by
executing various benchmarks according to the optimal schedules.

I. INTRODUCTION

Streaming applications process streams of data of indefinite
length, where output stream(s) are function(s) of input streams.
Typical examples are digital signal processing (DSP) appli-
cations, video/audio (de-)coding, digital radio and television
applications [11]. Such applications have high computational
demands and hence they are often implemented in dedicated
hardware. However, the semiconductor technology advances
make it worthwhile to port many such applications to pro-
grammable parallel architectures, such as multi-cores. To meet
the performance targets on programmable hardware, it is
crucial to make use of task parallelism through optimizing
compiler tools. To this end, the designers represent their appli-
cation by a model of computation that exposes the parallelism.
The streaming applications can be conveniently expressed
using dataflow models, such as synchronous dataflow graph
(SDF) [4]. Several multi-core compilers for SDF and other
dataflow models have been proposed, e.g., StreamIt [11]. This
paper contributes to SDF compiler optimization to satisfy real-
time constraints on M identical shared-memory processors.
For simplicity, we restrict ourselves to acyclic graphs (i.e., all
feedback loops are hidden inside the graph nodes).

In real-time systems, for given limited set of processors the
tasks should satisfy constraints on both throughput (i.e., period)
and latency (i.e., response time, deadline). What makes the
problem harder is the typical lack of support of task preemption
in DSP multi-cores, which invalidates many real-time schedul-
ing policies, such as EDF, making it computationally hard
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to analyze the schedulability. Moreover, even if preemptions
were allowed, another problem is that DSP applications are
task graphs and not independent tasks, which makes it hard
to compute the response times. Therefore, many scheduling
algorithms for DSP multi-cores are non-preemptive and they
ignore latency and focus on throughput e.g., [3]. Satisfying
throughput, latency and processor count constraints at the same
time is a hard combinatorial problem rarely addressed in the
literature, especially if one tries to obtain or approximate
the exact solution. For example, [6] approximates a similar
problem using classical preemptive scheduling techniques.

Due to hardness of this problem, generic constraint solving
techniques are typically applied for it, such as, SMT (Satisfia-
bility Modulo Theory), ILP (integer linear programming), ASP
(Answer Set Programming), and CP (constraint programming).
For example [5] use SMT solvers and propose unfolding
method for a problem similar to ours, but not considering spe-
cific constraints for SDF graphs. In our previous work [9], we
apply SMT solvers for mapping and scheduling a (subclass of)
acyclic SDF graphs, but we still focused on latency constraint
and ignored the throughput constraint. Though we convert SDF
graphs into task graphs (also known as homogeneous (HSDF)
graphs), we propose task symmetry breaking constraints that
use the information of the original (multi-rate) SDF graph
actors to speed up the search for solutions. In this paper,
we propose extensions of that work for period/throughput,
assuming pipelined scheduling, i.e., the period can be smaller
than the latency. For simplicity, we restrict ourselves to strictly
periodic schedules, i.e., schedules where task graph iterations
are spawned at equal time intervals. However, we believe that
we do not loose much efficiency with this assumption because
even self-timed solutions are eventually periodic, though not
necessarily strictly periodic, but in general, multi-periodic,
i.e., imposing a period every K iterations for some K ∈ N.

We propose a new technique called ‘period locality’ for
pipelined scheduling of SDF graphs. The proposed method
represents the pipelined scheduling by a significantly simpler
set of SMT constraints than the comparable encoding of un-
folding [5] or modulo scheduling [10]. It also offers solutions
that are sustainable to period variations for the fixed latency,
in exchange of possible loss of optimality.

