Journal of Information Assurance and Security 5 (2010) 335-351

An Access Control Model Based Testing Approach
for Smart Card Applications:
Results of the POS Project

P.-A. Massoh and M.-L. Potet and J. Jull

iantl and R. Tissdt and G. Debois and

B. Legeard and B. Chetali and F. Bouquét and E. Jaffuel and

L. Van Aertrick and J. An

dronick and A. Haddad

1 - LIFC, Université de Franche-Comtg, 2 - LIG, INP Grerbl

3 - Gemalto, 4 - Smarte

Abstract: This paper is about generating security tests from th
Common Criteria expression of a security policy, in additio func-
tional tests previously generated by a model-based teafipgpach.
The method that we present re-uses the functional modeharzbn-
cretization layer developed for the functional testingd aelies on
an additional security policy model. We discuss how to pogdine
security policy model from a Common Criteria security targé&/e
propose to compute the tests by using some test purposesdas gu
for the tests to be extracted from the models. We see a tgsogper
as the combination of a security property and a test needdssom
the know-how of a security engineer. We propose a languagedba
on regular expressions for the expression of such test pagpdVe
illustrate our approach by means of the fA@se study, a smart card
application dedicated to the operations of Identificatiumthentica-
tion and electronic Signature.

Keywords: Security Policy, Model Based Testing, Common Cri-
teria, Security Testing, Smartcard applications.

1

Generating tests for security policies is still a challerigis not fully
addressed by nowadays test generation techniques. Welepirsi
this paper access control policies for smart card apptinatiOur in-
tent is to ensure that security properties are specificaflietl, com-
pleting in that the functional tests. This work has beengreréd
in the context of the French RNTL P&3project (ANR-05-RNTL-
01001) that aimed at proposing a methodology for model based
curity testing, compatible with the Common Criteria metblody.
Common Criteria (CC)internationally define common require-
ments for the security evaluation of Information Technglggod-
ucts. They classify security requirements into familiesd aefine
several certification levels (from EAL1 to EAL7). A high céida-
tion level requires the use of formal models for verifyingtthe
system implements its security policies. The ambition ef FOE
project was to help automating the generation and execofitests
dedicated to the validation of these security policies. uggcre-
quirements are initially described as a CC document naBeedrity

Introduction

sting, 5 - Silicomp/AQL

approach. The generated tests are afterwards executee @ygh
tem. Due to the context that we consider (smart card apoits),

the project focused on policies relative to the control ahomands
execution.

MBT [3], [42] proceeds by computing tests from a formal model
(FM) of the system to be tested, according to selectionr&itéAn
example of a test selection criterion is, for instance, tereise any
operation of the system on the boundary values of its paemiet
The formal model does not deal with implementation detaits] is
supposed to provide a reliable functional view of the impeta-
tion under test (IUT). As the tests have the same abstratgia
as the FM, they have to be concretized before they can be texkcu
on the IUT. This is obtained by writing a concretization lay&he
verdict of the tests is obtained by comparing the resultsrghy the
IUT with the ones predicted by the FM, with respect to a given-c
formance relationship. Industrial studies have provereffieiency
of the method to detect faults in an implementation (see fanme
ple [16], [6]).

In our framework, a functional MBT campaign has already been
performed, and so a functional model and a concretizatiger lare
available. Nevertheless, functional tests appear to hdficient to
exercise the IUT through elaborated scenarios of attatdgnating
to violate a security property. As aforementioned, we waiteaddi-
tional model, the SPM, to formalize the security target arduse
this model to compute some additional tests using scenasce-
lection criteria. The tests are then animated on the FM irotd
bring them to the same abstraction level as the functiosé t& his
allows re-using the existing concretization layer in ortteplay se-
curity tests on the IUT and ensures the traceability of teestgener-
ated by our approach with the original Common Criteria eggian
of the security requirements.

The original part of this paper is to present the full seguribdel
based testing process that as been adopted in th& p@fect and
how it has been successfully deployed on a real case stu{Ash
platform. This work relies on previous works published by part-
ners. In [14], [13] a formal definition of the conformance of ap-
plication with respect to an access control policy has beepgsed,

Target The objective of our approach is to formalize the securityaking into account a mapping relation allowing to relatedels

target as &ecurity Policy Mode(SPM) and to automatically com-
pute tests from this model, following a model-based testMBT)

1IAS is ade-factostandard issued by the GIXEL consortium

2seehtt p: // www. rnt| - pose.info
3seehtt p: / / ww. conmoncriteriaportal . org/

Received December 29, 2009

stated at different levels of abstraction. Hints on our MBpach
for security testing have been sketched in [33], with sdesarasi-
cally expressed as regular expressions. A language alijotginle-
scribe the scenarios in terms of actions to fire and statesachr
has been defined in [26]. In [27] the restriction of a B modeth®
executions satisfying a given scenario is presented, bynseta

1554-1010 $ 03.50 Dynamic Publishers, Inc.

336

synchronous product of the B model with an automaton reptegg
the scenario.

In Sec. 2 we describe the context (Plbﬁroject, B language) in
which this work took place, as well as the case study IAS. \idsgmt

Masson et al.

protections against residual information, etc. The masuemce
classes are relative to the design of the application to bkiated
(ADV class), how functional testing has to be conducted (A[Ss)
and vulnerability analysis (AVA class). For instance, aspe&ov-
ered by the ATE class are how coverage analysis is conduitted,

in Sec. 3 the principle of the functional MBT campaign thatswa depth of the testing activities based on the knowledge ot timeep-

first performed. Our process for completing the functiomsits is
described in Sec. 4. Section 5 explains how to produce the f&§tMm
the security target. The language that we have defined toideshe
test patterns is presented in Sec. 6. The implementatioheofetst
generation is discussed in Sec. 7, and our experimentdtseme

tion (global interfaces, modular design, implementatiewel, etc.),
the content of the documentation and, finally, tests deesldyy the
evaluators themselves.

The PO% project focuses on access control policies for several
reasons. First, in the domain of smart card applicatiorts, jpietec-

given in Sec. 8. We finally compare our approach to relatedsvor tion is a central piece of security. Furthermore this aspecomes

and conclude in Sec. 9.

2 Context of the Work
This work has been performed in the context of the EQ8oject.

The aim of this project was to propose a methodology for sgcur
testing, based on formal models, and compliant with Commin C

teria methodology. The formal framework that has beenmethis
the B method for several reasons. First, previous expetsrizased

on B models have already been led by the partners. Seconidgdbeh

its modelling language, the B method supports a proof peotas
invariance properties and refinement. This aspect has bgéoited

more important when standardized platforms are concerredin-
stance, the IAS standard which was the BQ@ise study, aims at
receiving security data objects that carry out their owreascontrol
rules. Thus the correctness of this platform is crucialtwthe se-
curity requirements of applications as electronic padsparhealth
care cards.

The approach proposed in this paper can be seen as a cdotribut
to the fulfillment of the ATE assurance requirements regeydhe
Common Criteria access control security components.

2.2 B Modelling Language

in POSE in order to establish the theoretical framework of our apThe B specification language was introduced by J.-R. Abnigl].

proach [13]. Finally a more anecdotal point is that the B roéth

It is defined as a notation based on first order logic and seryhe

is one of the formal methods recommended by the CC evaluatidhallows the formal specification of open systems by mearsate

methodology.

We first relate the project to the Common Criteria approadtent
we very succinctly present the B modelling language, that wsed
in this project. The IAS platform on which we have experineght
our approach is also described in this section.

2.1 Common Criteria Approach of the POSE
Project

The IAS based products are generally ordered by Public atig®
(ID cards, e-passports or Health card) and then require ©dve-
mon Criteria certified. Therefore, the approach to be pregdy the

based models calleabstract machinesMore precisely, a B abstract
machine defines an open specification of a system by an indtial
tion state and a set of operations. The environment intenaith
the system by invoking the operations. Intuitively, an apien has
a precondition and modifies the internal state variables dpgreeral-
ized substitution. Lef be a substitution. Ledut be a list of output
parameters anith be a list of input parameters. L&tbe a precondi-
tion. An operation named is defined in B as:

out < o(in)=PRE P THEN S END.

Here are some generalized substitution examples= expr, IF

project PO should be as close as possible to the Common Criterfd THEN 51 ELSE Sz END, andS; || Sz whereexpris an expres-

methodology.

sion, Q a predicate, and; and S> two generalized substitutions.

Common Criteria [10] is an 1SO standard (ISO 15408) for thdhvariants relative to state variables can be stated antllesited, us-

security of Information Technology products that provideset of
assurances w.r.t. the evaluation of the security impleatehy the
product. Common Criteria provide confidence that the poads
specification, development, implementation and evalnatas been
conducted in a rigorous and standardized manner. The paineof
system that has been identified to be evaluated and cersfiadled
the target of evaluation (TOE). The Common Criteria apphnoac
based on two kinds of assurances: in [9], part 2 is dedicates-t
curity functional components, used to describe the sgchehavior
of the system, and part 3 is dedicated to assurance comsounszd
to describe how the system implements this security behavVioe
result is a level of confidence (called EAL for evaluation éssice
level) measuring the assurance that the product implenitsrgscu-
rity behavior.

The security functional components are relative to varampects
of security and various mechanisms enforcing securityifstance,
the FDP class lists requirements relative to user data gifoteas
access control policies, transfers between the TOE andutside,

ing proof obligations derived by the classical weakest @nédion
approach [15].

We give in this section the meaning of the B symbols and ckuse
that appear in the forthcoming examples of Fig. 5, Fig. 6 agdF
The clauseSETS is used to declare some given sets or enumerated
sets as in Z. Concrete constants and their properties greatagely
declared under the claus€ONSTANTS andPROPERTIES of a
B machine. The B notations appearing in the B expression pkam
have the following meaning:

e r ¢ I/ + F denotes the declaration of a relation betwéeand
F; r~lisits inverse and|[d] is the relational image of a sét

e f € E — F denotes the declaration of a total function from the
domainkF to the rangeF’; f(x) denotes the image afby f,

e 1 — y denotes a pair of values of a function or a relation,
e F x F denotes the cartesian product of the desnd F,
e F/ — F denotes the subtraction of the géto the setE.

An Access Control Model Based Testing Approach for Smart Card Applications: Results of the POSE Project 337

Some of these commands allow to create objects: for ex-
ample CREATE_FI LEDF is for creating a directory file and

1

1

]

: PUT_DATA_OBJ _PI N.CREATE is for creating a PIN code, etc.
I I Some other commands allow to navigate in the file hieraralgh s
([oFefie o2 [T Pincpin oz |:| KEvikey oL || ERfie 04 | as SELECT_FI LE_.DF_PARENT or SELECT_FI LE_.DF_CHI LD, or

“““““““ to change the life cycle state of files, suchDEACTI VATE_FI LE,
ACTI VATE_FI LE, TERM NATE_FI LE, or DELETE_FI LE, ...

