
ar
X

iv
:1

81
2.

00
14

0v
4

 [
cs

.C
R

]
 8

 A
pr

 2
01

9
1

The Art, Science, and Engineering of Fuzzing:
A Survey

Valentin J.M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele,

Edward J. Schwartz, and Maverick Woo

Abstract—Among the many software vulnerability discovery techniques available today, fuzzing has remained highly popular due to its

conceptual simplicity, its low barrier to deployment, and its vast amount of empirical evidence in discovering real-world software

vulnerabilities. At a high level, fuzzing refers to a process of repeatedly running a program with generated inputs that may be

syntactically or semantically malformed. While researchers and practitioners alike have invested a large and diverse effort towards

improving fuzzing in recent years, this surge of work has also made it difficult to gain a comprehensive and coherent view of fuzzing. To

help preserve and bring coherence to the vast literature of fuzzing, this paper presents a unified, general-purpose model of fuzzing

together with a taxonomy of the current fuzzing literature. We methodically explore the design decisions at every stage of our model

fuzzer by surveying the related literature and innovations in the art, science, and engineering that make modern-day fuzzers effective.

Index Terms—software security, automated software testing, fuzzing.

✦

1 INTRODUCTION

Ever since its introduction in the early 1990s [152], fuzzing
has remained one of the most widely-deployed techniques
to discover software security vulnerabilities. At a high level,
fuzzing refers to a process of repeatedly running a program
with generated inputs that may be syntactically or seman-
tically malformed. In practice, attackers routinely deploy
fuzzing in scenarios such as exploit generation and pene-
tration testing [21], [109]; several teams in the 2016 DARPA
Cyber Grand Challenge (CGC) also employed fuzzing in
their cyber reasoning systems [37], [200], [9], [93]. Fueled by
these activities, defenders have started to use fuzzing in an
attempt to discover vulnerabilities before attackers do. For
example, prominent vendors such as Adobe [1], Cisco [2],
Google [61], [5], [15], and Microsoft [38], [8] all employ
fuzzing as part of their secure development practices. More
recently, security auditors [237] and open-source develop-
ers [4] have also started to use fuzzing to gauge the security
of commodity software packages and provide some suitable
forms of assurance to end-users.

The fuzzing community is extremely vibrant. As of this
writing, GitHub alone hosts over a thousand public reposi-
tories related to fuzzing [86]. And as we will demonstrate,
the literature also contains a large number of fuzzers (see

• V. J. M. Manès is with KAIST Cyber Security Research Center, Korea
E-mail: valentin.manes@kaist.ac.kr.

• H. Han and S. K. Cha are with KAIST, Korea
E-mail: hyungseok.han@kaist.ac.kr and sangkilc@kaist.ac.kr.

• C. Han is with Naver Corp., Korea
E-mail: cwhan.tunz@navercorp.com.

• M. Egele is with Boston University
E-mail: megele@bu.edu.

• E. J. Schwartz is with SEI, Carnegie Mellon University
E-mail: edmcman@cmu.edu

• M. Woo is with Carnegie Mellon University
E-mail: pooh@cmu.edu.

Corresponding author: Sang Kil Cha.
Manuscript submitted on April 8, 2019.

Figure 1 on p. 5) and an increasing number of fuzzing
studies appear at major security conferences (e.g. [225],
[52], [37], [176], [83], [239]). In addition, the blogosphere is
filled with many success stories of fuzzing, some of which
also contain what we consider to be gems that warrant a
permanent place in the literature.

Unfortunately, this surge of work in fuzzing by re-
searchers and practitioners alike also bears a warning sign
of impeded progress. For example, the description of some
fuzzers do not go much beyond their source code and
manual page. As such, it is easy to lose track of the de-
sign decisions and potentially important tweaks in these
fuzzers over time. Furthermore, there has been an observ-
able fragmentation in the terminology used by various
fuzzers. For example, whereas AFL [231] uses the term “test
case minimization” to refer to a technique that reduces the
size of a crashing input, the same technique is called “test
case reduction” in funfuzz [187]. At the same time, while
BFF [49] includes a similar-sounding technique called “crash
minimization”, this technique actually seeks to minimize
the number of bits that differ between the crashing input
and the original seed file and is not related to reducing
input size. This makes it difficult, if not impossible, to
compare fuzzers using the published evaluation results. We
believe such fragmentation makes it difficult to discover
and disseminate fuzzing knowledge and this may severely
hinder the progress in fuzzing research in the long run.

Due to the above reasons, we believe it is prime time
to consolidate and distill the large amount of progress in
fuzzing, many of which happened after the three trade-
books on the subject were published in 2007–2008 [79], [203],
[205].

As we attempt to unify the field, we will start by us-
ing §2 to present our fuzzing terminology and a unified
model of fuzzing. Staying true to the purpose of this paper,
our terminology is chosen to closely reflect the current
predominant usages, and our model fuzzer (Algorithm 1,

http://arxiv.org/abs/1812.00140v4

2

p. 3) is designed to suit a large number of fuzzing tasks
as classified in a taxonomy of the current fuzzing literature
(Figure 1, p. 5). With this setup, we will then explore every
stage of our model fuzzer in §3–§7, and present a detailed
overview of major fuzzers in Table 1 (p. 6). At each stage,
we will survey the relevant literature to explain the design
choices, discuss important trade-offs, and highlight many
marvelous engineering efforts that help make modern-day
fuzzers effective at their task.

2 SYSTEMIZATION, TAXONOMY, AND TEST PRO-

GRAMS

The term “fuzz” was originally coined by Miller et al. in
1990 to refer to a program that “generates a stream of ran-
dom characters to be consumed by a target program” [152,
p. 4]. Since then, the concept of fuzz as well as its action—
“fuzzing”—has appeared in a wide variety of contexts, in-
cluding dynamic symbolic execution [90], [226], grammar-
based test case generation [88], [105], [213], permission test-
ing [24], [80], behavioral testing [122], [175], [224], complex-
ity testing [135], [222], kernel testing [216], [196], [186], repre-
sentation dependence testing [121], function detection [227],
robustness evaluation [223], exploit development [111], GUI
testing [197], signature generation [72], and penetration
testing [81], [156]. To systematizethe knowledge from the
vast literature of fuzzing, let us first present a terminology
of fuzzing extracted from modern uses.

2.1 Fuzzing & Fuzz Testing

Intuitively, fuzzing is the action of running a Program Under
Test (PUT) with “fuzz inputs”. Honoring Miller et al., we
consider a fuzz input to be an input that the PUT may not be
expecting, i.e., an input that the PUT may process incorrectly
and trigger a behavior that was unintended by the PUT
developer. To capture this idea, we define the term fuzzing
as follows.

Definition 1 (Fuzzing). Fuzzing is the execution of the PUT
using input(s) sampled from an input space (the “fuzz input
space”) that protrudes the expected input space of the PUT.

Three remarks are in order. First, although it may be
common to see the fuzz input space to contain the expected
input space, this is not necessary—it suffices for the former
to contain an input not in the latter. Second, in practice
fuzzing almost surely runs for many iterations; thus writing
“repeated executions” above would still be largely accurate.
Third, the sampling process is not necessarily randomized,
as we will see in §5.

Fuzz testing is a form of software testing technique that
utilizes fuzzing. To differentiate it from others and to honor
what we consider to be its most prominent purpose, we
deem it to have a specific goal of finding security-related
bugs, which include program crashes. In addition, we also
define fuzzer and fuzz campaign, both of which are common
terms in fuzz testing:

Definition 2 (Fuzz Testing). Fuzz testing is the use of fuzzing
to test if a PUT violates a security policy.

Definition 3 (Fuzzer). A fuzzer is a program that performs
fuzz testing on a PUT.

Definition 4 (Fuzz Campaign). A fuzz campaign is a specific
execution of a fuzzer on a PUT with a specific security
policy.

The goal of running a PUT through a fuzzing campaign
is to find bugs [26] that violate the specified security policy.
For example, a security policy employed by early fuzzers
tested only whether a generated input—the test case—
crashed the PUT. However, fuzz testing can actually be used
to test any security policy observable from an execution, i.e.,
EM-enforceable [183]. The specific mechanism that decides
whether an execution violates the security policy is called
the bug oracle.

Definition 5 (Bug Oracle). A bug oracle is a program, per-
haps as part of a fuzzer, that determines whether a given
execution of the PUT violates a specific security policy.

We refer to the algorithm implemented by a fuzzer
simply as its “fuzz algorithm”. Almost all fuzz algorithms
depend on some parameters beyond (the path to) the PUT.
Each concrete setting of the parameters is a fuzz configura-
tion:

Definition 6 (Fuzz Configuration). A fuzz configuration of
a fuzz algorithm comprises the parameter value(s) that
control(s) the fuzz algorithm.

The definition of a fuzz configuration is intended to be
broad. Note that the type of values in a fuzz configuration
depend on the type of the fuzz algorithm. For example, a
fuzz algorithm that sends streams of random bytes to the
PUT [152] has a simple configuration space {(PUT)}. On
the other hand, sophisticated fuzzers contain algorithms
that accept a set of configurations and evolve the set over
time—this includes adding and removing configurations.
For example, CERT BFF [49] varies both the mutation ratio
and the seed over the course of a campaign, and thus its
configuration space is {(PUT, s1, r1), (PUT, s2, r2), . . .}. A
seed is a (commonly well-structured) input to the PUT, used
to generate test cases by modifying it. Fuzzers typically
maintain a collection of seeds, and some fuzzers evolve the
collection as the fuzz campaign progresses. This collection is
called a seed pool. Finally, a fuzzer is able to store some data
within each configuration. For instance, coverage-guided
fuzzers may store the attained coverage in each configura-
tion.

2.2 Paper Selection Criteria

To achieve a well-defined scope, we have chosen to include
all publications on fuzzing in the last proceedings of 4 ma-
jor security conferences and 3 major software engineering
conferences from Jan 2008 to February 2019. Alphabetically,
the former includes (i) ACM Conference on Computer and
Communications Security (CCS), (ii) IEEE Symposium on
Security and Privacy (S&P), (iii) Network and Distributed
System Security Symposium (NDSS), and (iv) USENIX Se-
curity Symposium (USEC); and the latter includes (i) ACM
International Symposium on the Foundations of Software
Engineering (FSE), (ii) IEEE/ACM International Conference
on Automated Software Engineering (ASE), and (iii) Interna-
tional Conference on Software Engineering (ICSE). For writ-

3

ALGORITHM 1: Fuzz Testing

Input: C, tlimit

Output: B // a finite set of bugs

1 B← ∅

2 C← PREPROCESS(C)

3 while telapsed < tlimit ∧ CONTINUE(C) do

4 conf← SCHEDULE(C, telapsed , tlimit)

5 tcs← INPUTGEN(conf)

// Obug is embedded in a fuzzer

6 B
′, execinfos← INPUTEVAL(conf, tcs, Obug)

7 C← CONFUPDATE(C, conf, execinfos)
8 B← B ∪ B

′

9 return B

ings that appear in other venues or mediums, we include
them based on our own judgment on their relevance.

As mentioned in §2.1, fuzz testing only differentiates
itself from software testing in that fuzz testing is security
related. In theory, focusing on security bugs does not imply
a difference in the testing process beyond the selection of
a bug oracle. The techniques used often vary in practice,
however. When designing a testing tool, access to source
code and some knowledge about the PUT are often assumed.
Such assumptions often drive the development of testing
tools to have different characteristics compared to those of
fuzzers, which are more likely to be employed by parties
other than the PUT’s developer. Nevertheless, the two fields
are still closely related to one another. Therefore, when we
are unsure whether to classify a publication as relating to
“fuzz testing” and include it in this survey, we follow a
simple rule of thumb: we include the publication if the word
fuzz appears in it.

2.3 Fuzz Testing Algorithm

We present a generic algorithm for fuzz testing, Algorithm 1,
which we imagine to have been implemented in a model
fuzzer. It is general enough to accommodate existing fuzzing
techniques, including black-, grey-, and white-box fuzzing
as defined in §2.4. Algorithm 1 takes a set of fuzz configu-
rations C and a timeout tlimit as input, and outputs a set of
discovered bugs B. It consists of two parts. The first part is
the PREPROCESS function, which is executed at the begin-
ning of a fuzz campaign. The second part is a series of five
functions inside a loop: SCHEDULE, INPUTGEN, INPUTEVAL,
CONFUPDATE, and CONTINUE. Each execution of this loop
is called a fuzz iteration and each time INPUTEVAL executes
the PUT on a test case is called a fuzz run. Note that some
fuzzers do not implement all five functions. For example, to
model Radamsa [102], which never updates the set of fuzz
configurations, CONFUPDATE always returns the current set
of configurations unchanged.

PREPROCESS (C) → C

A user supplies PREPROCESS with a set of fuzz config-
urations as input, and it returns a potentially-modified
set of fuzz configurations. Depending on the fuzz algo-
rithm, PREPROCESS may perform a variety of actions
such as inserting instrumentation code to PUTs, or
measuring the execution speed of seed files. See §3.

SCHEDULE (C, telapsed, tlimit) → conf

SCHEDULE takes in the current set of fuzz configura-

tions, the current time telapsed, and a timeout tlimit as
input, and selects a fuzz configuration to be used for
the current fuzz iteration. See §4.

INPUTGEN (conf) → tcs

INPUTGEN takes a fuzz configuration as input and
returns a set of concrete test cases tcs as output.
When generating test cases, INPUTGEN uses specific
parameter(s) in conf. Some fuzzers use a seed in conf

for generating test cases, while others use a model or
grammar as a parameter. See §5.

INPUTEVAL (conf, tcs, Obug) → B
′,execinfos

INPUTEVAL takes a fuzz configuration conf, a set of
test cases tcs, and a bug oracle Obug as input. It
executes the PUT on tcs and checks if the executions
violate the security policy using the bug oracle Obug. It
then outputs the set of bugs found B

′ and information
about each of the fuzz runs execinfos, which may
be used to update the fuzz configurations. We assume
Obug is embedded in our model fuzzer. See §6.

CONFUPDATE (C, conf, execinfos) → C

CONFUPDATE takes a set of fuzz configurations C, the
current configuration conf, and the information about
each of the fuzz runs execinfos, as input. It may
update the set of fuzz configurations C. For example,
many grey-box fuzzers reduce the number of fuzz
configurations in C based on execinfos. See §7.

CONTINUE (C) → {True,False}
CONTINUE takes a set of fuzz configurations C as input
and outputs a boolean indicating whether a new fuzz
iteration should occur. This function is useful to model
white-box fuzzers that can terminate when there are no
more paths to discover.

2.4 Taxonomy of Fuzzers

For this paper, we have categorized fuzzers into three
groups based on the granularity of semantics a fuzzer ob-
serves in each fuzz run. These three groups are called black-,
grey-, and white-box fuzzers, which we define below. Note
that this classification is different from traditional software
testing, where there are only two major categories (black-
and white-box testing) [158]. As we will discuss in §2.4.3,
grey-box fuzzing is a variant of white-box fuzzing that can
only obtain some partial information from each fuzz run.

2.4.1 Black-box Fuzzer

The term “black-box” is commonly used in software test-
ing [158], [32] and fuzzing to denote techniques that do
not see the internals of the PUT—these techniques can
observe only the input/output behavior of the PUT, treating
it as a black-box. In software testing, black-box testing is
also called IO-driven or data-driven testing [158]. Most
traditional fuzzers [13], [103], [49], [6], [50] are in this
category. Some modern fuzzers, e.g., funfuzz [187] and
Peach [76], also take the structural information about inputs
into account to generate more meaningful test cases while
maintaining the characteristic of not inspecting the PUT. A
similar intuition is used in adaptive random testing [57].