This technique was implemented in our tool StreamEx-
plorer [7] and we perform experiments on the benchmarks
from StreamIt and we validate our results by deploying them
on a Kalray MPPA-256 multi-core processor architecture [1].
We observe that the error in prediction of period using a single
cluster inside the platform is less than 15%.
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Fig. 1: Periodic Schedule Examples for an SDF Graph

II. SYNCHRONOUS DATAFLOW GRAPHS

Definition II.1 (Acyclic SDF Graph). An acyclic SDF graph
is a tuple S = (V,E, d, r) where (V,E) is a connected
finite direct acyclic graph (DAG) whose nodes are repeatedly
executed processes (actors) and edges are FIFO (first-in-first-
out) channels, d : V → R+ is a function assigning an
execution time to each node, r : E → N+ ×N+ assigns pairs
of token production/consumption rates to channels. We use the
notation r(u, v) = (α(u, v), β (u, v)). The meaning of α is the
number of data tokens produced to the channel at the end of
each execution of actor u, and β is the number of data tokens
consumed at the start of each execution of actor v. An SDF
graph with r(e) = (1, 1) for every e is called a task-graph1

and is denoted by T = (U, E , δ), renaming the first three tuple
components and skipping the implicit component r.

We deviate from the common definition of SDF graph by
forbidding cyclic paths and initial tokens. This is not due to
any fundamental restrictions, but certain parts of the theory,
mentioned later, need to be extended to support these features
in future work.

A practical SDF graph should satisfy the consistency
property [4], namely, it should be possible to execute the actors
such that the total amount of data produced on each channel
is equal to the total amount of data consumed. Let c(v) denote
the number of times actor v is executed. The balance equation
for an SDF channel (v, v′) is written as:

c(v) · α(v, v′) = c(v′) · β (v, v′) (1)

A graph is consistent if the balance equations have solu-
tions c(v), and only the smallest positive integer solutions
are considered. Executing every actor c(v) number of times
is called graph iteration. The dependencies between actor
executions in a graph iteration is modeled by equivalent task
graph (U, E , δ), where the nodes – called tasks – represent
actor executions and edges represent precedence constraints.
A consistent SDF graph can be expanded to a task graph, by
well-known algorithm of deriving homogeneous SDF graph,
see e.g., [10]. In the derived task graph, every actor v is
expanded into c(v) tasks: Uv = {v1, v2, . . .}.

III. SMT ENCODING OF THE SCHEDULING PROBLEM

A problem instance of the scheduling problem consists of
an acyclic SDF graph S and the costs. Though for scheduling

1mostly referred to as homogeneous SDF graph

not the SDF graph itself, but the derived task graph is used,
still we exploit the relation between these graphs for symmetry
breaking in the solution space. The costs are the number of
processors M , the latency `, and, period P . The primary
decision variables for the scheduling problem are the task start
times, s(u), and task mapping to processors, µ(u), assuming
real s(u) ∈ R≥0 and integer µ(u) ∈ N+. A scheduling interval
for task u is interval [s(u), e(u)), where e(u) = s(u) + δ(u).
We assume non-preemptive scheduling, and hence the task
executes entirely inside this interval. Note that the scheduling
is assumed periodic, so a task scheduled at s(u) is also
scheduled at s(u) + P , s(u) + 2P , etc., where P is period.

A schedule is realizable, if the tasks mapped to the same
processor do not overlap in time. In addition, to be feasible it
should respect tasks dependencies and the cost constraints. We
define a realizable and feasible schedule in terms of constraints
presented to the SMT solver tools. To express the scheduling
constraints, it is convenient to define the following predicate:

ψu,u′ : e(u) ≤ s(u′)

This predicate states that the scheduling interval of task u′

follows after the interval of task u.

The following constraint is necessary to ensure that the
schedule is realizable [5]:

ϕµ :
∧

u6=u′∈U

(µ(u) = µ(u′))⇒ ψu,u′ ∨ ψu′,u

ϕµ is called mutual exclusion constraint. It asserts that the
scheduling intervals of two tasks running on the same proces-
sor are mutually exclusive.