Finally, a group of commands allows to set attributes. Fangxe
RESET_RETRY_COUNTER s for resetting the try counter to its ini-
tial value, CHANGE_REFERENCE_DATA is for changing a PIN code

t value,VERI FY sets a validation flag tor ue or f al se depending
on the success of an identification over a PIN code, etc.

As usual with APDU commands, the IAS platform responds by
2.3 |AS Premium Case Study means of astatus word(i.e. a codified number), which indicates
whether the APDU command has been correctly executed or not.
Otherwise, the status word returned by the APDU indicatestr
ture of the problem that prevented the command to end noymall

Figure 1: A sample IAS tree structure

Thanks to the proof capabilities of the B method, we haveieeri
invariant properties on our formal models. We have not ubed
refinement capabilities of B.

As stated before, the PG&project aims at producing conceptual,
methodological and technical tools for the conformity gation of
a system to its security policy, with smart card applicatias a tar-
get domain. Experiments have been made with a real sizetimglus 2.3.3 Functional Model of IAS The B model for IAS is 15,500
application, the IAS platform. We give all the technicalalistre- lines long. The complete IAS commands have been modelled as a
quired to fully understand the examples that illustratefttiewing set of 60 Boperations As the B model of IAS is intended to serve as
sections. an oracle for the tests, and for the operations to behave'‘RDU-

IAS stands forldentification, Authentication and electronic Sig- like” manner, it has been written as a defensive formal sipetion.
nature Itis a standard for Smart Cards developed as a common plathis means that invoking an operation with well-typed pagters
form for e-Administration in France, and specified [19] byXGL*. is always allowed, as its pre-condition only checks thertgpf the
IAS provides identification, authentication and signaseevices to parameters. The operation responds by returning a valtentdels
the other applications running on the card. Smart cards as¢he a status word, and that indicates if the operation shouldemact or
french identity card, or the “Sesame Vitale 2" caate expected to fail from a functional point of view. For example, trying tpgly the
conform to IAS. operationDEACTI VATE_FI LE’ to a file that is already deactivated

As a beginning, functional tests have been produced by a Imodeturns a status word valtief error meaning that the file is already
based approach for a Gemalto implementation of IAS. For, that deactivated.
functional model has been written in B by Smartesting and1.&Rd
an concretization layer have been written by Gemalto. We digs
scribe below some aspects of the IAS case study and of theopgev
functional model. Then we focus on the access control syquait
of this platform, i.e. how APDU command executions are cuiled.
Finally, we describe how the SPM has been formalized, inrai@e
be compatible with the Common Criteria and the Mproach.

2.3.4 Security Target for IAS Due to the complexity of the IAS
platform, we have focused our security target on the comtfohe
APDU commands execution, depending on the current filesend s
curity data objects. This target describes subjects, gg@itributes
and rules, in conformance with the Common Criteria sectibe-
tional components. Here is an example of an instance of thgpoe
nent ACF.1.2 (class FDP):
2.3.1 IAS File System Overview IAS conforms to the ISO 7816 The operationVERI FY(r ef sdo, Pl N.code) can be exe-
standard, and can be implemented either as a JavlCardas a cuted by the subjecEERM NAL if and only ifr ef _sdo currently
standalone application. The file system of IAS is illustdatdth an denotes a well-defined PIN object, belonging to an activéied
example in Fig. 1. Files in IAS are eithBtementary FilegEF), or and if the access conditions attached to the command VERIFY f
Directory Files(DF), sucha$i | e_.01 andfi | e.03in Fig. 1. The this object are verified in the current state of the applicati
file system is organized as a tree structure whose root igmiesias The access to an object by an operation (an APDU command) in
MF (Master Filg. Directory files hosBecurity Data ObjectéSDO). |AS is protected by security rules based on the securitibats of
SDO are objects of an application that contain highly sdesiata the object. The access rules can possibly be expressed agiaco
such as PIN codes or cryptographic keys (see for exapipie02 tion of elementary access conditions, suchNawver (which is the
orkey_01 in Fig. 1), that can be used to restrict the access to somele by default, stating that the command can never accesslth
of the data of the application. ject), Always(the command can always access the object))s@r
(user authentication: the user must be authenticated bysnafaa
PIN code). Application of a given APDU command to an object
can then depend on the state of some other SDOs: for insthace t
commandVERI FY can successfully be applied @i n_02 only if
“http://ww. gi xel . fr - it is the trade association in pi N_-01 has been previously verified with success.
France for electronic components industries -
5A card with medical and personal data of the holder of the card “More precisely, the operation in the model correspondiripéo
®Application Protocol Data Unit it is the communication unit APDU commandDEACTI VATE_FI LE.
between a reader and a card; its structure conforms to th& 836 8More precisely, a number that corresponds to a status word of
standards the functional specification.

2.3.2 Some Data and Commands of IAS The services provided
by the IAS platform can be invoked by means of various ABDU
commands.

338 Masson et al.

We give below some variables of the security model that we use
in the remainder of this paper.

Domains of values The setOBJ_I D denotes the set of refer-
ences attached to objects manipulated by the IAS platforits(P
files, SDOs, ...). The variableéBJ_| i st, DF.l i st, SDOI i st

PI NI i st respectively denote the subsets of objects, directory, files
Security Data Objects and Personal Identification numtaheaur-
rent application©@BJ_Ii st C OBJ.ID,DF.list C OBJ.ist,
SDOlist COBJlist,PINIist CSDOIist).

The files and SDOs hierarchy The variablecur r ent _DF (€

DF_l i st) stores the reference of the current selected DF. The vari-
able PI N.2_df Parent (¢ PINIist — DF.list) associates
with a PIN reference the reference to the DF in which the PIN ob
ject is located. In the same way, the varialll_2_df Par ent

(¢ DF.ist — DF.ist) associates with a DF referencd

the reference to the DF wherf is located. These dependen-
cies can be extended to the closure: for instance the variabl
DF_2_df Parent _cl osure (¢ DF.list <« DF.list) asso-
ciates a DF with all its antecedents, including itself.

Figure 2: Functional Model-Based Test Generation Process

tool computes test targets from the model according to behav
decision and data coverage criteria, as will be furtheridetan
Sec. 3.2 and Sec. 3.3.

Security dependencies The variable r ul e_2_obj e Concretization.As the tests computed have the abstraction level
(€ OBJlist « (SDOlist U {al ways,never})) asso- of the functional model FM, they have to be transformed oun-
ciates with an object reference the SDO that protects it. An crete testsat the level of the implementation. This step relies on
object o that is always (resp. never) accessible is represented the concretization layer which maps the operations and dfata
by (o — al ways) (respectively(o — never)). Notice that the model FM to the operations and data of the IUT, as further

al ways andnever are two particular SDO references that are explained in Sec. 3.4.

not in the SDO list. The variablpi n.aut henticated2.df gyacution.In this step the verdict of the execution of a concrete
(€ PI NI'i st «+» DF.li st) associates with a pin reference the DF ot ig given by the comparison between the outputs pretinte

references where the PIN object is authenticated. the FM and the outputs given by the IUT (see Sec. 3.4).
Consider for example the data structure of Fig. 1. The pair

pi n.02 — file.01 € PI N.2_df Par ent means that the PIN The dashed circled parts in Fig. 2 shows what in the process wi

objectpi n_02 islocated inthe DFi | e 01. The pairf i | e.02 — be reused to generate security tests, in addition to thetifura ones.

pi n_02 € rul e_2_obj means that the access to the DA e_02 This will be performed by replacing the functional testsegimy the

is protected by a user authentication over the SRIh_02. If lower dashed circled part by functional security tests Gee 4.2).

pin02 — file.02 € pin_aut henti cat ed2_df, then the The next three sections detail the composition of the tests;a

access to the DFi | e_02 is authorized, otherwise it is forbidden. the generation of test targets by application of coverageria and
finally the concretization of test sequences into execatstiipts.

3 Model-Based Testing using LTG

This section describes the principles of the Model Basetrigap-
proach used to perform a functional test campaign on the Bs® ¢ The purpose of the model-based testing approach of LTG diars a
study. This approach is implemented within the Leirios Teésher- tivating the operations of the B model. More precisely, itises
ator (LTG) tool [23] from Smartestirtg, that takes a B model [1] as on a path-coverage of the control flow graph of the operatioms
an input and automatically computes functional test caassdon a which each path is namdsthavior Thus, each operation is covered

3.2 Test Case Composition

structural coverage of the operations of the model. according to its structure, by extracting its nested beiravi Each
. behavior is composed of two elements: an activation camdiind

3.1 Model-Based Testing Process an effect that describes the evolution of the state variiblbe acti-

The process for computing model-based functional testsrisisa- vation condition is satisfied.

rized by Fig. 2. The process is made of three steps. For each behavior, a test target is defined as its activatodie

tion (decision). The tests covering the behavior will bestitnted of

e Test GenerationA set of functional testds first statically com- . g i
puted from a functional model FM according to some selectiol preamblethat puts the system in a state that satisfies the activation

criteria. In our case, the test generation is performed kg.[The condition of the behavior. To achieve that, a customizedrélynm
) ' 9 P ’ automatically explores the state space defined by the B n@oukl

°DF_2_df Par ent is arbitrarily extended by the paif — M finds one path from the initial state to a state verifying theyét.
in the case of the master file. LTG automatically selects the shortest preamble that esatife test

Lformerly Leirios Technologies; see target. Itis equipped with a constraint solver and procésdsym-
http://ww. smartesting. com bolic animation to valuate the parameters of a test sequence

An Access Control Model Based Testing Approach for Smart Card Applications: Results of the POSE Project

339

Apart from the preamble, a test is thus composed of the 4 elés be run on the IUT. The correspondence tables and the atansl|

ments, as shown in Fig. 3. The téstdyconsists in the invocation of
the tested operation with the adequate parameters so éhaditisid-
ered behavior is effectively activated. Tidentificationphase is a set
of user-defined operation calls that are supposed to pertioerob-
servation of the system state. Their invocation when piate test
case on the IUT will make it possible to compare the concyaibt
served values w.r.t. their expected values computed frenmthdel.
Finally, a test case is ended byastamblehat is a (facultative) se-
guence of operations calls that resets the system to iislisitite so
as to chain the test cases.

3.3 Coverage Criteria for Test Target Generation

From the previous basic definition of a test target, basedhemdv-
erage of the structure of the operation, two other model reme
criteria can be applied, namely predicate and data covera@gese
criteria are selected by the validation engineer.