2.4.2 White-box Fuzzer

At the other extreme of the spectrum, white-box fuzzing [90]
generates test cases by analyzing the internals of the PUT

4

and the information gathered when executing the PUT.
Thus, white-box fuzzers are able to explore the state space
of the PUT systematically. The term white-box fuzzing was
introduced by Godefroid [87] in 2007 and refers to dynamic
symbolic execution (DSE), which is a variant of symbolic
execution [39], [126], [108]. In DSE, symbolic and concrete ex-
ecution operate concurrently, where concrete program states
are used to simplify symbolic constraints, e.g., concretizing
system calls. DSE is thus often referred to as concolic testing
(concrete + symbolic) [191], [89]. In addition, white-box
fuzzing has also been used to describe fuzzers that employ
taint analysis [84]. The overhead of white-box fuzzing is
typically much higher than that of black-box fuzzing. This
is partly because DSE implementations [90], [46], [25] often
employ dynamic instrumentation and SMT solving [155].
While DSE is an active research area [90], [88], [38], [172],
[112], many DSEs are not white-box fuzzers because they
do not aim to find security bugs. As such, this paper does
not provide a comprehensive survey on DSEs and we refer
the reader to recent survey papers [17], [185] for more
information on DSEs for non-security applications.

2.4.3 Grey-box Fuzzer

Some fuzzers [78], [68], [205] take a middle ground ap-
proach which is dubbed grey-box fuzzing. In general, grey-
box fuzzers can obtain some information internal to the
PUT and/or its executions. Unlike white-box fuzzers, grey-
box fuzzers do not reason about the full semantics of the
PUT; instead, they may perform lightweight static analysis
on the PUT and/or gather dynamic information about its
executions, such as code coverage. Grey-box fuzzers rely on
approximated, imperfect information in order to gain speed
and be able to test more inputs. Although there usually is a
consensus between security experts, the distinction between
black-, grey- and white-box fuzzing is not always clear.
Black-box fuzzers may collect some information about fuzz
runs, and white-box fuzzers often use some approximations.
When classifying the fuzzers in this survey, particularly in
Table 1, we used our best judgement.

An early example of grey-box fuzzer is EFS [68], which
uses code coverage gathered from each fuzz run to generate
test cases with an evolutionary algorithm. Randoop [166]
also used a similar approach, though it did not target
security vulnerabilities. Modern fuzzers such as AFL [231]
and VUzzer [176] are exemplars in this category.

2.5 Fuzzer Genealogy and Overview

Figure 1 (p. 5) presents our categorization of existing fuzzers
in chronological order. Starting from the seminal work by
Miller et al. [152], we manually chose popular fuzzers that
either appeared in a major conference or obtained more than
100 GitHub stars, and showed their relationships as a graph.
Black-box fuzzers are in the left half of the figure, and grey-
and white-box fuzzers are in the right half. Furthermore,
fuzzers are subdivided depending on the type of input the
PUT uses: file, network, UI, web, kernel I/O, or threads (in
the case of concurrency fuzzers).

Table 1 (p. 6) presents a detailed summary of the tech-
niques used in the most notable fuzzers in Figure 1. We
had to omit some of fuzzers in Figure 1 due to space

constraints. Each fuzzer is summarized based on its imple-
mentation of the five functions of our model fuzzer, and
a miscellaneous section that provides other details on the
fuzzer. We describe the properties described by each column
below. The first column (feedback gathering granularity)
indicates whether the fuzzer is black- (), white- (#), or
grey-box (H#). Two circles appear when a fuzzer has two
phases which use different kinds of feedback gathering.
For example, SymFuzz [52] runs a white-box analysis as a
preprocessing step in order to optimize the performance of a
subsequent black-box campaign (+#), and hybrid fuzzers,
such as Driller [200], alternate between white- and grey-
box fuzzing (H#+#). The second column shows whether the
source code of the fuzzer is publicly available. The third
column denotes whether fuzzers need the source code of
the PUT to operate. The fourth column points out whether
fuzzers support in-memory fuzzing (see §3.1.2). The fifth col-
umn is about whether fuzzers can infer models (see §5.1.2).
The sixth column shows whether fuzzers perform either
static or dynamic analysis in PREPROCESS. The seventh
column indicates if fuzzers support handling multiple seeds,
and perform scheduling. The mutation column specifies if
fuzzers perform input mutation to generate test cases. We
use H# to indicate fuzzers that guide input mutation based
on the execution feedback. The model-based column is
about whether fuzzers generate test cases based on a model.
The constraint-based column shows that fuzzers perform a
symbolic analysis to generate test cases. The taint analysis
column means that fuzzers leverage taint analysis to guide
their test case generation process. The two columns in the
INPUTEVAL section show whether fuzzers perform crash
triage using either stack hashing or code coverage. The
first column of the CONFUPDATE section indicates if fuzzers
evolve the seed pool during CONFUPDATE, such as adding
new seeds to the pool (see §7.1). The second column of
the CONFUPDATE section is about whether fuzzers learn an
input model in an online fashion. Finally, the third column
of the CONFUPDATE section shows which fuzzers remove
seeds from the seed pool (see §7.2).

3 PREPROCESS

Some fuzzers modify the initial set of fuzz configurations
before the first fuzz iteration. Such preprocessing is com-
monly used to instrument the PUT, to weed out potentially-
redundant configurations (i.e., “seed selection” [177]), to
trim seeds, and to generate driver applications. As will be
detailed in §5.1.1 (p. 9), PREPROCESS can also be used to
prepare a model for future input generation (INPUTGEN).

3.1 Instrumentation

Unlike black-box fuzzers, both grey- and white-box fuzzers
can instrument the PUT to gather execution feedback as
INPUTEVAL performs fuzz runs (see §6), or to fuzz the
memory contents at runtime. The amount of collected in-
formation defines the color of a fuzzer (i.e., black-, white-,
or grey-box). Although there are other ways of acquiring
information about the internals of the PUT (e.g., processor
traces or system call usage [204], [92]), instrumentation is
often the method that collects the most valuable feedback.

5

Black-box Grey-box White-box

Network File Kernel

Web

File KernelConcurrency

Concurency

Kernel

Miller et al. � [152]

PROTOS �[120]

SPIKE [13]

SNOOZE � [29]

KiF � [12]

LZFuzz � [40]

KameleonFuzz � [74]

T-Fuzz � [114]

PULSAR � [85]

tlsfuzzer [124]
llfuzzer [198]

Ruiter et al. � [180]

TLS-Attacker � [195]

DELTA � [134]

Sharefuzz [14]

zzuf [103]

FileFuzz [201]

SPIKEfile [202]

jsfunfuzz [187]
DOMfuzz [187]

ref fuzz [234]

Fuzzbox [207]

MiniFuzz [151]

BFF [49]

cross fuzz [232]

LangFuzz � [105]

Nduja [212]

BlendFuzz � [229]

FOE [50]

Householder � [107], [106]

Woo et al. � [225]

Rebert et al. � [177]

Melkor [95]

Dewey et al. � [69], [70]

SymFuzz � [52]

CLsmith � [140]

IFuzzer � [213]

CodeAlchemist � [100]

Peach [76]

antiparser [149]

Autodafé � [214]

GPF [6]

Sulley [16]

Radamsa [102]

Tavor [240]

Dharma [3]

NeuralFuzzer [62]

Hodor [161]

IoTFuzzer � [54]

fsfuzzer [143]

Trinity [115]

perf fuzzer � [221]

KernelFuzzer [157]

Digtool � [168]
DIFUZE � [64]

IMF � [99]

orangfuzz [188]

FLAX � [182]

Doupé et al. � [73]

honggfuzz [204]

Mamba � [117]

AFL [231]

Nightmare [129]

Choronzon � [194]

go-fuzz [215]

QuickFuzz � [94]

AFLFast � [37]

classfuzz � [59]

GRR [211]

Skyfire � [217]
GLADE � [30]

VUzzer � [176]

AFLGo � [36]

Hawkeye � [53]

Angora � [56]
CollAFL � [83]

FairFuzz � [136]

REDQUEEN � [23]

NAUTILUS � [22]

syzkaller [216]

Triforce [162]

kAFL � [184]

PeriScope � [196]

Sidewinder [78]

EFS � [68]

LibFuzzer [7]

CalFuzzer � [189]

AtomFuzzer � [169]

RaceFuzzer � [190]

DeadlockFuzzer � [116]

AssetFuzzer � [131]

MagicFuzzer � [47]

SAGE � [87], [88], [90]

KLEE � [46]

BuzzFuzz � [84]

jFuzz � [112]

SmartFuzz � [154]

TaintScope � [219]

BitFuzz � [44]

FuzzBALL � [27], [147], [48]

kb-Anonymity � [43]

Mahmood et al. � [146]

Dowser � [97]

GRT � [145]

MutaGen � [123]

Narada � [181]

Driller � [200]

MoWF � [172]

CAB-Fuzz � [125]

T-Fuzz � [170]

Chopper � [210]

QSYM � [230]

DigFuzz � [239]

1990

∼

2001

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

Fig. 1: Genealogy tracing significant fuzzers’ lineage back to Miller et al.’s seminal work. Each node in the same row
represents a set of fuzzers appeared in the same year. A solid arrow from X to Y indicates that Y cites, references, or
otherwise uses techniques from X . � denotes that a paper describing the work was published.

6

TABLE 1: Overview of fuzzers sorted by their instrumentation granularity and their name. , H#, and # represent black-,
grey-, and white-box, respectively.

Misc. PREPROCESS SCHEDULE INPUTGEN INPUTEVAL CONFUPDATE

Fuzzer F
ee

d
b

ac
k

G
at

h
er

in
g

G
ra

n
u

la
ri

ty

O
p

en
-S

o
u

rc
ed

S
o

u
rc

e
C

o
d

e
R

eq
u

ir
ed

S
u

p
p

o
rt

In
-m

em
o

ry
F

u
zz

in
g

M
o

d
el

C
o

n
st

ru
ct

io
n

P
ro

g
ra

m
A

n
al

y
si

s

S
ee

d
S

ch
ed

u
li

n
g

M
u

ta
ti

o
n

M
o

d
el

-b
as

ed

C
o

n
st

ra
in

t-
b

as
ed

T
ai

n
t

A
n

al
y

si
s

C
ra

sh
T

ri
ag

e:
S

ta
ck

H
as

h

C
ra

sh
T

ri
ag

e:
C

o
v

er
ag

e

E
v

o
lu

ti
o

n
ar

y
S

ee
d

P
o

o
l

U
p

d
at

e

M
o

d
el

U
p

d
at

e

S
ee

d
P

o
o

l
C

u
ll

in
g

BFF [49] X X X

CodeAlchemist [100] X H# X

CLsmith [140] X X

DELTA [134] X

DIFUZE [64] X X # X

Digtool [168]

Doupé et al. [73] X

FOE [50] X X X

GLADE [30] X X X

IMF [99] X X

jsfunfuzz [187] X X X

LangFuzz [105] X

Miller et al. [152] X

Peach [76] X X X

PULSAR [85] X X

Radamsa [102] X X

Ruiter et al. [180] X

TLS-Attacker [195] X

zuff [103] X

FLAX [182] +# X X X

IoTFuzzer [54] +# X X

SymFuzz [52] +# X X X

AFL [231] H# X X X X X X

AFLFast [37] H# X X X
†

 X X X

AFLGo [36] H# X X X X X
†

 X X X

AssetFuzzer [131] H# X X

AtomFuzzer [169] H# X X X

CalFuzzer [189] H# X X X

classfuzz [59] H# X

CollAFL [83] H#
†

X X X
†

 X X X

DeadlockFuzzer [116] H# X X X

FairFuzz [136] H# X X X
†

H#
†

X X X

go-fuzz [215] H# X X X X X X H# X

Hawkeye [53] H# X X X X H# X X

honggfuzz [204] H# X X X

kAFL [184] H# X X

LibFuzzer [7] H# X X X X X X

MagicFuzzer [47] H# X X X

Nautilus [22] H# X X X X X X

RaceFuzzer [190] H# X X X

RedQueen [23] H# X X H# X

Steelix [138] H#
†

X X X
†

H# X X
†

X

Syzkaller [216] H# X X X X X X X

Angora [56] H#+# X X H# X X

Cyberdyne [92] H#+# X X X X X X X

DigFuzz [239] H#+# X X X X X

Driller [200] H#+# X X X X X X

QSYM [230] H#+# X X X X X X

T-Fuzz [170] H#+# X X X X
†

 X X X X

VUzzer [176] H#+# X X X X X H#

BitFuzz [44] # X X

BuzzFuzz [84] # X X H# X X

CAB-Fuzz [125] # X X X

Chopper [210] # X X X X

Dewey et al. [70] # X X X X

Dowser [97] # X X X

GRT [145] # X X X X X #

KLEE [46] # X X X

MoWF [172] # X X

MutaGen [123] #

Narada [181] # X X X

SAGE [90] # X

TaintScope [219] # X X H# X X

† The corresponding fuzzer is derived from AFL, and it changed this part of the fuzzing algorithm.

7

Program instrumentation can be either static or
dynamic—the former happens before the PUT runs
(PREPROCESS), whereas the latter happens while the PUT
is running (INPUTEVAL). But for the reader’s convenience,
we summarize both static and dynamic instrumentation in
this section.

Static instrumentation is often performed at compile
time on either source code or intermediate code. Since it
occurs before runtime, it generally imposes less runtime
overhead than dynamic instrumentation. If the PUT relies
on libraries, these have to be separately instrumented, com-
monly by recompiling them with the same instrumentation.
Beyond source-based instrumentation, researchers have also
developed binary-level static instrumentation (i.e., binary
rewriting) tools [238], [132], [77].

Although it has higher overhead than static instrumen-
tation, dynamic instrumentation has the advantage that it
can easily instrument dynamically linked libraries, because
the instrumentation is performed at runtime. There are
several well-known dynamic instrumentation tools such as
DynInst [173], DynamoRIO [42], Pin [144], Valgrind [163],
and QEMU [33].

A given fuzzer can support more than one type of
instrumentation. For example, AFL supports static instru-
mentation at the source code level with a modified compiler,
or dynamic instrumentation at the binary level with the help
of QEMU [33]. When using dynamic instrumentation, AFL
can either instrument (1) executable code in the PUT itself,
which is the default setting, or (2) executable code in the
PUT and any external libraries (with the AFL_INST_LIBS

option). The second option—instrumenting all encountered
code—can report coverage information for code in external
libraries, and thus provides a more complete picture of
coverage. However, this will also encourage AFL to fuzz
additional paths in external library functions.

3.1.1 Execution Feedback

Grey-box fuzzers typically take execution feedback as input
to evolve test cases. AFL and its descendants compute
branch coverage by instrumenting every branch instruction
in the PUT. However, they store the branch coverage in-
formation in a bit vector, which can cause path collisions.
CollAFL [83] recently addressed this issue by introducing a
new path-sensitive hash function. Meanwhile, LibFuzzer [7]
and Syzkaller [216] use node coverage as their execution
feedback. Honggfuzz [204] allows users to choose which
execution feedback to use.

3.1.2 In-Memory Fuzzing

When testing a large program, it is sometimes desirable to
fuzz only a portion of the PUT without re-spawning a process
for each fuzz iteration in order to minimize execution over-
head. For example, complex (e.g., GUI) applications often
require several seconds of processing before they accept
input. One approach to fuzzing such programs is to take
a snapshot of the PUT after the GUI is initialized. To fuzz
a new test case, one can then restore the memory snapshot
before writing the new test case directly into memory and
executing it. The same intuition applies to fuzzing network
applications that involve heavy interaction between client
and server. This technique is called in-memory fuzzing [104].