The task graph dependencies are specified by precedence
constraints:

ϕε :
∧

(u,u′)∈E

ψu,u′ (2)

We define two cost constraints: one for the latency (termination
of the last task), denoted `, and the other one for the number
of processors used, denoted M :

ζ` :
∧
u∈U

e(u) ≤ ` ∧ ζM :
∧
u∈U

µ(u) ≤M

Putting all constraints together, we have the following
encoding for the scheduling problem:

Φµε`M : ϕε ∧ ϕµ ∧ ζ` ∧ ζM (3)

In addition, we assert the processor and task symmetry
breaking constraints in order to accelerate the search for solu-
tions [9]. In particular, the task symmetry breaking constraints
sort the schedule in the order compatible with the task index:∧

v∈V

∧
vh,vh+1∈Uv

s(vh) ≤ s(vh+1)

where h is the index of task appearance in the ‘classical’ SDF
graph sequential schedule with FIFO communication on the
channels [10]. We prove a theorem that these constraints do
not eliminate any feasible costs [9], [10]. Note that it is here
where we exploit the connection of the derived task graph to its
SDF origin. Note also that the task symmetry theorem would



need to be revisited and generalized if we considered pipelined
scheduling of SDF graphs that contain initial tokens. In fact,
that is the reason why we do not yet support SDF graphs with
feedback loops.

The encoding presented in this section is sufficient for
non-pipelined scheduling, illustrated in Fig. 1a. However for
pipelined scheduling, these constraints are not sufficient.

IV. PIPELINED SCHEDULING

In pipelined scheduling the graph iterations follow with a
period that is smaller than the latency, so they can overlap
in time, Fig 1b. The constraints ϕµ presented in the previous
section ensure mutual exclusion inside every iteration but not
between the iterations.

We introduce a novel approach of encoding mutual ex-
clusion in order to produce a pipeline schedule. We call
this method period locality. The idea is to use the same
mutual exclusion constraints as the non-pipelined scheduling,
but to restrict the schedule such that different iterations cannot
compete for processors. For this we require that all task
scheduling intervals assigned to the same processor fit within
a timing interval of length P .

ϕλ :
∧

u,u′∈U
(µ(u) = µ(u′))⇒ e(u)− s(u′) ≤ P

In a strictly periodic schedule with period P this condition
eliminates the inter-iteration processor conflicts. Hence, we
have the following encoding of the period locality method (if
we ignore symmetry breaking):

Φλµε`M : ϕλ ∧ ϕε ∧ ϕµ ∧ ζ` ∧ ζM

The period locality is a heuristic, as it restricts the periodic
schedule such that the iterations do not overtake each other on
a processor. One can construct manual examples that show
that this restriction may eliminate optimal periodic scheduling
solutions. Nevertheless, for practical benchmarks, exact encod-
ing methods such as unfolding and modulo scheduling do not
show any advantage in quality of solutions, but require a much
more complex encoding. Apparently, the higher complexity
of the exact methods does not typically lead to significantly
worse solver computation times in practice, though it may lead
to higher solver memory demands [10]. The main advantage
of period locality is, however, that it possesses period mono-
tonicity property2, meaning that if a given period is feasible
then larger periods are feasible as well while reusing the same
problem solution and thus keeping intact the other costs such
as latency and processor count. Monotonicity is important for
efficient design space exploration for cost trade-offs, because
(in)feasibility of some points implies (in)feasibility for the
dominated (or dominating) cost points [9].

For the cost trade-off exploration, in this paper we consider
two costs: the number of processors M and the period P ,
fixing the latency to an upper bound `max, computed by [10]:
2(Ω + 1)P , where Ω is a maximal number of edges in an
SDF graph path. The scheduling problem gets significantly

2probably related to so-called schedule sustainability

more difficult if the latency constraint ` is below this value:
` < `max, whereas when ` ≥ `max, one can decouple mapping
and processor scheduling without compromising the latency
constraint. The mapping would be done by load balancing,
ensuring the sum of task execution times per processor does
not exceed P [3]. The scheduling would be done after mapping
by maximal re-timing, i.e., splitting the time axis into equal
intervals of length P and assigning every task to the interval3
that follows immediately after the interval of its latest prede-
cessor [10]. Comparing the SMT solver efficiency between this
approach and period locality at `max is future work. Note that
for generalizing this method to cyclic SDF graphs one would
have to reconsider the definition of `max.