Predicate coveragemakes it possible to increase the test tar-

gets number, and possibly their error detection capadsliti This
provides a mean for satisfying usual predicate coverageriei

such as: (i) Decision CoveragéDC) stating that the tests evalu-

ate the decisions (each activation condition) at least,oficeCon-

dition/Decision Coverag€¢C/DC) stating that each boolean atomic

subexpression (called a condition) in a decision has bealuaed

as true and as fals€;i:) Modified Decision/Condition Coverage

(MC/DC) stating that each condition can affect the resulitofn-

compassing decision, giv) Multiple Condition Coverage (MCC)
stating that the tests evaluate each possible combinait&atisfying

a predicate. In practice, different rewriting rules arelaggpon the

disjunctive predicate form of the decisions, so as to refiretest
targets in order to take this coverage criteria into account

Data coveragemakes it possible to indicate which of the test dat

have to be computed in order to instantiate the tests. Thersptap-
plied to operation parameters and/or state variablespgeoa choice

between: () all the possible values for a given variable/parameter
that satisfy the test targeii) a smart instantiation that selects a
single value for each test data, @ii) a boundary values coverage,

for numerical data, that will be instantiated to their exteevalues
(minimal and maximal values).

3.4 Executable Scripts and Verdicts

a

implement the concretization layer.

Concretely, about 7000 tests were generated by LTG on the IAS
case study. The average length of these tests in number Htagre
calls is approximately 5. Running these tests on the simordatf
Gemalto took two days.

For each test, the verdict is established by comparing thgutsi
of the system in response to inputs sent as successive iopsrat
The concretization layer is in charge of delivering the ietrdoy
implementing functions that perform the comparison. Is tuntext,
the more observation operations (identification phase @f B)i are
available, the more accurate the verdict is.

Limitations This approach aims at ensuring that the behaviors de-
scribed in the model also exist in the IUT, and their impletagan
conforms to the model. Nevertheless, this approach suffarssev-
eral limitations.

First, the preamble computed by LTG is systematically thertsh
est path from the initial state to the test target. As a camsecg,
possibly interesting scenarios for reaching this target beamissed.
This implies a lack of variety in the composition of thesegmmbles,
that may possibly miss some errors. Second, the preamblputam
tion is bounded in depth and/or time. This may prevent a seget
to be automatically reached.

Third, the accuracy of the conformance verdict depends en th
testabilityof the IUT, i.e., the number of observation points that are
provided. When using LTG, one has to provide a systematic se-
guence of operations that can be used to observe the sysitam st
Nevertheless, in smart card applets, the complexity of canthtalls
(embedded within APDU buffers) prevents this solution teehsily
set up, reducing the observation points to comparing thesteords
of the commands. Thus, the tests have to be built so as to dicst
voke an error, and, second, observe the resulting defemighran
unexpected output status word.

Finally, the security requirements of the security tarfgtwhich
the Common Criteria require testing evidences, may notyehsi
expressed in the model and related to the numerous funttista.

To overcome these limitations, we develop, in the remainder
the paper, a security model-based testing approach thatstern
using scenarios in order to ensure that security propeatiescor-
rectly implemented. It is important to notice that a diréoklcan
be established between a scenario and the security recariténad-

Once the abstract test cases have been computed, they hbge talresses.

translated into the test bench syntax so as to be autonwtedd-
cuted on the IUT. This is the concretization step.

To achieve that, the validation engineer has to provide tovoee
spondence tables. One of these tables maps the operat@isigs
of the B model to the control points of the test bench. Therotine
maps the abstract constant values of the B model to the aitdata
values of the IUT. By using an appropriate translator, a sespt
is automatically generated into the syntax of the test bereddy

Figure 3: Composition of a LTG test case

4 Security Property Based Testing Process

We illustrate in this section the concepts of security propand test
purpose and we detail the different steps of BEG®curity model
based testing process.

4.1 Test Needs and Test Purposes

We see dest purpos@s a mean to exercise the system in a particular
situation w.r.t. a property. Based on its know-how, an elgpeed se-
curity engineer will imagine possible dangerous situatignwhich
a property needs to be tested.

Consider for example an access cons®turity propertyfor IAS
stating that to write inside a directory file, a given accemsdition
has to be true, otherwise the writing is refused. Functioesting
of this property with LTG activates two kinds of behaviors the

340 Masson et al.

operation of writing: a success is reached by placing theesyito 5. Valuation of the abstract security tests into functionatiséy

a state where the access condition is true, whereas a faltgached tests In this step, security tests are replayed on the FM in or-
by placing the system into a state where it is false. Secearigineers der to valuate the functional parameters and results. Thidges
involved in the POS project have expressed a need for testing such a functional security testsDuring the valuation, the conformance

security property in other situations. For example, thexettaought between the functional and security models is checked. war.t

of the case when the access condition is true at an instamd then mapping functionV/ that links the functional and security results.
becomes false at-d¢. The test need is to make sure that the previous A non-conformance reveals an inconsistency between the SPM
true value for the access rule has no side effect at the timeitifg. and the FM (see Sec. 7.2.3).

A test purpose corresponding to this test need iseach a state
where the access rule is true; perform the writing operatfpreach
a state where the access rule is false; perform the writingration.

This example illustrates that one often wants to expresstate-
pose as both states to be reached and operations to perfoen. W
have designed a language for expressing such test purppsesins
of states and actions (see [26]). Once formalized, a tegtogeris
called atest pattern In our process, we use test patterns as selec-
tion criteria to compute abstract security tests. adstract tesis a
sequence of operation calls, with parameters computeddingato
a (functional or security) model. The abstract test alsotiporates
the expected result of each call and thus provides an oreclié
concrete test that will be executed on the IUT.

Security
Tt target

1 N

Func. Sec. Tests

4.2 PO Process for Generating Security Tests

Abs. Sec. Tests

Our process for generating security tests uses a securitglnas an

oracle and test purposes as dynamic selection criteriattagtxests (a) Security Tests Generation (b) Tests Valuation
from this model. The idea is to reuse the dashed circled patte

MBT process of Fig. 2, by replacing the functional tests vfithc- Figure 4: Security tests generation process

tional security tests. Figure 4 illustrates our approatie abstract

security test generation process is represented in Fij. w(éle the In this process the parameters are added to the operatisratal

valuation of these tests into functional security teste[tsesented in successive steps of the process. The parameters are cdy]ph{
Fig. 4(b). The process is made of five steps, numbered fronbirto stracted at step 3 in the test patterns, then step 4 adds dhetge
Fig. 2. parameters to the calls and finally the functional pararaetey com-
puted at step 5. Some implementation parameters can alsidbd a
at concretization time (see Fig. 2), where the abstractabjoer calls
are translated into concrete calls of the implementatioRIAs in
the case of IAS).

Consider for example the operatiodERI FY that performs
an identification by means of a PIN code. A call to this
operation would appear a¥ERI FY in a TP (step 3) and as
VERI FY(ref _sdo, PlINcode) (see Sec. 2.3.4) in an abstract
2. Generation of a security policy model SPWhis step takes as security test (step 4), withef _sdo and Pl N.code being some

input the two previous models and automatically produces-a bsdo and pin values. Then the call appear&/BRI FY(r ef _sdo,

havioral SPM that abstracts the system in a level that ordydes p| Ncode, | NSMLevel , | N.Good_SM in a functional se-

on security aspects. curity test (step 5) because IAS operations have additipagm-
eters in FM that indicate the level of secure messaging twiee
card and the terminH. Finally, in the case of th&ERI FY com-
mand, no implementation parameters are added at the cizatiat
step, but the operation calls are translated into APDUSs.

1. Formalization of the static and dynamic access control ggcu
rules In this step, the security engineer writes a semi-format do
ument from the security specifications, called sieeurity target
It is written as a Common Criteria document. For access obntr
requirements, he formalizes both the access control riilesle-
based model) and how subjects, objects and security agsioan
change (the dynamic model).

3. Formalization of test patternsBased on their security expertise
and their knowledge of the security policy model, the seguamn-
gineers state some test patterns using a well-defined lgegak
lowing to describe sequence of operations and conditionson
able values. The parameters are not instantiated in thextmer

4.3 Discussion
calls.

i i . This process completes the model-based generation of theefo
4. Generation of a set of abstract security tesWhis step takes as ¢, ional tests. We re-use the functional model EM. thecoetiza-
Input a test [_)atter_n TP a“‘? an SPM to produce a sebefract tion layer and the execution ground installation of the cetectests.
security testsn which security the parameters are instantiated. The security engineer has to design and to formalize theriggcu
- policy model SPM and the test pattern TP. With this appro#ud,
Hthis is for making sure that before the loss of the right tateyri
the writing operation was indeed possible, and not refusedf ?These parameters are not considered in our SPM that only fo-
g op p y p y
other reason. cuses on the verification of access conditions.

An Access Control Model Based Testing Approach for Smart Card Applications: Results of the POSE Project

security engineer is only concerned by the security poljmgci-

cation. He does not need to know the remainder of the furation

specification. In addition, our process is consistent whia €om-
mon Criteria approach that explicitly distinguishes betwé¢he se-
curity and application models and imposes to relate thesarad-
els (our conformance relationship). From a practical pofntiew,
the use of the security model for test generation allows usaster
the combinatory: because the security model is more abgtran
the functional model, the state space explored for the g¢inerof
security tests is smaller. For instance in the IAS case stiovelfM
contains about 15,500 lines and 60 operations and the SRMont
tains about 1,100 lines and 12 operations.

In the next sections we detail how the different steps of 08P
security model based testing process have been effecivedie-
mented and applied on the IAS case study.

5 Security Policy Model Formalization

From this target of evaluation, a formal model of the access c
trol part has been developed. This model can be assimilatétet
assurance requirement SPM (for Security Policy Model) efdlass

341

MACHINE IAS_.RULE
SETS
OPERATION = {SELECT.FILE_.DF_CHILD, CREATE_FILE_DF, ...}
CONSTANTS
/* Permission relationship */
permission
PROPERTIES
permission € OPERATION <> DF_list A
/* access rule relative to the command SELECT_FILE_DF_CHILD */
V(df.id).(
/* df_id denotes a child of the current directory file */
DF_2_dfParent(df_id)=current_DF

/* the current directory file is activated. */
A DF_2_life_cycle_state(current_.DF) = {activated}

ADV. A language based on the B method has been developed in order=> (SELECT_FILE.DF_CHILD + df.id) € permission)

to formally specify and verify security access control medd his
language is supported by a tool, named Meca [20], [14].