As an example, GRR [211], [92] creates a snapshot before
loading any input bytes. This way, it can skip over unneces-
sary startup code. AFL also employs a fork server to avoid
some of the process startup costs. Although it has the same
motivation as in-memory fuzzing, a fork server involves
forking off a new process for every fuzz iteration (see §6).

Some fuzzers [7], [231] perform in-memory fuzzing on
a function without restoring the PUT’s state after each
iteration. We call such a technique as an in-memory API
fuzzing. For example, AFL has an option called persistent
mode [233], which repeatedly performs in-memory API
fuzzing in a loop without restarting the process. In this case,
AFL ignores potential side effects from the function being
called multiple times in the same execution.

Although efficient, in-memory API fuzzing suffers from
unsound fuzzing results: bugs (or crashes) found from in-
memory fuzzing may not be reproducible, because (1) it is
not always feasible to construct a valid calling context for
the target function, and (2) there can be side-effects that are
not captured across multiple function calls. Notice that the
soundness of in-memory API fuzzing mainly depends on
the entry point function, and finding such a function is a
challenging task.

3.1.3 Thread Scheduling

Race condition bugs can be difficult to trigger because they
rely on non-deterministic behaviors which may only occur
infrequently. However, instrumentation can also be used
to trigger different non-deterministic program behaviors
by explicitly controlling how threads are scheduled [189],
[190], [169], [116], [131], [47], [181]. Existing work has shown
that even randomly scheduling threads can be effective at
finding race condition bugs [189].

3.2 Seed Selection

Recall from §2 that fuzzers receive a set of fuzz configura-
tions that control the behavior of the fuzzing algorithm. Un-
fortunately, some parameters of fuzz configurations, such as
seeds for mutation-based fuzzers, have large value domains.
For example, suppose an analyst fuzzes an MP3 player
that accepts MP3 files as input. There is an unbounded
number of valid MP3 files, which raises a natural question:
which seeds should we use for fuzzing? This problem of
decreasing the size of the initial seed pool is known as the
seed selection problem [177].

There are several approaches and tools that address the
seed selection problem [177], [76]. A common approach is to
find a minimal set of seeds that maximizes a coverage met-
ric, e.g., node coverage, and this process is called computing
a minset. For example, suppose the current set of configura-
tions C consists of two seeds s1 and s2 that cover the follow-
ing addresses of the PUT: {s1 → {10, 20} , s2 → {20, 30}}.
If we have a third seed s3 → {10, 20, 30} that executes
roughly as fast as s1 and s2, one could argue it makes sense
to fuzz s3 instead of s1 and s2, since it intuitively tests more
program logic for half the execution time cost. This intuition
is supported by Miller’s report [153], which showed that a
1% increase in code coverage increased the percentage of
bugs found by .92%. As is noted in §7.2, this step can also
be part of CONFUPDATE, which is useful for fuzzers that

8

can introduce new seeds into the seed pool throughout the
campaign.

Fuzzers use a variety of different coverage metrics in
practice. For example, AFL’s minset is based on branch
coverage with a logarithmic counter on each branch. The
rationale behind this decision is to allow branch counts to
be considered different only when they differ in orders of
magnitude. Honggfuzz [204] computes coverage based on
the number of executed instructions, executed branches, and
unique basic blocks. This metric allows the fuzzer to add
longer executions to the minset, which can help discover
denial of service vulnerabilities or performance problems.

3.3 Seed Trimming

Smaller seeds are likely to consume less memory and entail
higher throughput. Therefore, some fuzzers attempt to re-
duce the size of seeds prior to fuzzing them, which is called
seed trimming. Seed trimming can happen prior to the main
fuzzing loop in PREPROCESS or as part of CONFUPDATE.
One notable fuzzer that uses seed trimming is AFL [231],
which uses its code coverage instrumentation to iteratively
remove a portion of the seed as long as the modified seed
achieves the same coverage. Meanwhile, Rebert et al. [177]
reported that their size minset algorithm, which selects
seeds by giving higher priority to smaller seeds in size,
results in fewer unique bugs compared to a random seed
selection. For the specific case of fuzzing Linux system call
handlers, MoonShine [167] extends syzkaller [216] to reduce
the size of seeds while preserving the dependencies between
calls which are detected using a static analysis.

3.4 Preparing a Driver Application

When it is difficult to directly fuzz the PUT, it makes sense to
prepare a driver for fuzzing. This process is largely manual
in practice although this is done only once at the beginning
of a fuzzing campaign. For example, when our target is
a library, we need to prepare for a driver program that
calls functions in the library. Similarly, kernel fuzzers may
fuzz userland applications to test kernels [125], [165], [31].
IoTFuzzer [54] targets IoT devices by letting the driver com-
municate with the corresponding smartphone application.

4 SCHEDULING

In fuzzing, scheduling means selecting a fuzz configura-
tion for the next fuzz iteration. As we have explained
in §2.1, the content of each configuration depends on the
type of the fuzzer. For simple fuzzers, scheduling can be
straightforward—for example, zzuf [103] in its default mode
allows only one configuration and thus there is simply no
decision to make. But for more advanced fuzzers such as
BFF [49] and AFLFast [37], a major factor to their success
lies in their innovative scheduling algorithms. In this section,
we will discuss scheduling algorithms for black- and grey-
box fuzzing only; scheduling in white-box fuzzing requires
a complex setup unique to symbolic executors and we refer
the reader to another source [38].

4.1 The Fuzz Configuration Scheduling (FCS) Problem

The goal of scheduling is to analyze the currently-available
information about the configurations and pick one that is
likely to lead to the most favorable outcome, e.g., finding the
most number of unique bugs, or maximizing the coverage
attained by the set of generated inputs. Fundamentally, ev-
ery scheduling algorithm confronts the same exploration vs.
exploitation conflict—time can either be spent on gathering
more accurate information on each configuration to inform
future decisions (explore), or on fuzzing the configurations
that are currently believed to lead to more favorable out-
comes (exploit). Woo et al. [225] dubbed this inherent conflict
the Fuzz Configuration Scheduling (FCS) Problem.

In our model fuzzer (Algorithm 1), the function
SCHEDULE selects the next configuration based on (i) the
current set of fuzz configurations C, (ii) the current time
telapsed, and (iii) the total time budget tlimit. This configu-
ration is then used for the next fuzz iteration. Notice that
SCHEDULE is only about decision-making. The information
on which this decision is based is acquired by PREPROCESS

and CONFUPDATE, which augment C with this knowledge.

4.2 Black-box FCS Algorithms

In the black-box setting, the only information an FCS algo-
rithm can use is the fuzz outcomes of a configuration—the
number of crashes and bugs found with it and the amount
of time spent on it so far. Householder and Foote [107] were
the first to study how such information can be leveraged
in the CERT BFF black-box mutational fuzzer [49]. They
postulated that a configuration with a higher observed
success rate (#bugs / #runs) should be preferred. Indeed,
after replacing the uniform-sampling scheduling algorithm
in BFF, they observed 85% more unique crashes over 5
million runs of ffmpeg, demonstrating the potential benefit
of more advanced FCS algorithms.

Shortly after, the above idea was improved on multiple
fronts by Woo et al. [225]. First, they refined the mathemati-
cal model of black-box mutational fuzzing from a sequence
of Bernoulli trials [107] to the Weighted Coupon Collector’s
Problem with Unknown Weights (WCCP/UW). Whereas the
former assumes each configuration has a fixed eventual
success probability and learns it over time, the latter ex-
plicitly maintains an upper-bound on this probability as it
decays. Second, the WCCP/UW model naturally leads Woo
et al. to investigate algorithms for multi-armed bandit (MAB)
problems, which is a popular formalism to cope with the
exploration vs. exploitation conflict in decision science [34].
To this end, they were able to design MAB algorithms to
accurately exploit configurations that are not known to have
decayed yet. Third, they observed that, all else being equal,
a configuration that is faster to fuzz allows a fuzzer to
either collect more unique bugs with it, or decrease the
upperbound on its future success probability more rapidly.
This inspired them to normalize the success probability of
a configuration by the time that has been spent on it, thus
causing a faster configuration to be more preferable. Fourth,
they changed the orchestration of fuzz runs in BFF from a
fixed number of fuzz iterations per configuration selection
(“epochs” in BFF parlance) to a fixed amount of time per
selection. With this change, BFF is no longer forced to spend

9

more time in a slow configuration before it can re-select. By
combining the above, the evaluation [225] showed a 1.5×
increase in the number of unique bugs found using the same
amount of time as the existing BFF.

4.3 Grey-box FCS Algorithms

In the grey-box setting, an FCS algorithm can choose to use
a richer set of information about each configuration, e.g., the
coverage attained when fuzzing a configuration. AFL [231]
is the forerunner in this category and it is based on an
evolutionary algorithm (EA). Intuitively, an EA maintains
a population of configurations, each with some value of
“fitness”. An EA selects fit configurations and applies them
to genetic transformations such as mutation and recom-
bination to produce offspring, which may later become
new configurations. The hypothesis is that these produced
configurations are more likely to be fit.

To understand FCS in the context of an EA, we need
to define (i) what makes a configuration fit, (ii) how con-
figurations are selected, and (iii) how a selected configu-
ration is used. As a high-level approximation, among the
configurations that exercise a control-flow edge, AFL con-
siders the one that contains the fastest and smallest input
to be fit (“favorite” in AFL parlance). AFL maintains a
queue of configurations, from which it selects the next fit
configuration essentially as if the queue is circular. Once
a configuration is selected, AFL fuzzes it for essentially
a constant number of runs. From the perspective of FCS,
notice that the preference for fast configurations is common
for the black-box setting [225].

Recently, AFLFast by Böhme et al. [37] has improved
upon AFL in each of the three aspects above. First, AFLFast
adds two overriding criteria for an input to become a “fa-
vorite”: (i) Among the configurations that exercise a control-
flow edge, AFLFast favors the one that has been chosen least.
This has the effect of cycling among configurations that exer-
cise this edge, thus increasing exploration. (ii) When there is
a tie in (i), AFLFast favors the one that exercises a path that
has been exercised least. This has the effect of increasing the
exercise of rare paths, which may uncover more unobserved
behavior. Second, AFLFast forgoes the round-robin selection
in AFL and instead selects the next fit configuration based
on a priority. In particular, a fit configuration has a higher
priority than another if it has been chosen less often or, when
tied, if it exercises a path that has been exercised less often.
In the same spirit as the first change, this has the effect of
increasing the exploration among fit configurations and the
exercising of rare paths. Third, AFLFast fuzzes a selected
configuration a variable number of times as determined by
a power schedule. The FAST power schedule in AFLFast starts
with a small “energy” value to ensure initial exploration
among configurations and increases exponentially up to a
limit to quickly ensure sufficient exploitation. In addition,
it also normalizes the energy by the number of generated
inputs that exercise the same path, thus promoting explo-
rations of less-frequently fuzzed configurations. The overall
effect of these changes is very significant—in a 24-hour
evaluation, Böhme et al. observed AFLFast discovered 3
bugs that AFL did not, and was on average 7× faster than
AFL on 6 other bugs that were discovered by both.

AFLGo [36] extends AFLFast by modifying its priority
attribution in order to target specific program locations.
Hawkeye [53] further improves directed fuzzing by lever-
aging a static analysis in its seed scheduling and input gen-
eration. FairFuzz [136] guides the campaign to exercise rare
branches by employing a mutation mask for each pair of a
seed and a rare branch. QTEP [218] uses static analysis to
infer which part of the binary is more ‘faulty’ and prioritize
configurations that cover them.

5 INPUT GENERATION

Since the content of a test case directly controls whether or
not a bug is triggered, the technique used for input generation
is naturally one of the most influential design decisions in
a fuzzer. Traditionally, fuzzers are categorized into either
generation- or mutation-based fuzzers [203]. Generation-
based fuzzers produce test cases based on a given model
that describes the inputs expected by the PUT. We call such
fuzzers model-based fuzzers in this paper. On the other hand,
mutation-based fuzzers produce test cases by mutating a
given seed input. Mutation-based fuzzers are generally con-
sidered to be model-less because seeds are merely example
inputs and even in large numbers they do not completely
describe the expected input space of the PUT. In this section,
we explain and classify the various input generation tech-
niques used by fuzzers based on the underlying test case
generation (INPUTGEN) mechanism.

5.1 Model-based (Generation-based) Fuzzers

Model-based fuzzers generate test cases based on a given
model that describes the inputs or executions that the PUT
may accept, such as a grammar precisely characterizing the
input format or less precise constraints such as magic values
identifying file types.

5.1.1 Predefined Model

Some fuzzers use a model that can be configured by the user.
For example, Peach [76], PROTOS [120], and Dharma [3]
take in a specification provided by the user. Autodafé [214],
Sulley [16], SPIKE [13], and SPIKEfile [202] expose APIs that
allow analysts to create their own input models. Tavor [240]
also takes in an input specification written in Extended
Backus-Naur form (EBNF) and generates test cases conform-
ing to the corresponding grammar. Similarly, network pro-
tocol fuzzers such as PROTOS [120], SNOOZE [29], KiF [12],
and T-Fuzz [114] also take in a protocol specification from
the user. Kernel API fuzzers [115], [216], [157], [162], [221]
define an input model in the form of system call templates.
These templates commonly specify the number and types of
arguments a system call expects as inputs. The idea of using
a model in kernel fuzzing originated in Koopman et al.’s
seminal work [128] where they compared the robustness
of OSes with a finite set of manually chosen test cases for
system calls. Nautilus [22] employs grammar-based input
generation for general-purpose fuzzing, and also uses its
grammar for seed trimming (see §3.3).

Other model-based fuzzers target a specific language
or grammar, and the model of this language is built in
to the fuzzer itself. For example, cross fuzz [232] and

10

DOMfuzz [187] generate random Document Object Model
(DOM) objects. Likewise, jsfunfuzz [187] produces random,
but syntactically correct JavaScript code based on its own
grammar model. QuickFuzz [94] utilizes existing Haskell li-
braries that describe file formats when generating test cases.
Some network protocol fuzzers such as Frankencerts [41],
TLS-Attacker [195], tlsfuzzer [124], and llfuzzer [198] are
designed with models of specific network protocols such
as TLS and NFC. Dewey et al. [69], [70] proposed a way to
generate test cases that are not only grammatically correct,
but also semantically diverse by leveraging constraint logic
programming. LangFuzz [105] produces code fragments
by parsing a set of seeds that are given as input. It then
randomly combines the fragments, and mutates seeds with
the fragments to generate test cases. Since it is provided
with a grammar, it always produces syntactically correct
code. LangFuzz was applied to JavaScript and PHP. Blend-
Fuzz [229] is based on similar ideas as LangFuzz, but targets
XML and regular expression parsers.

5.1.2 Inferred Model

Inferring the model rather than relying on a predefined
or user-provided model has recently been gaining traction.
Although there is an abundance of published research
on the topic of automated input format and protocol re-
verse engineering [66], [45], [141], [63], [28], only a few
fuzzers leverage these techniques. Similar to instrumenta-
tion (§3.1), model inference can occur in either PREPROCESS
or CONFUPDATE.

5.1.2.1 Model Inference in PREPROCESS: Some
fuzzers infer the model as a preprocessing step. Test-
Miner [67] searches for the data available in the PUT, such
as literals, to predict suitable inputs. Given a set of seeds
and a grammar, Skyfire [217] uses a data-driven approach
to infer a probabilitistic context-sensitive grammar, and then
uses it to generate a new set of seeds. Unlike previous
works, it focuses on generating semantically valid inputs.
IMF [99] learns a kernel API model by analyzing system
API logs, and it produces C code that invokes a sequence
of API calls using the inferred model. CodeAlchemist [100]
breaks JavaScript code into “code bricks”, and computes
assembly constraints, which describe when distinct bricks
can be assembled or merged together to produce semanti-
cally valid test cases. These constraints are computed using
both a static analysis and dynamic analysis. Neural [62]
and Learn&Fuzz [91] use a neural network-based machine
learning technique to learn a model from a given set of
test files, and generate test cases from the inferred model.
Liu et al. [142] proposed a similar approach specific to text
inputs.