V. EXPERIMENTS

For pipelined scheduling problem, using our tool [7], we
investigate the performance of SMT solver when applied
for multi-criteria cost optimisation problems. We validate the
computed solutions by deploying the application benchmarks
on a single shared-memory cluster of the Kalray MPPA-256
platform [1]. Extending the pipelined scheduling to multiple
clusters is a non-trivial task, requiring co-scheduling of tasks
and communication transfers [8], which is currently limited
to non-pipelined scheduling. From the solution obtained from
the SMT solver, our framework uses the task-to-processor
mapping and ordering and lets the tasks synchronize their
communication at run-time. In a single cluster, we execute the
application for a configured number of iterations in a self-timed
way and measure the period in which every task executes. The
maximum value over all tasks is taken into account.

Maximal actor execution times obtained from measure-
ments are used in the scheduling constraints. The costs to
minimize are the period and the number of allocated processors
at `max latency4. Within a certain predefined timeout a query
to the SMT solver should provide a sat or unsat answer,
i.e., satisfiable (feasible) and non-satisfiable (unfeasible). The
solver may also give a timeout answer when it cannot conclude
on the feasibility within the given time. Our goal is to find the
closest approximation of the Pareto front possible, for which
we used a grid based exploration strategy [9]. Our benchmarks
consist of JPEG decoder and number of benchmarks from
StreamIt [11], [8].

All the experiments were performed using the Z3 Solver [2]
version 4.1 running on a Linux machine with Intel Core i7
processor at 1.73 GHz with 4 GB of memory. The time out
per query is 3 minutes while we keep the global exploration
timeout to be 10 minutes.

1) Radix Sort: We explain the experiments with the run-
ning example of Radix Sort benchmark, an application that
sorts integers. It consists of chain of 11 radix actors connected
between the source and sink actors.

Figure 2 shows the results obtained for the two-dimensional
cost space exploration of the period and the processors used.
We can observe the trade-off between the two. We show an
example schedule in Figure 3 for two and four processors.
We can see how the solver is able to pack multiple iterations

3positioning inside the interval is not important
4see [10] for experiments at ` < `max
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Fig. 3: Radix Sort : schedule for 2 and 4 processors

together. The amount of overlap between different iterations
has increased when more processors are used. This also implies
that the four-processor schedule requires larger communication
buffers than the two-processor one, as more iterations run
concurrently. However taking into account the communication
buffer size together with the three other costs in pipelined
scheduling is future work.

2) Other benchmarks: For the other benchmarks we per-
form the same experiment, i.e., approximating the Pareto
front and deploying the optimized solutions on the MPPA-256
cluster. Figure 4 shows the results for different benchmarks.
We plot the number of solutions obtained for every benchmark
and the maximum error as mismatch between the solver-
predicted and measured period on the Kalray platform. The
maximum error observed is 13.25% in case of BeamFormer
application. There are two sources of error in our experiments.
One is that we don’t model the conflicts due to concurrent
memory accesses by the processors. Secondly, Beamformer
application has 53 tasks, which is relatively large. The cost
space exploration experiences multiple solver timeouts, which
leads to very loose predictions of feasible schedule periods.
Since we execute them in a self-timed way the measured period
is often much less than the predicted one in this benchmark.
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VI. CONCLUSIONS

In this paper we applied SMT solvers to address the
pipelined scheduling problem for acyclic SDF graphs on
shared-memory multi-cores with identical processors. We also
evaluated our approach for a multi-core platform, showing
good accuracy. Hereby, we considered throughput (i.e., period),
latency and processor count costs simultaneously, a problem
that is rarely addressed in the literature.

We proposed the period locality heuristic, whose main ad-
vantage compared to exact methods is monotonicity, required
for efficient design space exploration. We implemented this
technique in our tool StreamExplorer [7] and evaluated it on
a multi-core platform.
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