5.1 PO Security Model of IAS

/* access rule relative to the command CREATE_FILE_DF */
A

END

In the PO% approach, a security model contains the traditional rules

part attached to access control policies but also a dynaroiem
describing how security attributes, subjects and objeatsavolve.

Figure 5: Rule-based part of the security model of IAS

Therule-based modedpecifies subjects, objects, security attributes

and operations whose execution is controlled.

a monitor that traps the execution requests and enforceacttess

We give in Fig. 5 a sub-part of this model allowing to describecontrol rules. In the context of the PE$roject, this security model

conditions attached to the comma®&ELECT_FI LE_DF_CHI LD.

can be assimilated to the SPM assurance component of Common

In this example the access control rule does not depend ob-a SCriteria.
ject: per mi ssi on is then a binary relationship between operations For each controlled operation, the security model containew

whose execution has to be controlled and the object on whiebp-
eration is applied. Here, the commaS8BLECT_FI LE_.DF_CHI LD
can be invoked only if the current directory is activated #nithe
selected directory filef _i d is effectively a sub-directory of the
current directory file. Security attributes are here the kfcle
of files OF_2_1i fe_cycl e_st ate), the file and SDOs hierar-
chy (Pl N.2_df Par ent and DF_2_df Par ent) and the state of
the pin authenticationg(n_aut henti cat ed_2_df). Variables
DF_2_1ife_cycl estate is a total function fromDF_l i st to
the sef{ activated, deactivated, terminated}. Other variables have
been already defined Sec. 2.3.

operation corresponding either to the execution of therodiat op-
eration, if security conditions are verified, or to a nullexéon. This
operation returns a new resuits, indicating if the execution has
been authorized or nosiccess/er r or). For instance lebut «+
op(i) = PRE P THEN S END be the definition of the operatiam
in the dynamic model. Lef' = (s — op — 0) € permission
be the unique rule associated with the operatpn(to simplify).
The generated security model contains a new operation alseah
op (Fig. 7) describing how the execution of the operatigris con-
trolled. Predicater e_t yp denotes the part of the preconditiéh
relative to how input parameteisre typed. Variablesubj ect and

The dynamic modebives an abstract view of commands, fo-obj ect contain the value of the current subject and object. These
cusing on the behavioral changes of security attributegjurgi6 variables have to be defined in the dynamic model.
describes the part of the dynamic model relative to the comima The security model can be seen as the specification of aleimpl
SELECT.FI LE.DF_CHI LD. This specification describes how the mentations that conform to the rule-based and dynamic reodie!
current directory file evolves as well as the set of authateit pins. tuitively an implementation for which all sequences of fivsicalls
In particular, pins that are redefineddh i d lose their authenticated (associated to an effective execution of the operations)atso be
status. played by the security model is conform. In particular theliea
mentation can refuse more executions than the security Infzde
instance for functional reasons. A more formal definitionhofv
The inputs of the Meca tool are the rule-based and the dynamit ~ functional models and security models can be linked will bergin
els. Meca implements some verifications related to the stergty Sec. 7.
of these two models and produces a security model, obtaimed i Finally, the use of a formal method can be exploited to establ
weaving the two input models. The security model can be seen properties related to security aspects. As pointed out m &, in

5.2 Generation of the Security Model SPM

342 Masson et al.

SELECT_FILE_.DF_CHILD(df.id) =
PRE df.id € DF_ID A DF_2_dfParent(df-id)=current_DF
THEN

current_DF := df_id /* update of the current df*/

based on regular expressions and allows to describe the sifitgst
scenarios as sequences of operation calls leading to Hiatesatisfy
some state properties. Thest generation directive layés used to

|| LET pin_loosing_auth BE deal with combinatorial issues, by specifying some sedeatriteria
pin_loosing-auth = pin_authenticated_2_df ~ *[{current_DF}] intended to the test generation tool.
N PIN_2_dfParent~ ' [{df_id}] We give the syntax of each layer and then we give an example of
IN pin_authenticated-2_df := pin-authenticated-2_df U a test pattern issued from the IAS study.
(pin_authenticated_2_df ~* [{current_DF}] - (pin_loosing_auth) x {df_id}
END 6.1 Syntax of the Model Layer
END;

The syntax of the model layer is given in Fig. 8. The r8k de-

Figure 6: An operation of the dynamic part of security moddA& oP = | wﬂ
| "$OP \{"OPLIST"}"
the B method, invariant properties can be stated and proVéx: OPLIST == operation_name
first class of properties that has been proved on our seauotel | operation_name”;OPLIST
is related to the file structure (a tree) and its consisteritly tive file sP = state_predicate

life cycle states. A second class of properties is relatédd@onsis-
tency between authenticated pins and the current direfiteryhere
cannot exist an authenticated pin that does not belong teeatdry
file between the root and the current directory file (see ptgt)).

Finally, another class of properties is related to the atzseficycle
between security conditions attached to SDOs.

Figure 8: Syntactic Rules for the Model Layer

scribes conditions as state predicates over the variablbe GPM.
The ruleOP allows to describe the operation calls, either by an oper-
ation name indicating which operation is called, or by tHetdbOP
meaning that any operation is called or®®P\ {OPLI| ST} meaning

V(pi n.i d,df).((pi ni d — df € pin_aut henti cat ed2_df) that any operation is called but one from the @Ft_1 ST.
= (pinide)
(PI N-2.df Par ent ~*[DF.2.df Par ent cl osur e[{df }]))) 6.2 Syntax of the Test Generation Directive Layer

Establishing formal properties from the target of evabmis one 1 NS Partof the language is given in Fig. 9. It allows to sheguide-

of the requirements in the higher level of assurance in thar@Gon
Criteria, used both to prove the consistency of the consdformal
models and to show the correspondence between the seeugst t
and the formal models. This allows giving further assuranace
the security target. Furthermore, because the securityehmdy
focuses on some aspects of the system, security attritntgests
and subjects, it is generally small and abstract enough ppcst lines for the test generation step. We propose two kindsrettves

CHOICE n= "R
OP1 BE OP | "T"'OP"T"

Figure 9: Syntactic Rules for the Test Generation Diredtizger

formal verifications. aiming at reducing the search for instantiations of thepgatterns.
The ruleCHO CE introduces two operators denoted asd for
6 Language for Test Patterns Description covering the branches of a choice. ISgtandS- be two test patterns.

The patterns; | S, specifies that the test generator must generate

tests for both the patterf; and the patterbz. S; ® S, specifies

that the test generator must generate tests for either ttexip8; or

%he patternS,.

tured as three different layersode| sequenceandtest generation The ruIe@l tells thg test generator tp cover one of the. behaviors
of the operatiorOP. It is the default option. The test engineer can

directive . .
Themodel layeris for describing the operation calls and the statealso ask for the coverage of all the behaviors of the operétip

properties in the terms of the SPM. This layer constitutesinter- surrounding its call with brackets.
face between the SPM and the test patterns. Segpience layeis g 3 Syntax of the Sequence Layer

This part of the language is given in Fig. 10. The rB8EQis for

In this section, we introduce the language that we have deditp
formally express the tests purposes as test patterns [26].

We want the language to be as generic as possible w.r.t. tde m
elling language used to formalize the system. The languagetic-

out, 1s < op (i) = describing a sequence of operation calls as a regular esipnes
PRE pre.typ THEN /* typing of parameters */ A step of a sequence is either an operation call as denot&@by
IF subject=s A object=o A C' A P (see Fig. 9) or an operation call that leads to a state shigéystate
THEN S || 1s := success predicate, as denoted BEQ ~~(SP) .
ELSETs:=error Sequences can be composed by the concatenation of two se-
END guences, the repetition of a sequence or the choice betweeset
END guences. We use the usual regular expression repetiticratope

. . (+ for zero or many timest for one or many times? for zero or
Figure 7: SPM general format of an operation one time), augmented with bounded repetition operator$ (neans

An Access Control Model Based Testing Approach for Smart Card Applications: Results of the POSE Project 343

SEQ n= OP1 | "("SEQ")" | SEQ"~~("SP")" aim of the second step is to select the DH e_02, with the com-
| SEQ"SEQ mandSELECT_FI LE_DF_CHI LD. The final step of the test pattern
| SEQ REPEAT

describes the application of six commands, withe the ctdi&ac-
tory file beingf i | e_02 in order to test the correctness of the access
o | g | conditions.

| SEQ CHOICE SEQ

REPEAT

"{"num”}” | "{"num”,}" | "{,;’num”}” | "{"num”,"num”}"”
| {oum?}” | {"oum’ 3| 4 Moum?}" | *{"um’ "oum”} . (VERIFY | CHANGE_REFERENCE_DATA

| (RESET . SELECT.FILE_.DF_CHILD) | RESET_RETRY.COUNTER
Figure 10: Syntactic Rules for the Sequence Layer | (SELECT._FILE-DF_PARENT . SELECT.FILE_DF_CHILD))

~~(current_DF = file_01 A file_01 ¢ pin_authenticated_2_df[{pin_02}]) // P5
. SELECT_FILE_DF_CHILD

exactlyn times,{n, } means at least times,{, m} means at most ~~(current.DF = file_02) 1'P6
m times, and{n, m} means between andm times). Notice that [CREATE-FILEDF|DELETE.FILE | ACTIVATE.FILE | DEACTIVATE.FILE
using the operators and+ possibly define infinite sets of tests. To | TERMINATE-FILE-DF | PUT_DATA-OBJ.PIN-CREATE]

be of practical interest, they will have to be instantiateceaplicit
numbers some time in the process. Using these operatorsest a t
pattern allows the engineer to postpone this question,@aiard in
Sec. 7.1.1.