5.1.2.2 Model Inference in CONFUPDATE: Other
fuzzers can potentially update their model after each fuzz
iteration. PULSAR [85] automatically infers a network proto-
col model from a set of captured network packets generated
from a program. The learned network protocol is then used
to fuzz the program. PULSAR internally builds a state
machine, and maps which message token is correlated with
a state. This information is later used to generate test cases
that cover more states in the state machine. Doupé et al. [73]
propose a way to infer the state machine of a web service by
observing the I/O behavior. The inferred model is then used

to scan for web vulnerabilities. The work of Ruiter et al. [180]
is similar, but targets TLS and bases its implementation
on LearnLib [174]. GLADE [30] synthesizes a context-free
grammar from a set of I/O samples, and fuzzes the PUT
using the inferred grammar. Finally, go-fuzz [215] is a grey-
box fuzzer, which builds a model for each of the seed it adds
to its seed pool. This model is used to generate new inputs
from this seed.

5.1.3 Encoder Model

Fuzzing is often used to test decoder programs which parse
a certain file format. Many file formats have corresponding
encoder programs, which can be thought of as an implicit
model of the file format. MutaGen [123] is a unique fuzzer
that leverages this implicit model contained in an encoder
program to generate new test cases. MutaGen leverages mu-
tation to generate test cases, but unlike most mutation-based
fuzzers, which mutate an existing test case (see §5.2), Muta-
Gen mutates the encoder program. Specifically, to produce a
new test case MutaGen computes a dynamic program slice
of the encoder program and runs it. The underlying idea is
that the program slices will slightly change the behavior of
the encoder program so that it produces testcases that are
slightly malformed.

5.2 Model-less (Mutation-based) Fuzzers

Classic random testing [20], [98] is not efficient in generating
test cases that satisfy specific path conditions. Suppose there
is a simple C statement: if (input == 42). If input is
a 32-bit integer, the probability of randomly guessing the
right input value is 1/232. The situation gets worse when
we consider well-structured input such as an MP3 file. It
is extremely unlikely that random testing will generate a
valid MP3 file as a test case in a reasonable amount of time.
As a result, the MP3 player will mostly reject the generated
test cases from random testing at the parsing stage before
reaching deeper parts of the program.

This problem motivates the use of seed-based input
generation as well as white-box input generation (see §5.3).
Most model-less fuzzers use a seed, which is an input to the
PUT, in order to generate test cases by modifying the seed. A
seed is typically a well-structured input of a type supported
by the PUT: a file, a network packet, or a sequence of UI
events. By mutating only a fraction of a valid file, it is often
possible to generate a new test case that is mostly valid, but
also contains abnormal values to trigger crashes of the PUT.
There are a variety of methods used to mutate seeds, and
we describe the common ones below.

5.2.1 Bit-Flipping

Bit-flipping is a common technique used by many model-
less fuzzers [231], [204], [103], [6], [102]. Some fuzzers simply
flip a fixed number of bits, while others determine the
number of bits to flip at random. To randomly mutate
seeds, some fuzzers employ a user-configurable parameter
called the mutation ratio, which determines the number of
bit positions to flip for a single execution of INPUTGEN.
Suppose a fuzzer wants to flip K random bits from a given
N -bit seed. In this case, a mutation ratio of the fuzzer is
K/N .

11

SymFuzz [52] showed that fuzzing performance is sensi-
tive to the mutation ratio, and that there is not a single ratio
that works well for all PUTs. There are several approaches
to find a good mutation ratio. BFF [49] and FOE [50] use
an exponentially scaled set of mutation ratios for each seed
and allocate more iterations to mutation ratios that prove
to be statistically effective [107]. SymFuzz [52] leverages a
white-box program analysis to infer a good mutation ratio
for each seed.

5.2.2 Arithmetic Mutation

AFL [231] and honggfuzz [204] contain another mutation
operation where they consider a selected byte sequence as
an integer, and perform simple arithmetic on that value.
The computed value is then used to replace the selected
byte sequence. The key intuition is to bound the effect of
mutation by a small number. For example, AFL selects a 4-
byte value from a seed, and treats the value as an integer i.
It then replaces the value in the seed with i± r, where r is a
randomly generated small integer. The range of r depends
on the fuzzer, and is often user-configurable. In AFL, the
default range is: 0 ≤ r < 35.

5.2.3 Block-based Mutation

There are several block-based mutation methodologies,
where a block is a sequence of bytes of a seed: (1) insert
a randomly generated block into a random position of a
seed [231], [7]; (2) delete a randomly selected block from a
seed [231], [102], [204], [7]; (3) replace a randomly selected
block with a random value [231], [204], [102], [7]; (4) ran-
domly permute the order of a sequence of blocks [102], [7];
(5) resize a seed by appending a random block [204]; and (6)
take a random block from a seed to insert/replace a random
block of another seed [231], [7].

5.2.4 Dictionary-based Mutation

Some fuzzers use a set of predefined values with potentially
significant semantic weight, e.g., 0 or −1, and format strings
for mutation. For example, AFL [231], honggfuzz [204],
and LibFuzzer [7] use values such as 0, -1, and 1 when
mutating integers. Radamsa [102] employs Unicode strings
and GPF [6] uses formatting characters such as %x and %s

to mutate strings [55].

5.3 White-box Fuzzers

White-box fuzzers can also be categorized into either model-
based or model-less fuzzers. For example, traditional dy-
namic symbolic execution [90], [112], [27], [147], [200] does
not require any model as in mutation-based fuzzers, but
some symbolic executors [88], [172], [125] leverage input
models such as an input grammar to guide the symbolic
executor.

Although many white-box fuzzers including the semi-
nal work by Godefroid et al. [90] use dynamic symbolic
execution to generate test cases, not all white-box fuzzers
are dynamic symbolic executors. Some fuzzers [219], [52],
[145], [182] leverage a white-box program analysis to find
information about the inputs a PUT accepts in order to use
it with black- or grey-box fuzzing. In the rest of this subsec-
tion, we briefly summarize the existing white-box fuzzing

techniques based on their underlying test case algorithm.
Please note that we intentionally omit dynamic symbolic
executors such as [89], [191], [60], [46], [209], [51] unless they
explicitly call themselves as a fuzzer as mentioned in §2.2.

5.3.1 Dynamic Symbolic Execution

At a high level, classic symbolic execution [126], [39], [108]
runs a program with symbolic values as inputs, which
represents all possible values. As it executes the PUT, it
builds symbolic expressions instead of evaluating concrete
values. Whenever it reaches a conditional branch instruction,
it conceptually forks two symbolic interpreters, one for the
true branch and another for the false branch. For every
path, a symbolic interpreter builds up a path formula (or
path predicate) for every branch instruction it encountered
during an execution. A path formula is satisfiable if there
is a concrete input that executes the desired path. One can
generate concrete inputs by querying an SMT solver [155]
for a solution to a path formula. Dynamic symbolic execu-
tion is a variant of traditional symbolic execution, where
both symbolic execution and concrete execution operate at
the same time. Thus, we often refer to dynamic symbolic
execution as concolic (concrete + symbolic) testing. The
idea is that concrete execution states can help reduce the
complexity of symbolic constraints. An extensive review
of the academic literature of dynamic symbolic execution,
beyond its application to fuzzing, is out of the scope of this
paper. However, a broader treatment of dynamic symbolic
execution can be found in other sources [17], [185].

Dynamic symbolic execution is slow compared to grey-
box or black-box approaches as it involves instrumenting
and analyzing every single instruction of the PUT. To cope
with the high cost, a common strategy has been to narrow
its usage; for instance, by letting the user to specify unin-
teresting parts of the code [210], or by alternating between
concolic testing and grey-box fuzzing. Driller [200] and
Cyberdyne [92] have shown the usefulness of this technique
at the DARPA Cyber Grand Challenge. QSYM [230] seeks
to improve the integration between grey- and white-box
fuzzing by implementing a fast concolic execution engine.
DigFuzz [239] optimizes the switch between grey- and
white-box fuzzing by first estimating the probability of ex-
ercising each path using grey-box fuzzing, and then having
its white-box fuzzer focus on the paths that are believed to
be most challenging for grey-box fuzzing.

5.3.2 Guided Fuzzing

Some fuzzers leverage static or dynamic program analysis
techniques for enhancing the effectiveness of fuzzing. These
techniques usually involve fuzzing in two phases: (i) a costly
program analysis for obtaining useful information about the
PUT, and (ii) test case generation with the guidance from the
previous analysis. This is denoted in the sixth column of Ta-
ble 1 (p. 6). For example, TaintScope [219] uses a fine-grained
taint analysis to find “hot bytes”, which are the input bytes
that flow into critical system calls or API calls. A similar
idea is presented by other security researchers [75], [110].
Dowser [97] performs a static analysis during compilation
to find loops that are likely to contain bugs based on a
heuristic. Specifically, it looks for loops containing pointer
dereferences. It then computes the relationship between

12

input bytes and the candidate loops with a taint analysis.
Finally, Dowser runs dynamic symbolic execution while
making only the critical bytes to be symbolic hence improv-
ing performance. VUzzer [176] and GRT [145] leverage both
static and dynamic analysis techniques to extract control-
and data-flow features from the PUT and use them to guide
input generation.

Angora [56] and RedQueen [23] decrease the cost of
their analysis by first running for each seed with a costly
instrumentation and using this information for generating
inputs which are run with a lighter instrumentation. An-
gora improves upon the “hot bytes” idea by using taint
analysis to associate each path constraint to correspond-
ing bytes. It then performs a search inspired by gradient
descent algorithm to guide its mutations towards solving
these constraints. On the other hand, RedQueen tries to
detect how inputs are used in the PUT by instrumenting all
comparisons and looking for correspondence between their
operands and the given input. Once a match is found, it can
be used to solve a constraint.

5.3.3 PUT Mutation

One of the practical challenges in fuzzing is bypassing a
checksum validation. For example, when a PUT computes
a checksum of an input before parsing it, many test cases
will be rejected by the PUT. To handle this challenge,
TaintScope [219] proposed a checksum-aware fuzzing tech-
nique, which identifies a checksum test instruction with a
taint analysis, and patches the PUT to bypass the checksum
validation. Once they find a program crash, they generate
the correct checksum for the input to generate a test case that
crashes the unmodified PUT. Caballero et al. [44] suggested
a technique called stitched dynamic symbolic execution that
can generate test cases in the presence of checksums.

T-Fuzz [170] extends this idea to efficiently penetrate
all kind of conditional branches with grey-box fuzzing. It
first builds a set of Non-Critical Checks (NCC), which are
branches that can be transformed without modifying the
program logic. When the fuzzing campaign stops discov-
ering new paths, it picks an NCC, transforms it, and then
restarts a fuzzing campaign on the modified PUT. Finally,
when a crash is found fuzzing a transformed program, T-
Fuzz tries to reconstruct it on the original program using
symbolic execution.

6 INPUT EVALUATION

After an input is generated, the fuzzer executes the PUT
on the input, and decides what to do with the resulting
execution. This process is called input evaluation. Although
the simplicity of executing a PUT is one of the reasons
that fuzzing is attractive, there are many optimizations and
design decisions related to input evaluation that effect the
performance and effectiveness of a fuzzer, and we explore
these considerations in this section.

6.1 Bug Oracles

The canonical security policy used with fuzz testing consid-
ers every program execution terminated by a fatal signal
(such as a segmentation fault) to be a violation. This pol-
icy detects many memory vulnerabilities, since a memory

vulnerability that overwrites a data or code pointer with
an invalid value will usually cause a segmentation fault
or abort when it is dereferenced. In addition, this policy is
efficient and simple to implement, since operating systems
allow such exceptional situations to be trapped by the fuzzer
without any instrumentation.

However, the traditional policy of detecting crashes will
not detect every memory vulnerability that is triggered. For
example, if a stack buffer overflow overwrites a pointer on
the stack with a valid memory address, the program might
run to completion with an invalid result rather than crash-
ing, and the fuzzer would not detect this. To mitigate this,
researchers have proposed a variety of efficient program
transformations that detect unsafe or unwanted program
behaviors and abort the program. These are often called
sanitizers.

6.1.1 Memory and Type Safety

Memory safety errors can be separated into two classes:
spatial and temporal. Informally, spatial memory errors
occur when a pointer is dereferenced outside of the object it
was intended to point to. For example, buffer overflows and
underflows are canonical examples of spatial memory errors.
Temporal memory errors occur when a pointer is accessed
after it is no longer valid. For example, a use-after-free
vulnerability, in which a pointer is used after the memory
it pointed to has been deallocated, is a typical temporal
memory error.

Address Sanitizer (ASan) [192] is a fast memory error
detector that instruments programs at compile time. ASan
can detect spatial and temporal memory errors and has
an average slowdown of only 73%, making it an attractive
alternative to a basic crash harness. ASan employs a shadow
memory that allows each memory address to be quickly
checked for validity before it is dereferenced, which allows
it to detect many (but not all) unsafe memory accesses, even
if they would not crash the original program. MEDS [101]
improves on ASan by leveraging the large memory space
available on 64-bit platforms to create large chunks of inac-
cessible memory redzones in between allocated objects. These
redzones make it more likely that a corrupted pointer will
point to invalid memory and cause a crash.

SoftBound/CETS [159], [160] is another memory error
detector that instruments programs during compilation.
Rather than tracking valid memory addresses like ASan,
however, SoftBound/CETS associates bounds and temporal
information with each pointer, and can theoretically de-
tect all spatial and temporal memory errors. However, as
expected, this completeness comes with a higher average
overhead of 116% [160]. CaVer [133], TypeSan [96] and
HexType [113] instrument programs during compilation so
that they can detect bad-casting in C++ type casting. Bad
casting occurs when an object is cast to an incompatible type,
such as when an object of a base class is cast to a derived
type. CaVer has been shown to scale to web browsers, which
have historically contained this type of vulnerability, and
imposes between 7.6 and 64.6% overhead.

Another class of memory safety protection is Control Flow
Integrity [10], [11] (CFI), which detects control flow transi-
tions at runtime that are not possible in the original program.
CFI can be used to detect test cases that have illegally

13

modified the control flow of a program. A recent project
focused on protecting against a subset of CFI violations has
landed in the mainstream gcc and clang compilers [208].

6.1.2 Undefined Behaviors

Languages such as C contain many behaviors that are left
undefined by the language specification. The compiler is
free to handle these constructs in a variety of ways. In
many cases, a programmer may (intentionally or other-
wise) write their code so that it is only correct for some
compiler implementations. Although this may not seem
overly dangerous, many factors can impact how a compiler
implements undefined behaviors, including optimization
settings, architecture, compiler, and even compiler version.
Vulnerabilities and bugs often arise when the compiler’s
implementation of an undefined behavior does not match
the programmer’s expectation [220].

Memory Sanitizer (MSan) is a tool that instruments
programs during compilation to detect undefined behav-
iors caused by uses of uninitialized memory in C and
C++ [199]. Similar to ASan, MSan uses a shadow memory
that represents whether each addressable bit is initialized
or not. Memory Sanitizer has approximately 150% over-
head. Undefined Behavior Sanitizer (UBSan) [71] modifies
programs at compile-time to detect undefined behaviors.
Unlike other sanitizers which focus on one particular source
of undefined behavior, UBSan can detect a wide variety
of undefined behaviors, such as using misaligned pointers,
division by zero, dereferencing null pointers, and integer
overflow. Thread Sanitizer (TSan) [193] is a compile-time
modification that detects data races with a trade-off between
precision and performance. A data race occurs when two
threads concurrently access a shared memory location and
at least one of the accesses is a write. Such bugs can cause
data corruption and can be extremely difficult to reproduce
due to non-determinism.