Figure 12: Example of a test pattern — execution step

7 From Security Test Patterns to Concrete Se-

6.4 Test Pattern Example curity Tests Execution

Here, we exhibit one of the test patterns (based on the lggua#ro-)) .

duced above) written for the experimentation of our apgodkhe N this part we describe how concrete security tests areype]

property to be tested igd access an object protected by a PIN code!0™ test patterns, using the PB$bols suit. The process is in three

the PIN must be authenticatednd the test need isve want to test StePS- Section ,7'1 presents the generation of 'the absqaailw

this property after all possible ways to lose an authentarabver a tests, by unfolding the test patterns and valuat}ng therigqua-

PIN". rameters from the SPM. In Sec. 7.2, we describe the valuation
The test pattern is given in two stages: the initializatitage and the fuqcthnal parameters from the FM. We finally presentiéys

the core testing stage. Figure 11 presents the initiaimattage of execution in S?C‘ 7.3.)

the test pattern in four steps, aiming at building the datecsire re- e @pply this test generation process to the test pattemgga

quired on the card to run the test (see Sec. 2.3.4 for theragptm of ~ INtroduced in Fig. 11 and Fig. 12. We also present the praictiod

the variables used in this example). The purpose of the fptisto theoretical restrictions of the proposed approach.

create anew DH(| e_.01). The second step aims at creating a PIN . .

object pi n_02) into the DFf i | e_01 and to gain an authentication /-1 ~Abstract Security Tests Generation

over it. The aim of the third step is to create the D e.02into 717 ynfolding of the Test Patterns Each test pattern has to be
the DFf i | e_01. Finally, the last step aims at setting the current DRy anoformed into the set of test sequences it represento $o, we
tofil e-01in order to start the core of the test. The resulting datggnsiate a test pattern into an automaton and then unfoldtits
structure is the left part of the Fig. 1: the DF| .02 is protected gjyestest sequencethat are made of operation calls and states to
by the PINpi n_02 for all commands. reach. Notice that we bound the number of repetitions indime
We have given in Fig. 11 and Fig. 12 a label to each target stajge operators ** and ‘+', in order to have a finite number ofttee-
predicate expressed in the pattern, so we can refer to iwaftds. quences. The bounds can either be chosen by the validatjimeen
These labels appear as double slashed comments on the aight hor set to a default value. Also notice that the “exclusiveiciiboper-
of each predicater p1, // 2, etc. ator®, allowed by the language in the test generation directiyer|a

have not been implemented yet.
CREATE_FILE.DF

~~ (rule_2_obj[{file_01}] ={always} A current_DF = file_01) I P1
. PUT_DATA_OBJ_PIN_CREATE . VERIFY ‘ CREATE_FILE_DF =mPUT_DATA_OBJ_PIN_CREATE VERIFY
~~ (PIN_2_dfParent(pin_02) = file_.01
A file_01 € pin_authenticated_2_df[{pin_02}]) 11'P2
. CREATE_FILE_DF
- (rule_2_obj[{file_02}] = {pin.02} A current.DF = file_02) /I P3 P4) SELECT DT PARENT CREATE TLEOF
. SELECT-FILE_-DF_.PARENT
~~ (current_DF = file_01) 11 P4

VERIFY

'/PS\SELECT FILE_DF_CHILD, (" b

Figure 11: Example of a test pattern — initialization step N\ ormner REFE;ENCE ij O/

Figure 12 shows the core testing stage, describing theugsoge /—w‘j
of a successful authentication after all possible ways $e n au- : L]
thentication. First, the pattern describes the five possilalys for Mﬂ/
losing the authentication over the PPN n_02 (for instance, a fail-
ure of theVERI FY command or a reset of the retry counter). The Figure 13: Automaton associated to the test pattern example

Figure 13 gives the automaton for the test pattern exampengi
in Fig. 11 and Fig. 12 of Sec. 6.4. The edges are labelled by t
operation names of the pattern and the labels in the ventifesto
the target state predicatBsof Fig. 11 and Fig. 12. Predicate ue
denotes a state that is not constrained.

The unfolding of this pattern gives thirty test sequenciegesfive
commands provoke the loss of authentication (transitictsdéen

P4 andP5), and six different commands test the access control (tran-

sitions betwee®6 and the final stater ue).

7.1.2 Test Generation from the SPM In this step the SPM is
used to compute parameter values for operations that mhth
constraints expressed in the test sequence. For exampleathe
SELECT_FI LE_.DF_CHI LD, between predicateB5 and P6, will
be instantiated iISELECT_FI LE_DF_CHI LD(f i | €.02) returning
the valuesuccess.

Masson et al.

guence must be analyzed in order to detect the reason ofthissf
Ha particular the test pattern associated to the faulty seguence
could be redefined.

7.2 Functional Security Tests Generation

In this section we explain how functional security testspmuced
from abstract security tests.

7.2.1 Test Valuation from the FM Reusing the layer that con-
cretizes the tests issued from the FM (see section 3.4)rexthat
the tests given by the SPM are brought to the same abstrdetieh
tas the FM. We obtain it by “replaying” these tests with the Fig;
ing the LTG tool. For a given abstract security test, the i, TG

is the sequence of operation calls with their security patamval-
ues and in omitting the output values. We expect that LTG yred
some sequences with the same operation calls, enrichedumss\far

We use LTG to compute abstract security tests. By defauli LT functional parameters and output results. In the next@esive dis-

tries to cover every behavior of every operation of the mod&y
using a test pattern, we guide the test generation by foilclitg to

cuss how the functional security tests are shown to be inardance
with the SPM. Due to the fact that smart card applicationgarer-

visit the successive target states and to call the suceegperations ally defensive, i.e. operations are always callable evitteéfminates
given in the pattern. An extension of LTG has been developed f with an error status word, it is always theoretically pokstb obtain
research purposes in P@%o take into account test selection guideda functional sequence replaying a security test. Table 2ranmes
by test pattern. This extension relies on greamble helpemecha- the possible results for the functional security generasiep.

nism of LTG, which allows to describe a desired test by theisage
of operations it activates. Technically, we have autoradifiadded
one “fictive” operation in the model per state to reach. Sucz
eration reaches the targeted state, provided it is postibieach it
from the current state.

Notice that the efficiency of the computation of the abstsaciu-
rity tests can be improved, by considering a restrictiorhefrodel
to its executions matching the test pattern. We have shova7ih
how this can be obtained in B, by a synchronous product ofase t 7.2.2 Mappings Between SPM and FM results By means of a
pattern with the model. This synchronous product was notémp conformance relation, we verify that the results returngthie SPM
mented in the POB experimental prototype, as it was developedand the FM models are consistent. The conformance relatioasied
prior to [27]. on a function, called anapping that associates to each status word

The valuation of a test sequence may fail when the constranet returned by a given operation, an abstract security statiesging to
unsatisfiable due for example to an unreachable state. Bamice the set{success, error}, as defined in section 5.2. Table 3 shows
the test pattern of Fig. 12 imposes that the execution of tine-c a part of the mapping function for tHeEL ECT_FI LE DF_CHI LD
mand SELECT_FI LE_DF_CHI LD leads to the stateur r ent _DF ~ command.
= fil e.02 (P6) from the initial stateeurrent .DF = fil e01
(P5). As specified in the dynamic model (Fig. 6), this commanA

Result of the functional security generation step
OK : aset of functional security tests is generate
KO : some LTG limitations are encountered

o

Table 2: Functional security test generation step

| Status word| Security status]

succeeds only if the following condition holds: A success 6900 success
. . A security error: the current 6985 error
DF2df Parent (file02) = file01. directory file is not activated
If the initial hierarchy does not fit this condition, LTG wifil A functional error: the secure 6982 error
and the test pattern will not produce any test. The valuatfantest messaging parameter is invalid

sequence may also fail for a more pragmatic restriction,nnthe
test generation tool fails at finding a valuation in some gitime.
Table 1 summarizes the possible results for the abstraatisetest
generation step.

Table 3: Mapping for th&ELECT_FI LE_DF_CHI LD command

Status words mapped guccess correspond to behaviors that
are in conformance with the access control conditions andrig
attributes modifications described in the dynamic modelr iRo
stance for the/ERI FY command the two behaviors corresponding
to a right or erroneous pin value are both mapped witlecess,
when the access control conditions hold. Status words sporeling
to a violation of a part of the access control conditions aaedatory
mapped teer r or and security attributes can not be modified, in any
way. In [14], [13] a finer form of mapping has been proposeidyal
ing to distinguish authorized behaviors as iWVERlI FY command

Result of the abstract security test generation stey

OK a set of abstract security tests is generate

KO an unsatisfiable scenario is detected or sg
LTG limitations are encountered

d
me

Table 1: Abstract security test generation step

When the abstract security test generation fails, the ntitest se-

An Access Control Model Based Testing Approach for Smart Card Applications: Results of the POSE Project 345

that succeeds or fails. Nevertheless, such forms of poweréyp- To summarize, functional tests produced from abstractriggcu
pings are in general non-deterministic and have not beathingmur tests are in conformance with the SPM through a relationgtap
case study, in order to master the complexity of mappingesgion. admits more restrictive implementations. The correctrefsthe

. . . conformance relationship, and its application to our secuanodel
7.2.3 Functional Security Tests Conformance with respectot based testing approach, strongly depends on the relevdnite o

the SPM In this step we verify that the functional security tests, - .
! i li .D he f hat th Is th -
produced by LTG using the FM, conform to the SPM. A semantltgnapplng unction). Due to the fact that the models that are con

. . . : Sidered are formal, the correctness of the mapping can bgeder
conformance relationship between a functional and a dgquandel . . S
. . . . in terms of refinement (see [13] for a formal definition). Dodhe
has been defined in [14]. For a given mapping functidn all se-

qguences of the FM, in which status word values are replaced by proximity of the structure of the two models, the mappingef tAS

M (sw;), should be accepted by the SPM after elimination of funcS25¢ study has been validated by a review process.

_tl(?r)al parameters and calls that are mappeedrtoor . By this def- 7.3 Tests Execution

inition, all sequence of successful calls accepted by theshbdtld

also be accepted by the SPM. On the contrary, the FM should Bée fully valuated test sequences are finally concretizemégns of
more restrictive, for example for functional reasons. the concretization layer, and executed on the IUT.

Table 4 gives the conformance verdict, w.r.t. a given mappin Practically, this is performed at Gemalto through the EVASE
M. In particular we exploit the fact that the SPM is a determinalidation Application) environment. EVA is the validatialata base
istic model, as imposed by LTG. Let;= < 71,...,7, > and environment of Gemalto. It uses the Visual Basic 6 langudpis.
o= < swn,...,sw, > be the two sequences of output respecbased on a proprietary tool, used to write validation s¢eits and to
tively produced by the SPM and the FM, for a given sequence afxecute them on different targets: simulator, emulatonuar¢cards
operation calls with the same security parameter values.coife and with different smart card readers. This environmeptaito use

pute the greatest indéxsuch that-; = M (sw;) fori € 1..k. the same script on the different types of simulator and ¢angéseby
improving the validation in terms of time process and debkimy-
Condition Conformance verdict ure 14 shows a screenshot of EVA. The “TreeViewer” panel show
k=mn o conforms to SPM the card image, while the “EVA View” panel displays the resafl
k< nArpel = error o does not conform to SPN the execution of the tests. The down part of the screensbetssthe
A M(swyy1) = success test code, while a list of available sets can be seen on thledafl of
k < n Arge1 = success inconclusive the screenshot.