6.1.3 Input Validation

Testing for input validation vulnerabilities such as XSS
(cross site scripting) and SQL injection vulnerabilities is a
challenging problem, as it requires understanding the behav-
ior of the very complicated parsers that power web browsers
and database engines. KameleonFuzz [74] detects successful
XSS attacks by parsing test cases with a real web browser,
extracting the Document Object Model tree, and comparing
it against manually specified patterns that indicate a success-
ful XSS attack. µ4SQLi [18] uses a similar trick to detect SQL
injections. Because it is not possible to reliably detect SQL
injections from a web applications response, µ4SQLi uses a
database proxy that intercepts communication between the
target web application and the database to detect whether
an input triggered harmful behavior.

6.1.4 Semantic Difference

Semantic bugs are often discovered using a technique called
differential testing [148], which compares the behavior of sim-
ilar (but not identical) programs. Several fuzzers [41], [171],
[59] have used differential testing to identify discrepancies
between similar programs, which are likely to indicate a
bug. Jung et al. [118] introduced black-box differential fuzz

testing, which uses differential testing of multiple inputs on
a single program to map mutations from the PUT’s input to
its output. These mappings are used to identify information
leaks.

6.2 Execution Optimizations

Our model considers individual fuzz iterations to be exe-
cuted sequentially. While the straightforward implementa-
tion of such an approach would simply load the PUT every
time a new process is started at the beginning of a fuzz it-
eration, the repetitive loading processes can be significantly
reduced. To this end, modern fuzzers provide functionalities
that skip over these repetitive loading processes. For exam-
ple, AFL [231] provides a fork-server that allows each new
fuzz iteration to fork from an already initialized process.
Similarly, in-memory fuzzing is another way to optimize
the execution speed as discussed in §3.1.2. Regardless of the
exact mechanism, the overhead of loading and initializing
the PUT is amortized over many iterations. Xu et al. [228]
further lower the cost of an iteration by designing a new
system call that replaces fork().

6.3 Triage

Triage is the process of analyzing and reporting test cases
that cause policy violations. Triage can be separated into
three steps: deduplication, prioritization, and test case mini-
mization.

6.3.1 Deduplication

Deduplication is the process of pruning any test case from
the output set that triggers the same bug as another test
case. Ideally, deduplication would return a set of test cases
in which each triggers a unique bug.

Deduplication is an important component of most
fuzzers for several reasons. As a practical implementation
manner, it avoids wasting disk space and other resources by
storing duplicate results on the hard drive. As a usability
consideration, deduplication makes it easy for users to
understand roughly how many different bugs are present,
and to be able to analyze an example of each bug. This is
useful for a variety of fuzzer users; for example, attackers
may want to look only for “home run” vulnerabilities that
are likely to lead to reliable exploitation.

There are currently three major deduplication implemen-
tations used in practice: stack backtrace hashing, coverage-
based deduplication, and semantics-aware deduplication.

6.3.1.1 Stack Backtrace Hashing: Stack backtrace
hashing [154] is one of the oldest and most widely used
methods for deduplicating crashes, in which an automated
tool records a stack backtrace at the time of the crash, and
assigns a stack hash based on the contents of that back-
trace. For example, if the program crashed while executing
a line of code in function foo, and had the call stack
main → d → c → b → a → foo (see Fig. 2), then a
stack backtrace hashing implementation with n = 5 would
group that test case with other crashing executions whose
backtrace ended with d → c → b → a → foo.

Stack hashing implementations vary widely, starting
with the number of stack frames that are included in the
hash. Some implementations use one [19], three [154], [225],

14

main

d

c

b

a

foo (crashed �)

n = 5

Fig. 2: Stack backtrace hashing example.

five [82], [49], or do not have any limit [123]. Implementa-
tions also differ in the amount of information included from
each stack frame. Some implementations will only hash the
function’s name or address, but other implementations will
hash both the name and the offset or line. Neither option
works well all the time, so some implementations [150], [82]
produce two hashes: a major and minor hash. The major
hash is likely to group dissimilar crashes together as it only
hashes the function name, whereas the minor hash is more
precise since it uses the function name and line number, and
also includes an unlimited number of stack frames.

Although stack backtrace hashing is widely used, it is
not without its shortcomings. The underlying hypothesis of
stack backtrace hashing is that similar crashes are caused
by similar bugs, and vice versa, but, to the best of our
knowledge, this hypothesis has never been directly tested.
There is some reason to doubt its veracity: some crashes do
not occur near the code that caused the crash. For example,
a vulnerability that causes heap corruption might only crash
when an unrelated part of the code attempts to allocate
memory, rather than when the heap overflow occurred.

6.3.1.2 Coverage-based Deduplication: AFL [231] is
a popular grey-box fuzzer that employs an efficient source-
code instrumentation to record the edge coverage of each
execution of the PUT, and also measure coarse hit counts
for each edge. As a grey-box fuzzer, AFL primarily uses this
coverage information to select new seed files. However, it
also leads to a fairly unique deduplication scheme as well.
As described by its documentation, AFL considers a crash to
be unique if either (i) the crash covered a previously unseen
edge, or (ii) the crash did not cover an edge that was present
in all earlier crashes.

6.3.1.3 Semantics-aware Deduplication: RETracer
[65] performs crash triage based on the semantics recovered
from a reverse data-flow analysis from each crash. Specif-
ically, RETracer checks which pointer caused the crash by
analyzing a crash dump (core dump), and recursively iden-
tifies which instruction assigned the bad value to it. It even-
tually finds a function that has the maximum frame level,
and “blames” the function. The blamed function can be used
to cluster crashes. The authors showed that their technique
successfully deduped millions of Internet Explorer bugs into
one. In contrast, stack hashing categorized the same crashes
into a large number of different groups.

6.3.2 Prioritization and Exploitability

Prioritization, a.k.a. the fuzzer taming problem [58], is the
process of ranking or grouping violating test cases according
to their severity and uniqueness. Fuzzing has traditionally
been used to discover memory vulnerabilities, and in this
context prioritization is better known as determining the
exploitability of a crash. Exploitability informally describes
the likelihood of an adversary being able to write a prac-
tical exploit for the vulnerability exposed by the test case.
Both defenders and attackers are interested in exploitable
bugs. Defenders generally fix exploitable bugs before non-
exploitable ones, and attackers are interested in exploitable
bugs for obvious reasons.

One of the first exploitability ranking systems was
Microsoft’s !exploitable [150], which gets its name from
the !exploitable WinDbg command name that it
provides. !exploitable employs several heuristics paired
with a simplified taint analysis [164], [185]. It clas-
sifies each crash on the following severity scale:
EXPLOITABLE > PROBABLY_EXPLOITABLE > UNKNOWN >
NOT_LIKELY_EXPLOITABLE, in which x > y means that x
is more severe than y. Although these classifications are not
formally defined, !exploitable is informally intended to be
conservative and error on the side of reporting something
as more exploitable than it is. For example, !exploitable con-
cludes that a crash is EXPLOITABLE if an illegal instruction
is executed, based on the assumption that the attacker was
able to coerce control flow. On the other hand, a division by
zero crash is considered NOT_LIKELY_EXPLOITABLE.

Since !exploitable was introduced, other, similar rule-
based heuristics systems have been proposed, including the
exploitable plugin for GDB [82] and Apple’s CrashWran-
gler [19]. However, their correctness has not been system-
atically studied and evaluated yet.

6.3.3 Test case minimization

Another important part of triage is test case minimization.
Test case minimization is the process of identifying the
portion of a violating test case that is necessary to trigger the
violation, and optionally producing a test case that is smaller
and simpler than the original, but still causes a violation.
Although test case minimization and seed trimming (see 3.3,
p. 8) are conceptually similar in that they aim at reducing the
size of an input, they are distinct because a minimizer can
leverage a bug oracle.

Some fuzzers use their own implementation and algo-
rithms for this. BFF [49] includes a minimization algorithm
tailored to fuzzing [106] that attempts to minimize the
number of bits that are different from the original seed
file. AFL [231] also includes a test case minimizer, which
attempts to simplify the test case by opportunistically set-
ting bytes to zero and shortening the length of the test case.
Lithium [179] is a general purpose test case minimization
tool that minimizes files by attempting to remove “chunks”
of adjacent lines or bytes in exponentially descending sizes.
Lithium was motivated by the complicated test cases pro-
duced by JavaScript fuzzers such as jsfunfuzz [187].

There are also a variety of test case reducers that are
not specifically designed for fuzzing, but can nevertheless
be used for test cases identified by fuzzing. These include

15

format agnostic techniques such as delta debugging [236],
and specialized techniques for specific formats such as C-
Reduce [178] for C/C++ files. Although specialized tech-
niques are obviously limited in the types of files they can re-
duce, they have the advantage that they can be significantly
more efficient than generic techniques, since they have an
understanding of the grammar they are trying to simplify.

7 CONFIGURATION UPDATING

The CONFUPDATE function plays a critical role in dis-
tinguishing the behavior of black-box fuzzers from grey-
and white-box fuzzers. As discussed in Algorithm 1, the
CONFUPDATE function can modify the set of configurations
(C) based on the configuration and execution information
collected during the current fuzzing run. In its simplest
form, CONFUPDATE returns the C parameter unmodified.
Black-box fuzzers do not perform any program introspec-
tion beyond evaluating the bug oracle Obug, and so they
typically leave C unmodified because they do not have any
information collected that would allow them to modify it1.

In contrast, grey- and white-box fuzzers are distin-
guished by their more sophisticated implementations of the
CONFUPDATE function, which allows them to incorporate
new fuzz configurations, or remove old ones that may
have been superseded. CONFUPDATE enables information
collected during one fuzzing iteration to be used by all
future fuzzing iterations. For example, white-box fuzzers
typically create a new fuzz configuration for every new test
case produced, since they produce relatively few test cases
compared to black- and grey-box fuzzers.

7.1 Evolutionary Seed Pool Update

An Evolutionary Algorithm (EA) is a heuristic-based ap-
proach that involves biological evolution mechanisms such
as mutation, recombination, and selection. In the context of
fuzzing, an EA maintains a seed pool of promising individ-
uals (i.e., seeds) that evolves over the course of a fuzzing
campaign as new individuals are discovered. Although the
concept of EAs is relatively simple, it forms the basis of
many grey-box fuzzers [231], [7], [216]. The process of
choosing the seeds to be mutated and the mutation process
itself were detailed in §4.3 and §5 respectively.

Arguably, the most important step of an EA is to add
a new configuration to the set of configurations C, which
occurs during the CONFUPDATE step of fuzzing. Most EA-
based fuzzers use node or branch coverage as a fitness
function: if a new node or branch is discovered by a test
case, it is added to the seed pool. As the number of reachable
paths can be orders of magnitude larger than the number of
seeds, the seed pool is intended to be a diverse subselection
of all reachable paths in order to represent the current
exploration of the PUT. Also note that seed pools of different
size can have the same coverage (as mentioned in §3.2, p. 7).

A common strategy in EA fuzzers is to refine the fitness
function so that it can detect more subtle and granular indi-
cators of improvements. For example, AFL [231] refines its
fitness function definition by recording the number of times

1. Some fuzzers add violating test cases to the set of seeds. For
example, BFF [49] calls this feature crash recycling.

a branch has been taken. STADS [35] presents a statistical
framework inspired by ecology to estimate how many new
configurations will be discovered if the fuzzing campaign
continues. Another common strategy is to measure the
fraction of conditions that are met when complex branch
conditions are evaluated. For example, LAF-INTEL [130]
simply breaks multi-byte comparison into several branches,
which allows it to detect when a new seed passes an inter-
mediate byte comparison. LibFuzzer [7], Honggfuzz [204],
go-fuzz [215] and Steelix [138] instrument all comparisons,
and add any test case that makes progress on a comparison
to the seed pool. A similar idea was also released as a
stand-alone instrumentation module for clang [119]. Ad-
ditionally, Steelix [138] checks which input offsets influence
comparison instructions. Angora [170] improves the fitness
criteria of AFL by considering the calling context of each
branch taken.

VUzzer [176] is an EA-based fuzzer whose fitness func-
tion relies on the results of a custom program analysis
that determines weights for each basic block. Specifically,
VUzzer first uses a built-in program analysis to classify basic
blocks as either normal or error handling (EH). For a normal
block, its weight is inversely proportional to the probability
that a random walk on the CFG containing this block visits it
according to transition probabilities defined by VUzzer. This
encourages VUzzer to prefer configurations that exercise
normal blocks deemed rare by the aforementioned random
walk. The weight of EH blocks is negative, and its magnitude
is the ratio of the number of basic blocks compared to the
number of EH blocks exercised by this configuration. These
negative weights are used to discourage the execution of
error handling (EH) blocks, based on the hypothesis that
traversing an EH block signals a lower chance of exercising
a vulnerability since bugs often coincide with unhandled
errors.

7.2 Maintaining a Minset

With the ability to create new fuzzing configurations comes
the risk of creating too many configurations. A common
strategy used to mitigate this risk is to maintain a minset,
or a minimal set of test cases that maximizes a coverage
metric. Minsetting is also used during PREPROCESS, and is
described in more detail in §3.2.

Some fuzzers use a variant of maintaining a minset that
is specialized for configuration updates. As one example,
rather than completely removing configurations that are not
in the minset, which is what Cyberdyne [92] does, AFL [231]
uses a culling procedure to mark minset configurations as
being favorable. Favorable fuzzing configurations are given
a significantly higher chance of being selected for fuzzing by
the SCHEDULE function. The author of AFL notes that “this
provides a reasonable balance between queue cycling speed
and test case diversity” [235].

8 RELATED WORK

The literature on fuzzing had an early bloom in 2007–
2008, when three trade-books on the subject were published
within the two-year period [79], [203], [205]. These books
took a more practical approach by presenting the different

16

tools and techniques available at the time and their usages
on a variety of targets. We note that Takanen et al. [205]
already distinguished among black-, white- and grey-box
fuzzers, although no formal definitions were given. Most
recently, [205] had been revised after a decade. The second
edition [206] contained many updates to include modern
tools such as AFL [231] and ClusterFuzz [61].

We are aware of two fuzzing surveys that are concurrent
to ours [137], [139]. However, the goals of both of these
surveys are more focused than ours, which is to provide
a comprehensive study on recent developments covering
the entire area. In particular, Li et al. [137] provided a thor-
ough review of many recent advances in fuzzing, though
the authors have also decided to focus on the detail of
coverage-based fuzzing and not others. More similar to
ours, Liang et al. [139] proposed an informal model to
describe various fuzzing techniques. However, their model
is not flexible enough to encompass some of the fuzzing
approaches we cover in this paper, such as model inference
(see §5.1.2) and hybrid fuzzing (see §5.3).

Klees et al. [127] recently found that there has been no
coherent way of evaluating fuzzing techniques, which can
hamper our ability to compare the effectiveness of fuzzing
techniques. In addition, they provided several useful guide-
lines for evaluating fuzzing algorithms. We consider their
work to be orthogonal to ours as the evaluation of fuzzing
algorithms is beyond the scope of this paper.

9 CONCLUDING REMARKS

As we have set forth in §1, our goal for this paper is
to distill a comprehensive and coherent view of modern
fuzzing literature. To this end, we first present a general-
purpose model fuzzer to facilitate our effort to explain the
many forms of fuzzing in current use. Then, we illustrate a
rich taxonomy of fuzzers using Figure 1 (p. 5) and Table 1
(p. 6). We have explored every stage of our model fuzzer by
discussing the design decisions as well as showcasing the
many achievements by the community at large.