A M(swyy1) = error The (security or not) functional tests are run on the IUT byAEV
via a dedicated interface (the concretization layer) relyingtioe
Table 4: Conformance verdict functional model. The concretization layer had been preslipde-

veloped for the non security functional validation testsor Effi-
ciency reasons, the constraint was to use the same coatiatiz
layer in order to avoid additional developments.

This concretization layer implements the definition andtthas-
lation of each operation call of the test by:

As summarized in table 4, i = n, that means that any operation
call returns the same status word. In other words; ifletects a secu-
rity violation thens y must also detect it. If it is not the case € n),
and due to the fact that the SPM is a deterministic model, emnin
sistency is detected between the two models. On the conifary 1. providing concrete values for the parameters of the camisiand
succeeds while fails, then the FM could be more restrictive than encapsulating them in specific formats,
the SPM. In this case we have to establish wetheis in confor-
mance with the SPM, by verifying if the subsequence of sigfaés
calls are accepted by this model, as defined in the conforenaata-
tionship [14]. This verification can be made by playing ttag@gence
on the SPM, with the help of LTG. 3. translating the command into a format understood by thi: (2.

Then we have developed a script, written in Perl, that verifie APDU format [22]),
conformance of a functional security test produced by LTGoea-
ing to table 4. This script is based on a small language dextida
the definition of mappings. 5. receiving the data response from the card,

Finally, an important question is the relevance of the fiometl
security tests produced by LTG. For instance, a test thaémsi-
cally chooses functional values producing an error is fadpform,
but not necessary a good test. Then LTG must be guided in twder
target tests as relevant as possible. The strategy thaebasdopted
is the following one: when a success is expected then thetsézar The verdict is thus given facing the results of the IUT to the®
guided by any status words mappedstaccess. When this search predicted by the oracle, namely the FM. The mapping betweén b
fails, we are looking for an error. On the contrary, when amrer results is a bijection as the functional model returns thaesata-
is expected we search both a call producing a status word edapptus words as the implementation (6900, 6985, etc.). If tisalte
tosuccess and a call producing a status word mappeéto or. differ, this indicates that there is a problem, either in itlH& or in
This way, if there exists an inconsistency between the SPd/tla@ the model. The problem is reported to the validation engirfiee
FM, it will be detected. analysis.

2. initializing the secret data (PIN values, key values) atating
it in the concretization layer, to be used for comparisorcébse
there is no mean to retrieve those values from the card),

4. sending the command to the card,

6. verifying the results, i.e. verifying that the data reeeli from the
card equals the one expected by the test design. This irchide
channels verification, e.g. no secret value is returned fitoen
card.

346 Masson et al.
ry POSE - Microsolt Yisual Basie [break] - [SCR_POSE_ C1_ACTIVATE FILE I (Code}) ' =)
ﬁthﬁﬂumﬁnmfwtw&nMvMMMWhWM|MM¢|W&CﬂTEVW =8

"|I |-....'5(.p=

=il = : s% %Ry 0.l 'ﬁﬂlﬂnlﬂﬂm B[R vee com e oo i 8 |
k= afl

T | T, mm

o 7
&5 SCRIPTy -
@ 5SCR_POSE_C1_ACTIVATE_FILE OPERATION 9- 10P_ SELECT_FILE_DF_CHILD wilbo sxecifed || Fldsr
& SCA_POSE_C_CREATE_DF_ stLEEi _FILE_DF_CHILD: 0074 @ 02 Datalre O0VE Le: 00 Dala Dut
u SOA_POSE_CT_DEACTIVATE_Fl & w9000 £
sl Pt ool oA Shatus DK S0
g f L meaning of SW=9000 ==> conact sxecution ¥00
| EF/OF selocted i row : <-»\IFOONTFSOVONE ExlE
Hame | o wBochn
G HOM_lest_ACTIVATE_FILE_200I_8451_5cb3 | s G0l
G ACTIVATE_FILE_1167_3a22_9dba_I sy (IPE n.:-nun 10: 10P_ACTRVATE_FILE vil b svociited ;"”l:
@ ietl_ACTIVATE_FILE_55%e_lBde_Sd9_| ACTIVATE_PILE 2 v
") Ir o \j 0y = TIVAT r| HHEMN = TFS
@ sl ACTIVATE_FILE_acad_ 3955 9bd | ”!E_,V.i:,ug FILE, '”E MauEn B Sl
il ACTVATE_FILE_dded codd_9db9.1 Siatus OF B0 me
maanimg ol SW=9000 ««» consal axaculion
| | X
| Gorephus LISB Smart Card Feader | Gerrphis USB Stmart Card Froace | Adccated | sesmema0rFDD00000104
« | +) | SCA_POSE_C1_ACTIVATE_FILE| NOM_let_ACTIVATE_FILE_260 in Progress 002186

][Ganonu

x| [woma_test ACTIVATE_FILE_2uiv 84613003 I

"

TOOLE ., display
TOOLS . display
TOOLE . display
TOOLS . display 7

M ommmemomee BTEP —=mm—mm—mmm= 3

T

Call IOP_ACTIVATE_FILE(_
SN _Level none, True, _
ov_Success_activatedlF _
]
caseExit; TOMLS, BottomSeript He,
o Exit Sub

0 i o R i an o i o ik i i i i

<Body>"

"HOYM_test ACTIVATE_FILE_ZhOf_B461_Sdbs_I"

Figure 14: A screenshot of EVA

As the security functional tests are computed from the esgioas
of security requirements, the traceability of a test to dgioal re-
quirement is easy to ensure. Every test can, for examplédec
a tag that refer to the requirement from which it is issuedngee
quently, a bad verdict can easily be related to an originalisey
requirement. This facilitates the human analysis of a gmbdis-
covered by a test.

8 Experimental Results

We describe in this section the three test patterns that we dxer-
imented on the IAS platform, and the test generation basebese
test patterns with LTG. We also present the concretizatiahexecu-
tion steps in an industrial process, and comment the resiotiésned
on the IAS implementation.

8.1 Three Test Patterns

For each of the test pattern that have been experimentedyfere i
mally give the property from which it is issued, the test nassoci-
ated to the property, and the shape of the test pattern.itself

The first test pattern that we have experimented is the orietddp
in Fig. 11 and Fig. 12 (see Sec. 6.4). The property to be tésthat
the access to an object protected by a PIN code requires ricagai
authentication over the PIN code. Functional tests wilkese this
property in a case where the authentication is gained, aaccase

where it is not. But they don't take into account if a PIN wasypr
ously authenticated, and that the authentication has leseén3o the
test need is to exercise the access control mechanism iasesof a
loss of authentication, in all possible ways, following eyjous gain.
The pattern proceeds by targeting a state where the awthgoti is
gained, accessing the object, targeting by all possibleatipas a
state where the authentication is loss, and accessing tgadtject.

As already stated, the unfolding of this pattern gave 30 secgs.
From these sequences, we have obtained 35 abstract sdestiy
from the SPM. This is due to the fact that there were multijglesp
ble valuations for the parameters of the last operation ofesse-
quences. The functional valuation of these abstract sgciasts
gave 35 functional security tests.

The second test pattern aims at testing the access consexd loa
a PIN authentication for various locations of different Rdbjects
with the same name in the file structure. In IAS, each PIN isea fil
saved under a directory. The location of the PIN w.r.t. theent DF
matters for an authentication gained over it. For exampmegssing
the DF parent of the current DF leads to a loss of the auttedidit
Thus, the property that we want to test is the same as befbee: t
access to an object protected by a PIN code requires to berdiith
cated over this PIN code. But here, the test need is to exetices
property with several PIN objects saved under multiple aloges
(e.g. the current directory and his child) when these Platijare

An Access Control Model Based Testing Approach for Smart Card Appli

homonyms. Indeed, two distinct objects can share the saoa lo

name (they are homonyms) if they are located in two distirfet D

Furthermore, the test need also aims at exploring the differ
combinations of the authentication states of these PIN&s& est
needs are addressed by a pattern targeting various sitaatioeach
before applying the access commands. For example, it tesdoy
state predicates the directory selected as the currerttaliye and
which PIN is authenticated or not. Some constraints ovectm-
mands sequencing (expressed by concatenations and cloviees
command names), enable to reduce the possible paths tothemeh
state targets. From this test pattern, we have generatéal atoount
of 66 functional security tests.

The authentication gained over a PIN not only depends on tbre pattern

location of the PIN, but also on the life cycle state of the Difreve

a command protected by the PIN is applied. Thus, the third te

pattern aims at testing some situations where the life stelke of the
directory is not alwaysctivated In addition to the property already
seen in the two previous test patterns, we exercise the pyoheat

when a command is executed in a directory, this one needsito be

an appropriate life cycle state. The functional test casesduch
situations in a static way, with a life cycle state of the diogy that
does not change during the test sequence.

So, the test need used in this pattern is to change the lifie cy

state of the directory one or several time(s) during thesegtence
(e.g. just before applying the command, or before gaininguahen-

tication over the PIN or before a reset of the card, as if thd vas

removed from the terminal and inserted again). The pattem-c
bines these life cycle state changes with the differentemtitation

states of the PIN protecting the access to the directoryugétional

security tests have been generated from this pattern.

8.2 Test Generation

Every test pattern gives several abstract security testse&ch ab-
stract security test, we compute only one valuation of timetional
parameters, so one functional security parameter is cadmpér ab-
stract security test. In our experiment, the three tesepattgave a
total amount of 183 tests. This number seems small in cosgrari
to the 7000 tests generated for the non-security functitaslcam-
paign. But it is necessary to consider that these three &tdrps
did not intend to address the whole system. Instead, theysémton
selected properties and test needs, regarding accesslanetrha-
nisms. Furthermore, each of these 183 tests is complengenttire
non-security functional tests previously generated. Thisbe seen
from tables 5 and 6. In table 5, we give the size (number o§linp-
erations and variables) of each model that was used for shge¢a-
eration. Table 6 presents the experimental results (numbsts
generated, and length of these tests in number of operatidiusit
the test generation using the three patterns presentectir8ge In
comparison, the average length of the non-security funatitests is
5, which is lower than the average leng#2) of the security tests.

For each test pattern, the complete test generation (fost the

cations: Results of the POSE Project 347
Number | Number of [Number of
Model . .)
of lines operations | variables
FM 15,500 60 150
|
rule based 200 1 o
model
dynamic
1000 12 20
model
SPM 1100 12 20
Table 5: Size of the different models
Maximum | Minimum Average
Test Number | Number | number of | number of | number of
of seq. of func. op. calls op. calls op. calls
(see Sec. 8.1) inTP sec. tests| per test per test per test
S 1 30 35 10 9 9.4
2 48 66 11 8 9.5
3 68 82 8 5 6.9

Table 6: Experimental results about test generation

8.3 Discussion About the Experimentation

Swe propose in this part to give some experience returns wotbirat
of view of industrial partners.