REFERENCES

[1] “Binspector: Evolving a security tool,”
https://blogs.adobe.com/security/2015/05/binspector-evolving-a-security-tool.html.

[2] “Cisco secure development lifecycle,”
https://www.cisco.com/c/en/us/about/security-center/security-programs/secure-development-lifecycle/sdl-process/validate.html.

[3] “dharma,” https://github.com/MozillaSecurity/dharma.
[4] “The fuzzing project,”

https://fuzzing-project.org/software.html.
[5] “Google chromium security,”

https://www.chromium.org/Home/chromium-security/bugs.
[6] “GPF,” http://www.vdalabs.com/tools/efs gpf.html.
[7] “LibFuzzer,” http://llvm.org/docs/LibFuzzer.html.
[8] “Microsoft Security Development Lifecycle, verification phase,”

https://www.microsoft.com/en-us/sdl/process/verification.aspx.
[9] “Reddit: Iama mayhem, the hacking machine that won darpa’s

cyber grand challenge. ama!”
https://www.reddit.com/r/IAmA/comments/4x9yn3/iama mayhem the hacking machine that won darpas/.

[10] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the ACM Conference on Computer and
Communications Security, 2005, pp. 340–353.

[11] ——, “Control-flow integrity principles, implementations, and
applications,” ACM Transactions on Information and Systems
Security, vol. 13, no. 1, pp. 4:1–4:40, 2009.

[12] H. J. Abdelnur, R. State, and O. Festor, “KiF: A stateful sip
fuzzer,” in Proceedings of the International Conference on Principles,
2007, pp. 47–56.

[13] D. Aitel, “An introduction to SPIKE, the fuzzer creation kit,” in
Proceedings of the Black Hat USA, 2001.

[14] ——, “Sharefuzz,” https://sourceforge.net/projects/sharefuzz/,
2001.

[15] M. Aizatsky, K. Serebryany, O. Chang, A. Arya, and
M. Whittaker, “Announcing OSS-Fuzz: Continuous fuzzing for
open source software,” Google Testing Blog, 2016.

[16] P. Amini, A. Portnoy, and R. Sears, “sulley,”
https://github.com/OpenRCE/sulley.

[17] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen,
W. Grieskamp, M. Harman, M. J. Harrold, and P. Mcminn, “An
orchestrated survey of methodologies for automated software
test case generation,” Journal of Systems and Software, vol. 86,
no. 8, pp. 1978–2001, 2013.

[18] D. Appelt, C. D. Nguyen, L. C. Briand, and N. Alshahwan,
“Automated testing for sql injection vulnerabilities: An input
mutation approach,” in Proceedings of the International Symposium
on Software Testing and Analysis, 2014, pp. 259–269.

[19] Apple Inc., “Accessing crashwrangler to analyze crashes for
security implications,” Technical Note TN2334.

[20] A. Arcuri, M. Z. Iqbal, and L. Briand, “Random testing:
Theoretical results and practical implications,” IEEE Transactions
on Software Engineering, vol. 38, no. 2, pp. 258–277, 2012.

[21] Ars Technica, “Pwn2own: The perfect antidote to fanboys who
say their platform is safe,”
http://arstechnica.com/security/2014/03/pwn2own-the-perfect-antidote-to-fanboys-who-say-their-platform-is-safe/,
2014.

[22] C. Aschermann, P. Jauernig, T. Frassetto, A.-R. Sadeghi, T. Holz,
and D. Teuchert, “NAUTILUS: Fishing for deep bugs with
grammars,” in Proceedings of the Network and Distributed System
Security Symposium, 2019.

[23] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and
T. Holz, “REDQUEEN: Fuzzing with input-to-state
correspondence,” in Proceedings of the Network and Distributed
System Security Symposium, 2019.

[24] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout:
Analyzing the android permission specification,” in Proceedings
of the ACM Conference on Computer and Communications Security,
2012, pp. 217–228.

[25] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, “Enhancing
symbolic execution with Veritesting,” in Proceedings of the
International Conference on Software Engineering, 2014, pp.
1083–1094.

[26] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,”
IEEE Transactions on Dependable and Secure Computing, vol. 1,
no. 1, pp. 11–33, 2004.

[27] D. Babic, L. Martignoni, S. McCamant, and D. Song,
“Statically-directed dynamic automated test generation,” in
Proceedings of the International Symposium on Software Testing and
Analysis, 2011, pp. 12–22.

[28] G. Bai, J. Lei, G. Meng, S. S. Venkatraman, P. Saxena, J. Sun,
Y. Liu, and J. S. Dong, “AUTHSCAN: Automatic extraction of
web authentication protocols from implementations.” in
Proceedings of the Network and Distributed System Security
Symposium, 2013.

[29] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmerer,
and G. Vigna, “SNOOZE: Toward a stateful network protocol
fuzzer,” in Proceedings of the International Conference on
Information Security, 2006, pp. 343–358.

[30] O. Bastani, R. Sharma, A. Aiken, and P. Liang, “Synthesizing
program input grammars,” in Proceedings of the ACM Conference
on Programming Language Design and Implementation, 2017, pp.
95–110.

[31] I. Beer, “pwn4fun spring 2014–safari–part ii,”
http://googleprojectzero.blogspot.com/2014/11/pwn4fun-spring-2014-safari-part-ii.html,
2014.

[32] B. Beizer, Black-box Testing: Techniques for Functional Testing of
Software and Systems. John Wiley & Sons, 1995.

[33] F. Bellard, “QEMU, a fast and portable dynamic translator,” in
Proceedings of the USENIX Annual Technical Conference, 2005, pp.
41–46.

[34] D. A. Berry and B. Fristedt, Bandit Problems: Sequential Allocation
of Experiments. Springer Netherlands, 1985.

[35] M. Böhme, “STADS: Software testing as species discovery,”
ACM Transactions on Software Engineering and Methodology,
vol. 27, no. 2, pp. 7:1–7:52, 2018.

https://blogs.adobe.com/security/2015/05/binspector-evolving-a-security-tool.html
https://www.cisco.com/c/en/us/about/security-center/security-programs/secure-development-lifecycle/sdl-process/validate.html
https://github.com/MozillaSecurity/dharma
https://fuzzing-project.org/software.html
https://www.chromium.org/Home/chromium-security/bugs
http://www.vdalabs.com/tools/efs_gpf.html
http://llvm.org/docs/LibFuzzer.html
https://www.microsoft.com/en-us/sdl/process/verification.aspx
https://www.reddit.com/r/IAmA/comments/4x9yn3/iama_mayhem_the_hacking_machine_that_won_darpas/
https://sourceforge.net/projects/sharefuzz/
https://github.com/OpenRCE/sulley
http://arstechnica.com/security/2014/03/pwn2own-the-perfect-antidote-to-fanboys-who-say-their-platform-is-safe/
http://googleprojectzero.blogspot.com/2014/11/pwn4fun-spring-2014-safari-part-ii.html

17

[36] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury,
“Directed greybox fuzzing,” in Proceedings of the ACM Conference
on Computer and Communications Security, 2017, pp. 2329–2344.

[37] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based
greybox fuzzing as markov chain,” in Proceedings of the ACM
Conference on Computer and Communications Security, 2016, pp.
1032–1043.

[38] E. Bounimova, P. Godefroid, and D. Molnar, “Billions and
billions of constraints: Whitebox fuzz testing in production,” in
Proceedings of the International Conference on Software Engineering,
2013, pp. 122–131.

[39] R. S. Boyer, B. Elspas, and K. N. Levitt, “SELECT—a formal
system for testing and debugging programs by symbolic
execution,” ACM SIGPLAN Notices, vol. 10, no. 6, pp. 234–245,
1975.

[40] S. Bratus, A. Hansen, and A. Shubina, “LZfuzz: a fast
compression-based fuzzer for poorly documented protocols,”
Dartmouth College, Tech. Rep. TR2008-634, 2008.

[41] C. Brubaker, S. Janapa, B. Ray, S. Khurshid, and V. Shmatikov,
“Using frankencerts for automated adversarial testing of
certificate validation in SSL/TLS implementations,” in
Proceedings of the IEEE Symposium on Security and Privacy, 2014,
pp. 114–129.

[42] D. L. Bruening, “Efficient, transparent, and comprehensive
runtime code manipulation,” Ph.D. dissertation, Massachusetts
Institute of Technology, 2004.

[43] A. Budi, D. Lo, L. Jiang, and Lucia, “kb-Anonymity: A model for
anonymized behavior-preserving test and debugging data,” in
Proceedings of the ACM Conference on Programming Language
Design and Implementation, 2011, pp. 447–457.

[44] J. Caballero, P. Poosankam, S. McCamant, D. Babić, and D. Song,
“Input generation via decomposition and re-stitching: Finding
bugs in malware,” in Proceedings of the ACM Conference on
Computer and Communications Security, 2010, pp. 413–425.

[45] J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot: Automatic
extraction of protocol message format using dynamic binary
analysis,” in Proceedings of the ACM Conference on Computer and
Communications Security, 2007, pp. 317–329.

[46] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and
automatic generation of high-coverage tests for complex
systems programs,” in Proceedings of the USENIX Symposium on
Operating System Design and Implementation, 2008, pp. 209–224.

[47] Y. Cai and W. Chan, “MagicFuzzer: Scalable deadlock detection
for large-scale applications,” in Proceedings of the International
Conference on Software Engineering, 2012, pp. 606–616.

[48] D. Caselden, A. Bazhanyuk, M. Payer, L. Szekeres, S. McCamant,
and D. Song, “Transformation-aware exploit generation using a
HI-CFG,” University of California, Tech. Rep.
UCB/EECS-2013-85, 2013.

[49] CERT, “Basic Fuzzing Framework,”
https://www.cert.org/vulnerability-analysis/tools/bff.cfm.

[50] ——, “Failure Observation Engine,”
https://www.cert.org/vulnerability-analysis/tools/foe.cfm.

[51] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
mayhem on binary code,” in Proceedings of the IEEE Symposium
on Security and Privacy, 2012, pp. 380–394.

[52] S. K. Cha, M. Woo, and D. Brumley, “Program-adaptive
mutational fuzzing,” in Proceedings of the IEEE Symposium on
Security and Privacy, 2015, pp. 725–741.

[53] H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and Y. Liu,
“Hawkeye: Towards a desired directed grey-box fuzzer,” in
Proceedings of the ACM Conference on Computer and
Communications Security, 2018, pp. 2095–2108.

[54] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau,
M. Sun, R. Yang, and K. Zhang, “IoTFuzzer: Discovering
memory corruptions in IoT through app-based fuzzing,” in
Proceedings of the Network and Distributed System Security
Symposium, 2018.

[55] K. Chen and D. Wagner, “Large-scale analysis of format string
vulnerabilities in debian linux,” in Proceedings of the Workshop on
Programming Languages and Analysis for Security, 2007, pp. 75–84.

[56] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled
search,” in Proceedings of the IEEE Symposium on Security and
Privacy, 2018, pp. 855–869.

[57] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse, “Adaptive
random testing: The ART of test case diversity,” Journal of
Systems and Software, vol. 83, no. 1, pp. 60–66, 2010.

[58] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide, and
J. Regehr, “Taming compiler fuzzers,” in Proceedings of the ACM
Conference on Programming Language Design and Implementation,
2013, pp. 197–208.

[59] Y. Chen, C. Su, C. Sun, S. Su, and J. Zhao, “Coverage-directed
differential testing of jvm implementations,” in Proceedings of the
ACM Conference on Programming Language Design and
Implementation, 2016, pp. 85–99.

[60] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A platform
for in-vivo multi-path analysis of software systems,” in
Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems, 2011, pp.
265–278.

[61] Chrome Security Team, “Clusterfuzz,”
https://code.google.com/p/clusterfuzz/.

[62] CIFASIS, “Neural fuzzer,” http://neural-fuzzer.org.
[63] P. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda,

“Prospex: Protocol specification extraction,” in Proceedings of the
IEEE Symposium on Security and Privacy, 2009, pp. 110–125.

[64] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao,
C. Kruegel, and G. Vigna, “DIFUZE: Interface aware fuzzing for
kernel drivers,” in Proceedings of the ACM Conference on Computer
and Communications Security, 2017, pp. 2123–2138.

[65] W. Cui, M. Peinado, S. K. Cha, Y. Fratantonio, and V. P. Kemerlis,
“RETracer: Triaging crashes by reverse execution from partial
memory dumps,” in Proceedings of the International Conference on
Software Engineering, 2016, pp. 820–831.

[66] W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-Briz,
“Tupni: Automatic reverse engineering of input formats,” in
Proceedings of the ACM Conference on Computer and
Communications Security, 2008, pp. 391–402.

[67] L. Della Toffola, C. A. Staicu, and M. Pradel, “Saying ‘hi!’ is not
enough: Mining inputs for effective test generation,” in
Proceedings of the International Conference on Automated Software
Engineering, 2017, pp. 44–49.

[68] J. D. DeMott, R. J. Enbody, and W. F. Punch, “Revolutionizing
the field of grey-box attack surface testing with evolutionary
fuzzing,” in Proceedings of the Black Hat USA, 2007.

[69] K. Dewey, J. Roesch, and B. Hardekopf, “Language fuzzing
using constraint logic programming,” in Proceedings of the
International Conference on Automated Software Engineering, 2014,
pp. 725–730.

[70] ——, “Fuzzing the rust typechecker using clp,” in Proceedings of
the International Conference on Automated Software Engineering,
2015, pp. 482–493.

[71] W. Dietz, P. Li, J. Regehr, and V. Adve, “Understanding integer
overflow in C/C++,” in Proceedings of the International Conference
on Software Engineering, 2012, pp. 760–770.

[72] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin, “Robust
signatures for kernel data structures,” in Proceedings of the ACM
Conference on Computer and Communications Security, 2009, pp.
566–577.

[73] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the
State: A state-aware black-box web vulnerability scanner,” in
Proceedings of the USENIX Security Symposium, 2012, pp. 523–538.

[74] F. Duchene, S. Rawat, J.-L. Richier, and R. Groz, “Kameleonfuzz:
Evolutionary fuzzing for black-box XSS detection,” in
Proceedings of the ACM Conference on Data and Application Security
and Privacy, 2014, pp. 37–48.

[75] D. Duran, D. Weston, and M. Miller, “Targeted taint driven
fuzzing using software metrics,” in Proceedings of the CanSecWest,
2011.

[76] M. Eddington, “Peach fuzzing platform,”
http://community.peachfuzzer.com/WhatIsPeach.html.

[77] A. Edwards, A. Srivastava, and H. Vo, “Vulcan: Binary
transformation in a distributed environment,” Microsoft
Research, Tech. Rep. MSR-TR-2001-50, 2001.

[78] S. Embleton, S. Sparks, and R. Cunningham, ““sidewinder”: An
evolutionary guidance system for malicious input crafting,” in
Proceedings of the Black Hat USA, 2006.

[79] G. Evron, N. Rathaus, R. Fly, A. Jenik, D. Maynor, C. Miller, and
Y. Naveh, Open Source Fuzzing Tools. Syngress, 2007.

[80] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the ACM Conference
on Computer and Communications Security, 2011, pp. 627–638.

[81] S. Fewer, “A collection of burpsuite intruder payloads, fuzz lists
and file uploads,” https://github.com/1N3/IntruderPayloads.

https://www.cert.org/vulnerability-analysis/tools/bff.cfm
https://www.cert.org/vulnerability-analysis/tools/foe.cfm
https://code.google.com/p/clusterfuzz/
http://neural-fuzzer.org
http://community.peachfuzzer.com/WhatIsPeach.html
https://github.com/1N3/IntruderPayloads

18

[82] J. Foote, “Gdb exploitable,”
https://github.com/jfoote/exploitable.