8.3.1 Functional and Security Validation For the functional
validation, two ways have been deployed to validate the IAS im-
plementation. For the first, we used the model-based appreath
automatic generation of tests and for the second, we usetmattfie
tional approach where the test scripts are developed nigndale
first approach has generated more than 7000 tests. The iexecut
time on the smart card was approximately 2 full days. The raknu
approach has delivered nearly 500 tests, which were magdigded

to complement the automatic generated tests. They wersddan
parts that the modeling could not take into account, e.g.eslkmit
casesstresscases where the test stresses a specific feature (quality
of the random value, memories cell values,...). The cooreding
execution time was nearly the same than the automatic ptiasep
the time allocated to the stress tests.

The security validation takes advantage of the functional vali-
dation as it was based on the same functional model desgribin
behavior and in particular the tests oracles. All the gaedraecu-
rity tests were correctly executed on the target. As alrestaled, the
three families have delivered 183 tests, executed in one dothe
target. Although no problems were detected in the IAS imgleta-
tion, the approach has improved the confidence in that imgiéaa
tion. This is crucial for the certification of products emtewj the
IAS application because this step is part of the testing tiaakwill
be done by the evaluator. Indeed, although the approacholesac
only a subset of the security properties of the IAS (only tbeeas
control on PIN objects), the global concept has been vailat the
industrial framework.

Additionally, one test issued from the security model hasec

SPM and then from the FM) took about two or three hours. It mag non conformance between the security model and the furadtio

seem a little bit long, but our main objective was the corecrete
of the developed approach in the industrial environmenesb rteal
products. Nevertheless, our implementation is a reseantbtygpe
whose efficiency could be improved in a second phase.

one. This was due to distinct interpretations in the two nwodé
an imprecise point of the specification. The previous (necusty)
functional test campaign alone would not have pointed astsfhec-
ification ambiguity.

Masson et al.

8.3.2 Coverage For the functional validation, the coverage of atinct stages in the life cycle of secured applications. Auségmodel

specific behavior was done manually, using the parametiizéta-
tures to force the tool to cover a specific path in the modee dj
proach used for the security validation, with test pattelescription
and their unfolding allows a systematic coverage, thatrgela

is written by security engineers and exploited by certifaratvalu-
ators, independently of a given implementation. This méoelses
on some particular aspects and is generally small enougb sud-
cessfully exploited for validation and verification. Fiegtmore sev-

Let us take the example of homonymy (the second test patteamal security models can be written, corresponding to séespects
example in Sec. 8.1): one could have several SDOs with the samf security, mastering in that the complexity of the validatand

reference but at different levels within the file structuBeit the ac-
cess conditions relying on a SDO PIN in a specific DF are differ

verification process. From a practical point of view, thepased
model based testing approach, and its tools suite, has tregadp

from another SDO PIN with same reference but inside a dfffiere to be realistic even for a sizeable application. The difficalf the

DF. The non security functional validation campaign, tHouganu-
ally parameterized to cover this point, only generated fstst In
comparison, 66 tests were obtained to exercise this sequoint

with the security validation approach. Indeed, the segteits were
designed using the know-how of the security experts andetsting

experience of the validation engineer. Having a systenmagan to
design the security tests is the main advantage of this appro

8.3.3 Conclusion From the industrial point of view, the main ad-
vantages of the POSE methodology are the following:

cost reduction of the validation process: capitalizing loa de-
velopments required by the functional validation, i.e. dtional
model and interface of the concretization layer.

time improvement of the validation process: the securitidea
tion step is no longer a “subtask” of the validation phasedwut
independent phase. This separation allows for a signifgzaarnhg
time in the validation of the product because the securibper-
ties are clearly identified and their test is reproducible.

quality improvement of the validation process: completaich
that provides a traceability between the abstract progertythe
corresponding test suites. This traceability is criticedtffor the
certification of the product and secondly for the securitidedion
of several products based on the same specification.

9 Conclusion

We have presented in this paper a security model basedgesiin
proach, that has been successfully deployed on a real slastiral

application, the IAS platform for smart cards. To conclude dis-

cuss about the proposed security model based testing ajppaoal

the theoretical contributions of the Pé$roject .

9.1 The POE security model based testing
approach

The method makes use of already existing material, writtiembdel
based functional testing: the functional model and the ietimation
layer. An additional dedicated model is written for moduwilithe
security rules. Abstract security tests are obtained hygugst pur-
poses as patterns for extracting relevant tests from theigemodel.
These tests are then automatically replayed on the furaitiondel
in order to bring them to the abstraction level required teriact with
the implementation, through the concretization layer. Tethod
easily ensures the traceability of the tests generatedetmttiginal
test patterns, since the tests are computed from thesernzatfdso,
with the mechanism for functional test generation offergd_BG,
we exactly know which behaviors of the operations have begn c
ered.

From a methodological point of view, the distinction betwese-
curity models and functional models effectively correggmoto dis-

test generation part is in finding, with the help of LTG, sorné-s
able instantiations for parameters. Due to the fact thaséwairity
model is small and abstract enough, the use of LTG with the SPM
generally succeeds. On the other hand, search for suitadiknitia-
tions for functional parameters is strongly guided, beeaus reuse
sequences generated at the first level. Finally, we gain same
fidences in our formal models because we test the FM agaiest th
SPM.

On the contrary, the proposed approach is time and cost gensu
ing because two models have to be written. In the general tase
effort is disproportionate. But when Common Criteria derditions
are targeted, like often for smart cards and especiallyif@iAS on
which several kinds of products (ID card, e-passport orthezdrd)
are built, formal models are a central piece for reusablédatziogy.

In particular a new certification must be conducted as so@reew
implementation or a new hardware support is used. In ourcezpr;
security and functional models, as well as the proposedadetbgy,
can be reused to be adapted to new versions of the IAS standard
new implementations. Furthermore, the IAS case study inarge
platform dedicated to the development of proper applicatiahat
also have to be certified. An application deployed on the |14&-p
form firstly consists in a personalization specifying a jgaitar set of
PINs, keys, SDOs and files and their security dependencisscé
rity model attached to such an application can be definedinstef
a specialization of the generic IAS security model or as defpen-
dent model that can be confronted to this generic modehinistted
by the given personalization. Finally, the proposed apgrazan be
used in a light manner, only in using a security model. In taise
the concretization layer is in charge of bringing the gapveen the
security abstraction level and the implementation.

Theoretical contributions of the project PE@re the proposition
of the MECA form of access control security models in coneod
with the Common Criteria requirements, a formal definitiba oon-
formance relationship based on a notion of mapping relatindels
stated at different levels of abstraction and a languagestatterns
allowing to express security tests requirements.

9.2 Security model and conformance relationship

There are several sorts of formalisms dedicated to accedsoto
specifications. Usual formalizations are based on rulef [2B [7],
[37] and mainly focus on access control conditions. On theiot
hand, security automata [38] describe behaviors resubirly of ac-
cess control conditions and some operational specificatioigon-
cordance with the Common Criteria approach, the Meca approa
distinguishes these two parts, through the rule-basedadinamic
models. In this way a traceability is established betweenirifor-
mal security policies described in the security target drelSPM
(the rule-based part corresponds to the User Data protecitiss of
Common Criteria and the dynamic part to the Security Managgm

An Access Control Model Based Testing Approach for Smart Card Applications: Results of the POSE Project

class). Finally these two models are woven to produce a lietahv

349

policies specified through OrBAC-like models, our SPM is adist

model that can be assimilated to a security model. Such aitom of static rules, but models also dynamic operational maatificis of

can be obtained for instance with the help of tools [12], [31]

the security attributes.

The B method has already been used as a support for access con-

trol policies [5], [39]. In [5], the authors propose a formmbdeling
attached to Or-BAC access control, including permissiomsohi-
bitions, and characterize behaviors which conform to argaecess
control policy. Our approach can be seen as an extension, 88
taking into account the conformance of an application witbpect
to a security model, with the help of a mapping corresponeldre:
tween models stated at different levels of abstraction32}, the au-
thors use Labeled Transition Systems (LTS) to describ@tepbses
from Or-BAC rules specifying access control. They act asracle
for the test execution, based on the ioco conformance oel§4l1].
Our approach is similar, since they both rely on trace inohs and
our notion of stuttering is close to the notion of quiescerdever-
theless, our relation is not exclusively destined to be wsed test
oracle. Indeed, by giving a formal definition of our relatias done
in [13], it would be possible to prove properties on the innpémta-
tion w.r.t. the abstract security model. In this way we amsel to
the Common Criteria approach that requires to establistespon-

9.4 Further Works

In a previous work [33], we have foreseen the possibilitytfar test
purposes to be automatically computed, by modelling thenesds
as syntactic transformation rules that transform regutpressions.
Integrating a test need to a security property could thendbaired
by transforming the formalization of the security propeffje tool
Tobias [30], that unfolds in a combinatorial way tests expesl as
regular expressions, could be used to unfold our test patter

We are currently working at identifying and writing suchrtséor-
mation rules, based on the IAS case study. This work needs to b
developed by studying many other case studies, in orderodupe
rules sufficiently generic to be applicable to a variety cdreples.
Rules could also be automatically deduced from the symtaoti
pression of a property, as suggested by [8] for propertipsemsed
in JTPL, a temporal logic for IML.

Also, rules could be expressed for transforming other fdigmes

dences between the SPM and some application models, degendihan regular expressions. In particular, we think of rutest tould

on the targeted assurance level.