[83] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen,
“CollAFL: Path sensitive fuzzing,” in Proceedings of the IEEE
Symposium on Security and Privacy, 2018, pp. 660–677.

[84] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed
whitebox fuzzing,” in Proceedings of the International Conference
on Software Engineering, 2009, pp. 474–484.

[85] H. Gascon, C. Wressnegger, F. Yamaguchi, D. Arp, and K. Rieck,
“PULSAR: Stateful black-box fuzzing of proprietary network
protocols,” in Proceedings of the International Conference on
Security and Privacy in Communication Systems, 2015, pp. 330–347.

[86] GitHub, “Public fuzzers,”
https://github.com/search?q=fuzzing&type=Repositories.

[87] P. Godefroid, “Random testing for security: Blackbox vs.
whitebox fuzzing,” in Proceedings of the International Workshop on
Random Testing, 2007, pp. 1–1.

[88] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based
whitebox fuzzing,” in Proceedings of the ACM Conference on
Programming Language Design and Implementation, 2008, pp.
206–215.

[89] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed
automated random testing,” in Proceedings of the ACM Conference
on Programming Language Design and Implementation, 2005, pp.
213–223.

[90] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated
whitebox fuzz testing,” in Proceedings of the Network and
Distributed System Security Symposium, 2008, pp. 151–166.

[91] P. Godefroid, H. Peleg, and R. Singh, “Learn&Fuzz: Machine
learning for input fuzzing,” in Proceedings of the International
Conference on Automated Software Engineering, 2017, pp. 50–59.

[92] P. Goodman and A. Dinaburg, “The past, present, and future of
cyberdyne,” in Proceedings of the IEEE Symposium on Security and
Privacy, 2018, pp. 61–69.

[93] GrammaTech, “Grammatech blogs: The cyber grand challenge,”
http://blogs.grammatech.com/the-cyber-grand-challenge.

[94] G. Grieco, M. Ceresa, and P. Buiras, “Quickfuzz: An automatic
random fuzzer for common file formats,” in Proceedings of the 9th
International Symposium on Haskell, 2016, pp. 13–20.

[95] A. H. H, “Melkor elf fuzzer,”
https://github.com/IOActive/Melkor ELF Fuzzer.

[96] I. Haller, Y. Jeon, H. Peng, M. Payer, C. Giuffrida, H. Bos, and
E. Van Der Kouwe, “TypeSan: Practical type confusion
detection,” in Proceedings of the ACM Conference on Computer and
Communications Security, 2016, pp. 517–528.

[97] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos,
“Dowsing for overflows: A guided fuzzer to find buffer
boundary violations,” in Proceedings of the USENIX Security
Symposium, 2013, pp. 49–64.

[98] D. Hamlet, “When only random testing will do,” in Proceedings
of the International Workshop on Random Testing, 2006, pp. 1–9.

[99] H. Han and S. K. Cha, “IMF: Inferred model-based fuzzer,” in
Proceedings of the ACM Conference on Computer and
Communications Security, 2017, pp. 2345–2358.

[100] H. Han, D. Oh, and S. K. Cha, “CodeAlchemist:
Semantics-aware code generation to find vulnerabilities in
javascript engines,” in Proceedings of the Network and Distributed
System Security Symposium, 2019.

[101] W. Han, B. Joe, B. Lee, C. Song, and I. Shin, “Enhancing memory
error detection for large-scale applications and fuzz testing,” in
Proceedings of the Network and Distributed System Security
Symposium, 2018.

[102] A. Helin, “radamsa,” https://github.com/aoh/radamsa.
[103] S. Hocevar, “zzuf,” https://github.com/samhocevar/zzuf.
[104] G. Hoglund, “Runtime decompilation,” in Proceedings of the Black

Hat USA, 2003.
[105] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code

fragments,” in Proceedings of the USENIX Security Symposium,
2012, pp. 445–458.

[106] A. D. Householder, “Well there’s your problem: Isolating the
crash-inducing bits in a fuzzed file,” CERT, Tech. Rep.
CMU/SEI-2012-TN-018, 2012.

[107] A. D. Householder and J. M. Foote, “Probability-based
parameter selection for black-box fuzz testing,” CERT, Tech. Rep.
CMU/SEI-2012-TN-019, 2012.

[108] W. E. Howden, “Methodology for the generation of program test
data,” IEEE Transactions on Computers, vol. C, no. 5, pp. 554–560,
1975.

[109] InfoSec Institute, “Charlie Miller reveals his process for security
research,”
http://resources.infosecinstitute.com/how-charlie-miller-does-research/,
2011.

[110] V. Iozzo, “0-knowledge fuzzing,” in Proceedings of the Black Hat
USA, 2010.

[111] S. Jana and V. Shmatikov, “Abusing file processing in malware
detectors for fun and profit,” in Proceedings of the IEEE
Symposium on Security and Privacy, 2012, pp. 80–94.

[112] K. Jayaraman, D. Harvison, V. Ganesh, and A. Kiezun, “jFuzz: A
concolic whitebox fuzzer for java,” in Proceedings of the First
NASA Forma Methods Symposium, 2009, pp. 121–125.

[113] Y. Jeon, P. Biswas, S. Carr, B. Lee, and M. Payer, “HexType:
Efficient detection of type confusion errors for c++,” in
Proceedings of the ACM Conference on Computer and
Communications Security, 2017, pp. 2373–2387.

[114] W. Johansson, M. Svensson, U. E. Larson, M. Almgren, and
V. Gulisano, “T-Fuzz: Model-based fuzzing for robustness
testing of telecommunication protocols,” in Proceedings of the
IEEE International Conference on Software Testing, Verification and
Validation, 2014, pp. 323–332.

[115] D. Jones, “Trinity,” https://github.com/kernelslacker/trinity.
[116] P. Joshi, C.-S. Park, K. Sen, and M. Naik, “A randomized

dynamic program analysis technique for detecting real
deadlocks,” in Proceedings of the ACM Conference on Programming
Language Design and Implementation, 2009, pp. 110–120.

[117] R. L. S. Jr., “A framework for file format fuzzing with genetic
algorithms,” Ph.D. dissertation, University of Tennessee, 2012.

[118] J. Jung, A. Sheth, B. Greenstein, D. Wetherall, G. Maganis, and
T. Kohno, “Privacy oracle: A system for finding application
leaks with black box differential testing,” in Proceedings of the
ACM Conference on Computer and Communications Security, 2008,
pp. 279–288.

[119] M. Jurczyk, “CompareCoverage,”
https://github.com/googleprojectzero/CompareCoverage.

[120] R. Kaksonen, M. Laakso, and A. Takanen, “Software security
assessment through specification mutations and fault injection,”
in Proceedings of the IFIP TC 6/TC 11 International Conference on
Communications and Multimedia Security, 2001, pp. 173–183.

[121] A. Kanade, R. Alur, S. Rajamani, and G. Ramanlingam,
“Representation dependence testing using program inversion,”
in Proceedings of the International Symposium on Foundations of
Software Engineering, 2010, pp. 277–286.

[122] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and
V. Paxson, “Hulk: Eliciting malicious behavior in browser
extensions,” in Proceedings of the USENIX Security Symposium,
2014, pp. 641–654.

[123] U. Kargén and N. Shahmehri, “Turning programs against each
other: High coverage fuzz-testing using binary-code mutation
and dynamic slicing,” in Proceedings of the International
Symposium on Foundations of Software Engineering, 2015, pp.
782–792.

[124] H. Kario, “tlsfuzzer,” https://github.com/tomato42/tlsfuzzer.
[125] S. Y. Kim, S. Lee, I. Yun, W. Xu, B. Lee, Y. Yun, and T. Kim,

“CAB-Fuzz: Practical concolic testing techniques for COTS
operating systems,” in Proceedings of the USENIX Annual
Technical Conference, 2017, pp. 689–701.

[126] J. C. King, “Symbolic execution and program testing,”
Communications of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[127] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the ACM Conference on Computer
and Communications Security, 2018, pp. 2123–2138.

[128] P. Koopman, J. Sung, C. Dingman, D. Siewiorek, and T. Marz,
“Comparing operating systems using robustness benchmarks,”
in Proceedings of the Symposium on Reliable Distributed Systems,
1997, pp. 72–79.

[129] J. Koret, “Nightmare,”
https://github.com/joxeankoret/nightmare.

[130] lafintel, “Circumventing fuzzing roadblocks with compiler
transformations,”
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/,
2016.

[131] Z. Lai, S. Cheung, and W. Chan, “Detecting atomic-set
serializability violations in multithreaded programs through

https://github.com/jfoote/exploitable
https://github.com/search?q=fuzzing&type=Repositories
http://blogs.grammatech.com/the-cyber-grand-challenge
https://github.com/IOActive/Melkor_ELF_Fuzzer
https://github.com/aoh/radamsa
https://github.com/samhocevar/zzuf
http://resources.infosecinstitute.com/how-charlie-miller-does-research/
https://github.com/kernelslacker/trinity
https://github.com/googleprojectzero/CompareCoverage
https://github.com/tomato42/tlsfuzzer
https://github.com/joxeankoret/nightmare
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/

19

active randomized testing,” in Proceedings of the International
Conference on Software Engineering, 2010, pp. 235–244.

[132] M. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely,
“PEBIL: Efficient static binary instrumentation for linux,” in
Proceedings of the IEEE International Symposium on Performance
Analysis of Systems & Software, 2010, pp. 175–183.

[133] B. Lee, C. Song, T. Kim, and W. Lee, “Type casting verification:
Stopping an emerging attack vector,” in Proceedings of the
USENIX Security Symposium, 2015, pp. 81–96.

[134] S. Lee, C. Yoon, C. Lee, S. Shin, V. Yegneswaran, and P. Porras,
“DELTA: A security assessment framework for software-defined
networks,” in Proceedings of the Network and Distributed System
Security Symposium, 2017.

[135] C. Lemieux, R. Padhye, K. Sen, and D. Song, “PerfFuzz:
Automatically generating pathological inputs,” in Proceedings of
the International Symposium on Software Testing and Analysis, 2018,
pp. 254–265.

[136] C. Lemieux and K. Sen, “FairFuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage,” in Proceedings of
the International Conference on Automated Software Engineering,
2018, pp. 475–485.

[137] J. Li, B. Zhao, and C. Zhang, “Fuzzing: a survey,” Cybersecurity,
vol. 1, no. 1, 2018.

[138] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu,
“Steelix: Program-state based binary fuzzing,” in Proceedings of
the International Symposium on Foundations of Software Engineering,
2017, pp. 627–637.

[139] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of
the art,” IEEE Transactions on Reliability, vol. 67, no. 3, pp.
1199–1218, 2018.

[140] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson,
“Many-core compiler fuzzing,” in Proceedings of the ACM
Conference on Programming Language Design and Implementation,
2015, pp. 65–76.

[141] Z. Lin and X. Zhang, “Deriving input syntactic structure from
execution,” in Proceedings of the International Symposium on
Foundations of Software Engineering, 2008, pp. 83–93.

[142] P. Liu, X. Zhang, M. Pistoia, Y. Zheng, M. Marques, and L. Zeng,
“Automatic text input generation for mobile testing,” in
Proceedings of the International Conference on Software Engineering,
2017, pp. 643–653.

[143] LMH, S. Grubb, I. van Sprundel, E. Sandeen, and J. Wilson,
“fsfuzzer,”
http://people.redhat.com/sgrubb/files/fsfuzzer-0.7.tar.gz.

[144] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building
customized program analysis tools with dynamic
instrumentation,” in Proceedings of the ACM Conference on
Programming Language Design and Implementation, 2005, pp.
190–200.

[145] L. Ma, C. Artho, C. Zhang, H. Sato, J. Gmeiner, and R. Ramler,
“GRT: Program-analysis-guided random testing,” in Proceedings
of the International Conference on Automated Software Engineering,
2015, pp. 212–223.

[146] R. Mahmood, N. Esfahani, T. Kacem, N. Mirzaei, S. Malek, and
A. Stavrou, “A whitebox approach for automated security
testing of android applications on the cloud,” in Proceedings of
the International Workshop on Automation of Software Test, 2012, pp.
22–28.

[147] L. Martignoni, S. McCamant, P. Poosankam, D. Song, and
P. Maniatis, “Path-exploration lifting: Hi-fi tests for lo-fi
emulators,” in Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating
Systems, 2012, pp. 337–348.

[148] W. M. McKeeman, “Differential testing for software,” Digital
Technical Journal, vol. 10, no. 1, pp. 100–107, 1998.

[149] D. Mckinney, “antiparser,” http://antiparser.sourceforge.net/.
[150] Microsoft Corporation, “!exploitable crash analyzer – MSEC

debugger extensions,” https://msecdbg.codeplex.com.
[151] ——, “Minifuzz,”

https://msdn.microsoft.com/en-us/biztalk/gg675011.
[152] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the

reliability of UNIX utilities,” Communications of the ACM, vol. 33,
no. 12, pp. 32–44, 1990.

[153] C. Miller, “Fuzz by number: More data about fuzzing than you
ever wanted to know,” in Proceedings of the CanSecWest, 2008.

[154] D. Molnar, X. C. Li, and D. A. Wagner, “Dynamic test generation
to find integer bugs in x86 binary linux programs,” in
Proceedings of the USENIX Security Symposium, 2009, pp. 67–82.

[155] L. D. Moura and N. Bjørner, “Satisfiability modulo theories:
Introduction and applications,” Communications of the ACM,
vol. 54, no. 9, pp. 69–77, 2011.

[156] C. Mulliner, N. Golde, and J.-P. Seifert, “SMS of death: from
analyzing to attacking mobile phones on a large scale,” in
Proceedings of the USENIX Security Symposium, 2011, pp. 24–24.

[157] MWR Labs, “KernelFuzzer,”
https://github.com/mwrlabs/KernelFuzzer.

[158] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software
Testing. Wiley, 2011.

[159] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic,
“SoftBound: Highly compatible and complete spatial memory
safety for C,” in Proceedings of the ACM Conference on
Programming Language Design and Implementation, 2009, pp.
245–258.

[160] ——, “CETS: Compiler enforced temporal safety for C,” in
Proceedings of the International Symposium on Memory Management,
2010, pp. 31–40.

[161] NCC Group, “Hodor fuzzer,”
https://github.com/nccgroup/hodor.

[162] ——, “Triforce linux syscall fuzzer,”
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer.

[163] N. Nethercote and J. Seward, “Valgrind: a framework for
heavyweight dynamic binary instrumentation,” in Proceedings of
the ACM Conference on Programming Language Design and
Implementation, 2007, pp. 89–100.

[164] J. Newsome and D. Song, “Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on
commodity software,” in Proceedings of the Network and
Distributed System Security Symposium, 2005.

[165] D. Oleksiuk, “Ioctl fuzzer,”
https://github.com/Cr4sh/ioctlfuzzer, 2009.

[166] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball,
“Feedback-directed random test generation,” in Proceedings of the
International Conference on Software Engineering, 2007, pp. 75–84.

[167] S. Pailoor, A. Aday, and S. Jana, “MoonShine: Optimizing OS
fuzzer seed selection with trace distillation,” in Proceedings of the
USENIX Security Symposium, 2018, pp. 729–743.

[168] J. Pan, G. Yan, and X. Fan, “Digtool: A virtualization-based
framework for detecting kernel vulnerabilities,” in Proceedings of
the USENIX Security Symposium, 2017, pp. 149–165.

[169] C.-S. Park and K. Sen, “Randomized active atomicity violation
detection in concurrent programs,” in Proceedings of the
International Symposium on Foundations of Software Engineering,
2008, pp. 135–145.

[170] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-Fuzz: Fuzzing by
program transformation,” in Proceedings of the IEEE Symposium
on Security and Privacy, 2018, pp. 917–930.

[171] T. Petsios, A. Tang, S. J. Stolfo, A. D. Keromytis, and S. Jana,
“NEZHA: Efficient domain-independent differential testing,” in
Proceedings of the IEEE Symposium on Security and Privacy, 2017,
pp. 615–632.

[172] V.-T. Pham, M. Böhme, and A. Roychoudhury, “Model-based
whitebox fuzzing for program binaries,” in Proceedings of the
International Conference on Automated Software Engineering, 2016,
pp. 543–553.

[173] P. Project, “DynInst: Putting the performance in high
performance computing,” http://www.dyninst.org/.

[174] H. Raffelt, B. Steffen, and T. Berg, “LearnLib: A library for
automata learning and experimentation,” in Proceedings of the
International Workshop on Formal Methods for Industrial Critical
Systems, 2005, pp. 62–71.

[175] S. Rasthofer, S. Arzt, S. Triller, and M. Pradel, “Making malory
behave maliciously: Targeted fuzzing of android execution
environments,” in Proceedings of the International Conference on
Software Engineering, 2017, pp. 300–311.

[176] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“VUzzer: Application-aware evolutionary fuzzing,” in
Proceedings of the Network and Distributed System Security
Symposium, 2017.

[177] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco,
and D. Brumley, “Optimizing seed selection for fuzzing,” in
Proceedings of the USENIX Security Symposium, 2014, pp. 861–875.

http://people.redhat.com/sgrubb/files/fsfuzzer-0.7.tar.gz
http://antiparser.sourceforge.net/
https://msecdbg.codeplex.com
https://msdn.microsoft.com/en-us/biztalk/gg675011
https://github.com/mwrlabs/KernelFuzzer
https://github.com/nccgroup/hodor
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://github.com/Cr4sh/ioctlfuzzer
http://www.dyninst.org/

20

[178] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, , and X. Yang,
“Test-case reduction for C compiler bugs,” in Proceedings of the
ACM Conference on Programming Language Design and
Implementation, 2012, pp. 335–346.

[179] J. Ruderman, “Lithium,”
https://github.com/MozillaSecurity/lithium/.

[180] J. D. Ruiter and E. Poll, “Protocol state fuzzing of tls
implementations,” in Proceedings of the USENIX Security
Symposium, 2015, pp. 193–206.

[181] M. Samak, M. K. Ramanathan, and S. Jagannathan,
“Synthesizing racy tests,” in Proceedings of the ACM Conference on
Programming Language Design and Implementation, 2015, pp.
175–185.

[182] P. Saxena, S. Hanna, P. Poosankam, and D. Song, “FLAX:
Systematic discovery of client-side validation vulnerabilities in
rich web applications,” in Proceedings of the Network and
Distributed System Security Symposium, 2010.

[183] F. B. Schneider, “Enforceable security policies,” ACM Transactions
on Information System Security, vol. 3, no. 1, pp. 30–50, 2000.

[184] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,
“kAFL: Hardware-assisted feedback fuzzing for os kernels,” in
Proceedings of the USENIX Security Symposium, 2017, pp. 167–182.

[185] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever
wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask),” in
Proceedings of the IEEE Symposium on Security and Privacy, 2010,
pp. 317–331.

[186] M. Schwarz, D. Gruss, M. Lipp, C. Maurice, T. Schuster, A. Fogh,
and S. Mangard, “Automated detection, exploitation, and
elimination of double-fetch bugs using modern CPU features,”
in Proceedings of the ACM Symposium on Information, Computer
and Communications Security, 2018, pp. 587–600.

[187] M. Security, “funfuzz,”
https://github.com/MozillaSecurity/funfuzz.

[188] ——, “orangfuzz,”
https://github.com/MozillaSecurity/orangfuzz.

[189] K. Sen, “Effective random testing of concurrent programs,” in
Proceedings of the International Conference on Automated Software
Engineering, 2007, pp. 323–332.

[190] ——, “Race directed random testing of concurrent programs,” in
Proceedings of the ACM Conference on Programming Language
Design and Implementation, 2008, pp. 11–21.

[191] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” in Proceedings of the International Symposium on
Foundations of Software Engineering, 2005, pp. 263–272.

[192] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov,
“AddressSanitizer: A fast address sanity checker,” in Proceedings
of the USENIX Annual Technical Conference, 2012, pp. 309–318.

[193] K. Serebryany and T. Iskhodzhanov, “ThreadSanitizer: data race
detection in practice,” in Proceedings of the Workshop on Binary
Instrumentation and Applications, 2009, pp. 62–71.

[194] Z. Sialveras and N. Naziridis, “Introducing Choronzon: An
approach at knowledge-based evolutionary fuzzing,” in
Proceedings of the ZeroNights, 2015.

[195] J. Somorovsky, “Systematic fuzzing and testing of tls libraries,”
in Proceedings of the ACM Conference on Computer and
Communications Security, 2016, pp. 1492–1504.

[196] D. Song, F. Hetzelt, D. Das, C. Spensky, Y. Na, S. Volckaert,
G. Vigna, C. Kruegel, J.-P. Seifert, and M. Franz, “Periscope: An
effective probing and fuzzing framework for the hardware-os
boundary,” in Proceedings of the Network and Distributed System
Security Symposium, 2019.

[197] W. Song, X. Qian, and J. Huang, “EHBDroid: Beyond GUI
testing for android applications,” in Proceedings of the
International Conference on Automated Software Engineering, 2017,
pp. 27–37.

[198] C. Spensky and H. Hu, “Ll-fuzzer,”
https://github.com/mit-ll/LL-Fuzzer.

[199] E. Stepanov and K. Serebryany, “MemorySanitizer: fast detector
of uninitialized memory use in C++,” in Proceedings of the
International Symposium on Code Generation and Optimization,
2015, pp. 46–55.

[200] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller:
Augmenting fuzzing through selective symbolic execution,” in
Proceedings of the Network and Distributed System Security
Symposium, 2016.

[201] M. Sutton, “Filefuzz,”
http://osdir.com/ml/security.securiteam/2005-09/msg00007.html.

[202] M. Sutton and A. Greene, “The art of file format fuzzing,” in
Proceedings of the Black Hat Asia, 2005.

[203] M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force
Vulnerability Discovery. Addison-Wesley Professional, 2007.

[204] R. Swiecki and F. Gröbert, “honggfuzz,”
https://github.com/google/honggfuzz.

[205] A. Takanen, J. D. DeMott, and C. Miller, Fuzzing for Software
Security Testing and Quality Assurance. Artech House, 2008.

[206] A. Takanen, J. D. DeMott, C. Miller, and A. Kettunen, Fuzzing for
Software Security Testing and Quality Assurance, 2nd ed. Artech
House, 2018.

[207] D. Thiel, “Exposing vulnerabilities in media software,” in
Proceedings of the Black Hat EU, 2008.

[208] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway,
U. Erlingsson, L. Lozano, and G. Pike, “Enforcing forward-edge
control-flow integrity in gcc & llvm,” in Proceedings of the
USENIX Security Symposium, 2014, pp. 941–955.

[209] N. Tillmann and J. De Halleux, “Pex–white box test generation
for .NET,” in Proceedings of the International Conference on Tests
and Proofs, 2008, pp. 134–153.

[210] D. Trabish, A. Mattavelli, N. Rinetzky, and C. Cadar, “Chopped
symbolic execution,” in Proceedings of the International Conference
on Software Engineering, 2018, pp. 350–360.

[211] Trail of Bits, “GRR,” https://github.com/trailofbits/grr.
[212] R. Valotta, “Taking browsers fuzzing to the next (dom) level,” in

Proceedings of the DeepSec, 2012.
[213] S. Veggalam, S. Rawat, I. Haller, and H. Bos, “IFuzzer: An

evolutionary interpreter fuzzer using genetic programming,” in
Proceedings of the European Symposium on Research in Computer
Security, 2016, pp. 581–601.

[214] M. Vuagnoux, “Autodafé: an act of software torture,” in
Proceedings of the Chaos Communication Congress, 2005, pp. 47–58.

[215] D. Vyukov, “go-fuzz,” https://github.com/dvyukov/go-fuzz.
[216] ——, “syzkaller,” https://github.com/google/syzkaller.
[217] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven seed

generation for fuzzing,” in Proceedings of the IEEE Symposium on
Security and Privacy, 2017, pp. 579–594.

[218] S. Wang, J. Nam, and L. Tan, “QTEP: Quality-aware test case
prioritization,” in Proceedings of the International Symposium on
Foundations of Software Engineering, 2017, pp. 523–534.

[219] T. Wang, T. Wei, G. Gu, and W. Zou, “TaintScope: A
checksum-aware directed fuzzing tool for automatic software
vulnerability detection,” in Proceedings of the IEEE Symposium on
Security and Privacy, 2010, pp. 497–512.

[220] X. Wang, N. Zeldovich, M. F. Kaashoek, and A. Solar-Lezama,
“Towards optimization-safe systems: Analyzing the impact of
undefined behavior,” in Proceedings of the ACM Symposium on
Operating System Principles, 2013, pp. 260–275.

[221] V. M. Weaver and D. Jones, “perf fuzzer: Targeted fuzzing of the
perf event open() system call,” UMaine VMW Group, Tech.
Rep., 2015.

[222] J. Wei, J. Chen, Y. Feng, K. Ferles, and I. Dillig, “Singularity:
Pattern fuzzing for worst case complexity,” in Proceedings of the
International Symposium on Foundations of Software Engineering,
2018, pp. 213–223.

[223] S. Winter, C. Sârbu, N. Suri, and B. Murphy, “The impact of fault
models on software robustness evaluations,” in Proceedings of the
International Conference on Software Engineering, 2011, pp. 51–60.

[224] M. Y. Wong and D. Lie, “Intellidroid: A targeted input generator
for the dynamic analysis of android malware,” in Proceedings of
the Network and Distributed System Security Symposium, 2016.

[225] M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley, “Scheduling
black-box mutational fuzzing,” in Proceedings of the ACM
Conference on Computer and Communications Security, 2013, pp.
511–522.

[226] T. Xie, N. Tillmann, J. de Halleux, and W. Schulte,
“Fitness-guided path exploration in dynamic symbolic
execution,” in Proceedings of the International Conference on
Dependable Systems Networks, 2009, pp. 359–368.

[227] D. Xu, J. Ming, and D. Wu, “Cryptographic function detection in
obfuscated binaries via bit-precise symbolic loop mapping,” in
Proceedings of the IEEE Symposium on Security and Privacy, 2017,
pp. 921–937.

[228] W. Xu, S. Kashyap, C. Min, and T. Kim, “Designing new
operating primitives to improve fuzzing performance,” in

https://github.com/MozillaSecurity/lithium/
https://github.com/MozillaSecurity/funfuzz
https://github.com/MozillaSecurity/orangfuzz
https://github.com/mit-ll/LL-Fuzzer
http://osdir.com/ml/security.securiteam/2005-09/msg00007.html
https://github.com/google/honggfuzz
https://github.com/trailofbits/grr
https://github.com/dvyukov/go-fuzz
https://github.com/google/syzkaller

21

Proceedings of the ACM Conference on Computer and
Communications Security, 2017, pp. 2313–2328.

[229] D. Yang, Y. Zhang, and Q. Liu, “Blendfuzz: A model-based
framework for fuzz testing programs with grammatical inputs,”
in Proceedings of the ACM Conference on Programming Language
Design and Implementation, 2012, pp. 1070–1076.

[230] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A practical
concolic execution engine tailored for hybrid fuzzing,” in
Proceedings of the USENIX Security Symposium, 2018, pp. 745–762.

[231] M. Zalewski, “American Fuzzy Lop,”
http://lcamtuf.coredump.cx/afl/.

[232] ——, “Crossfuzz,”
https://lcamtuf.blogspot.com/2011/01/announcing-crossfuzz-potential-0-day-in.html.

[233] ——, “New in AFL: persistent mode,”
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html.

[234] ——, “ref fuzz,”
http://lcamtuf.blogspot.com/2010/06/announcing-reffuzz-2yo-fuzzer.html.

[235] ——, “Technical “whitepaper” for afl-fuzz,”
http://lcamtuf.coredump.cx/afl/technical details.txt.

[236] A. Zeller and R. Hildebrandt, “Simplifying and isolating
failure-inducing input,” IEEE Transactions on Software
Engineering, vol. 28, no. 2, pp. 183–200, 2002.

[237] K. Zetter, “A famed hacker is grading thousands of
programs—and may revolutionize software in the process,”
https://goo.gl/LRwaVl.

[238] M. Zhang, R. Qiao, N. Hasabnis, and R. Sekar, “A platform for
secure static binary instrumentation,” in Proceedings of the
International Conference on Virtual Execution Environments, 2014,
pp. 129–140.

[239] L. Zhao, Y. Duan, H. Yin, and J. Xuan, “Send hardest problems
my way: Probabilistic path prioritization for hybrid fuzzing,” in
Proceedings of the Network and Distributed System Security
Symposium, 2019.

[240] M. Zimmermann, “Tavor,” https://github.com/zimmski/tavor.

http://lcamtuf.coredump.cx/afl/
https://lcamtuf.blogspot.com/2011/01/announcing-crossfuzz-potential-0-day-in.html
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html
http://lcamtuf.blogspot.com/2010/06/announcing-reffuzz-2yo-fuzzer.html
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://goo.gl/LRwaVl
https://github.com/zimmski/tavor

	1 Introduction
	2 Systemization, Taxonomy, and Test Programs
	2.1 Fuzzing & Fuzz Testing
	2.2 Paper Selection Criteria
	2.3 Fuzz Testing Algorithm
	2.4 Taxonomy of Fuzzers
	2.4.1 Black-box Fuzzer
	2.4.2 White-box Fuzzer
	2.4.3 Grey-box Fuzzer

	2.5 Fuzzer Genealogy and Overview

	3 Preprocess
	3.1 Instrumentation
	3.1.1 Execution Feedback
	3.1.2 In-Memory Fuzzing
	3.1.3 Thread Scheduling

	3.2 Seed Selection
	3.3 Seed Trimming
	3.4 Preparing a Driver Application

	4 Scheduling
	4.1 The Fuzz Configuration Scheduling (FCS) Problem
	4.2 Black-box FCS Algorithms
	4.3 Grey-box FCS Algorithms

	5 Input Generation
	5.1 Model-based (Generation-based) Fuzzers
	5.1.1 Predefined Model
	5.1.2 Inferred Model
	5.1.3 Encoder Model

	5.2 Model-less (Mutation-based) Fuzzers
	5.2.1 Bit-Flipping
	5.2.2 Arithmetic Mutation
	5.2.3 Block-based Mutation
	5.2.4 Dictionary-based Mutation

	5.3 White-box Fuzzers
	5.3.1 Dynamic Symbolic Execution
	5.3.2 Guided Fuzzing
	5.3.3 PUT Mutation

	6 Input Evaluation
	6.1 Bug Oracles
	6.1.1 Memory and Type Safety
	6.1.2 Undefined Behaviors
	6.1.3 Input Validation
	6.1.4 Semantic Difference

	6.2 Execution Optimizations
	6.3 Triage
	6.3.1 Deduplication
	6.3.2 Prioritization and Exploitability
	6.3.3 Test case minimization

	7 Configuration Updating
	7.1 Evolutionary Seed Pool Update
	7.2 Maintaining a Minset

	8 Related Work
	9 Concluding Remarks
	References