9.3 Tests patterns and security tests

Many other works use temporal logic properties or test psgp@s
selection criteria to extract tests from a model. By expigiits abil-
ity to produce counter-examples, a model-checker can be tse
compute tests from temporal properties w.r.t. a formal rhfiti,
[34], [2], [21], [40]. Linear temporal logic model-checkjnuses
cycles search algorithms to compute tests from explicitsiteon
systems, while we use artificial intelligence constrairvisg tech-

transform automata. They could be applied to security ptigse
expressed as temporal logic formulas, as well as regulaesgjons.
Another follow-up to this work would be to explore the podi#ip
to use several smaller security models, instead of justtmatecbntain
all the security features. These models could be very easyite as
they would focus on a limited set of security features at afithe
ones concerned by some particular test purposes. The tesfaited
from any of these models could still be brought to the abstac
level of the functional model by replaying them on it.

niques to compute tests directly from B models. The TGV apAcknowledgments

proach [17], [24], and works from the Vertecs projédgé], [35],
[11] use explicit test purposes to extract tests from spetifins,
both given as Input/Output Symbolic Transition SystemsS(TS).
Our approach differs since our test purposes mix operattia and
target states description. In [2] and [40], the test purpae lin-
ear temporal logic formulas describing state sequencdg5]n[36]
and [30], the test purposes are sequences of operatioregphsssed
either by IOSTS or by regular expressions. Moreover in [302,
symbolic tests are generated independently from a belzviadel,
which leads to a combinatorial explosion of the number ofstes
Also, our approach is methodologically different becauseioten-
tion is to use abstract models. Finally, the language weaisggress
the test purposes can be instantiated, thanks to the mogél héth
various modelling languages. We have performed expersngith
formal specifications written in B and in UML/OCL. The langea
is intended to be easily manipulated by the security enginee

In [29], the authors show how tests dedicated to exercisgemgi
security policy can be obtained by reusing functional testcom-
parison, we do not reuse the existing functional tests, leLaugment
them with security tests, independent from the functionalso What
we reuse is the existing functional material (i.e. the fiorel model
and the concretization layer). They mention two types dtsties
for generating security tests w.r.t. functional tests. @pproach
fits in their independent strategy. And as a difference wéttusity

Bhttp://www.irisa.fr/vertecs/

This work is funded by the ANR Agence Nationale de la
Recherchg in France. The POSE project is a RNTR&seau Na-
tional de recherche et d'innovation en Technologies Latdjie$
project, recorded under the number ANR-05-RNTL-01001.

References

[1] Jean-Raymond Abrial.The B Book: Assigning Programs to
Meanings Cambridge University Press, 1996.

[2] P. Amman, W. Ding, and D. Xu. Using a model checker to test
safety properties. IICECCS’01, 7-th Int. Conf. on Engineer-
ing of Complex Computer Systerpage 212, Washington, DC,

USA, 2001. IEEE Computer Society.
(3]

B. Beizer. Black-Box Testing: Techniques for Functional Test-
ing of Software and Systemgohn Wiley & Sons, New York,

USA, 1995.
(4]

D. Elliot Bell and Leonard J. LaPadula. Secure compuysF s
tems: A mathematical model. Technical report 2547, vol 1,

MITRE, 1973.
(5]

N. Benaissa, D. Cansell, and D. Mery. Integration of Se-
curity Policy into System Modeling. In J. Julliand and
O. Kouchnarenko, editor® 2007: Formal Specification ans

Development in Bvolume 4355 o£ NCS Springer, 2007.

350

Masson et al.

[6] E. Bernard, B. Legeard, X. Luck, and F. Peureux. Generg20] A.Haddad. Meca: a tool for access control models. IruB3. J

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

tion of test sequences from formal specifications: GSM 11-
11 standard case studySoftware: Practice and Experience
34(10):915-948, 2004.

K. J. Biba. Integrity Considerations for Secure Comp8gs-
tems. Technical Report ESD-TR-76-372, USAF Electronic
Systems Division, Hanscom Air Force Base, Bedford, Mas-
sachusetts, April 1977.

F. Bouquet, F. Dadeau, J. Groslambert, and J. Julliarzdets

property driven test generation from JML specifications. Infyo

FATES/RV'06, 1st Int. WS on Formal Approaches to Testing
and Runtime Verificatignvolume 4262 ofLNCS pages 225—
239, Seattle, WA, USA, August 2006. Springer.

Common Criteria for Information Technology Securitydhy-
ation, Part 2: Security functional components, and Parte3: S

09-002/CCMB-2006-09-003, version 3.1, September 2006.
Common Criteria for Information Technology Securitydti-

ation, version 3.1. Technical Report CCMB-2006-09-00pt se 124!

2006.

C. Constant, T. Jéron, H. Marchand, and V. Rusu. |ty
formal verification and conformance testing for reactive-sy
tems.|EEE Transactions on Software Engineeri8$(8):558—
574, August 2007.

M-L. Potet D. Bert and N. Stouls. GeneSyst: a Tool to Reas

about Behavioral Aspects of B Event Specifications. Applica[26]

tion to Security Properties. In H. Treharne, S. King, M. CnHe
son, and S. A. Schneider, edito®B 2005: Formal Specifica-
tion and Development in Z and B, 4th International Confeeenc

of B and Z Usersvolume 3455 ol ecture Notes in Computer [27]

Sciencepages 299-318. Springer-Verlag, 2005.

F. Dadeau, J. Lamboley, T. Moutet, and M-L Potet. A Veri-

fiable Conformance Relationship between Smart Card Applets
(28]

and Security Models. 1ABZ'08 volume 5115 o£. NCS Lon-
don, UK, September 2008. Springer.

F. Dadeau, M-L Potet, and R. Tissot. A B Formal Framework

for Security Developments in the Domain of Smart Card Appli-[2

cations. INSEC 2008: 23th International Information Security
ConferencelFIP proceedings. Springer, 2008.

E.W. Dijkstra. A discipline of Programming Prentice-Hall,
1976.

E. Farchi, A. Hartman, and S. S. Pinter. Using a modskba
test generator to test for standard conforman&M Systems
Journal 41(1):89-110, 2002.

J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho. Usmthe
fly verification techniques for the generation of test suitks
CAV’'96, Conference on Computer Aided Verificatib®96.

A. Gargantini and C Heitmeyer. Using model checking ¢n-g
erate tests from requirements specifications.Ptacs of the
Joint 7th Eur. Software Engineering Conference and 7th ACM

SIGSOFT Int. Symp. on Foundations of Software Engineerin%g]

1999.
GIXEL. Common IAS Platform for eAdministration
Technical Specifications, 1.01 Premium edition, 2004.

http://www.gixel.fr.

[21]

[23

curity assurance components. Technical Report CCMB-2006-

[25]

[30]

[31]

[32]

liand and O. Kouchnarenko, editoi8,2007: Formal Specifi-
cation ans Development in, Bolume 4355 oL NCS Springer,
2007.

H. Hong, I. Lee, O. Sokolsky, and H. Ural. A temporal logi
based theory of test coverage and generatioMABAS'02, 8th
Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systemsolume 2280 ofLNCS pages 327-341,
London, UK, 2002. Springer-Verlag.

European standard - identification cards - integrafeclit(s)
card with contacts - electronic signal and transmissionopro
cols. Technical Report ISO/CEI 7816-3, Comité européen d
Normalisation. En27816-3, 1992.

E. Jaffuel and B. Legeard. LEIRIOS Test Generator: Auto
mated test generation from B models. Bi2007, the 7th Int.
B Conference - Industrial Tool Sessjammlume 4355 oL NCS
pages 277-280, Besancon, France, January 2007. Springer.

C. Jard and T. Jéron. TGV: theory, principles and atpaors.

a tool for the automatic synthesis of conformance test dases
non-deterministic reactive system&oftware Tools for Tech-
nology Transfert7(1), 2005.

T. Jeannet, T. Jéron, V. Rusu, and E. Zinovieva. Symhekt
selection based on approximate analysiSLACAS’05volume
3440 ofLNCS pages 349-364. Springer, 2005.

J. Julliand, P.-A. Masson, and R. Tissot. Generatirausg/
tests in addition to functional tests. AST'08, 3rd Int. work-
shop on Automation of Software Tepbhges 41-44, Leipzig,
Germany, May 2008. ACM Press.

J. Julliand, P.-A. Masson, and R. Tissot. Generatigtsteom
B specifications and test purposes.ABZ'2008, Int. Conf. on
ASM, B and Zvolume 5238 of NCS pages 139-152, London,
UK, September 2008. Springer.

Butler W. Lampson. Protection.SIGOPS Oper. Syst. Rev.

8(1):18-24, 1974.

9] Y. Le Traon, T. Mouelhi, and B. Baudry. Testing secupii-

cies: Going beyond functional testing. IBSRE’07, 18th IEEE
Int. Symp. on Software Reliabiljtpages 93-102, 2007.

Y. Ledru, F. Dadeau, L. Du Bousquet, S. Ville, and E. Rose
Mastering combinatorial explosion with the TOBIAS-2 test
generator. IPASE’07: Procs of the 22nd IEEE/ACM int. conf.
on Automated Software Engineerjngages 535-536, New

York, NY, USA, 2007. Acm.

Michael Leuschel and Michael J. Butler. Prob: an autmmtda
analysis toolset for the b metho8TTT 10(2):185-203, 2008.

K. Li, L. Mounier, and R. Groz. Test Generation from Se-
curity Policies Specified in Or-BAC. II€OMPSAC - IEEE
International Workshop on Security in Software Enginegrin
(IWSSE'07) Beijing, July 2007.

P.-A. Masson, J. Julliand, J.-C. Plessis, E. Jaffuadl &. De-
bois. Automatic generation of model based tests for a class
of security properties. IM-MOST’07, 3rd int. Workshop on
Advances in Model Based Testimpges 12—-22, London, UK,
July 2007. ACM Press.

An Access Control Model Based Testing Approach for Smart Card Applications: Results of the POSE Project

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

S. Rayadurgam and M.P.E. Heimdahl. Coverage based test
case generation using model checkers. E@BS 2001, 8th
Annual IEEE Int. Conf. and Workshop on the Engineering of
Computer Based Systenpages 83-91. IEEE Computer Soci-
ety, April 2001.

V. Rusu, L. Du Bousquet, and T. Jéron. An approach to-sym
bolic test generation. IFFM’00, Int. Conf. on Integrating For-
mal Methodsvolume 1945 of NCS pages 338—-357. Springer
Verlag, November 2000.

V. Rusu, H. Marchand, V. Tschaen, T. Jéron, and B. Jeann
From safety verification to safety testing. TastCom’04, 16-th
IFIP Int. Conf. on Testing of Communicating Systeamdume
2978 ofLNCS Oxford, UK, March 2004. Springer-Verlag.

R. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman.
Role-based access control moddISEE Computer29(2):38—
47, 1996.

Fred B. Schneider. Enforceable security policiA&M Trans.
Inf. Syst. Secur3(1):30-50, 2000.

N. Stouls and M-L. Potet. Security Policy Enforcemdmbtigh
Refinement Process. In J. Julliand and O. Kouchnarenko, edi-
tors,B 2007: Formal Specification ans Development jrv8l-

ume 4355 oLNCS Springer, 2007.

L. Tan, O. Sokolsky, and I. Lee. Specification-basedirigs
with linear temporal logic. INRI'’2004, IEEE Int. Conf. on
Information Reuse and Integratippages 413498, November
2004.

Jan Tretmans. Conformance testing with labelled {tems
systems: Implementation relations and test generat@&om-
puter Networks and ISDN Syster28(1):49-79, 1996.

M. Utting and B. LegeardPractical Model-Based Testing - A
tools approach Elsevier Science, 2006.

351

