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Static Analysis

Main objective:
statically compute some information about (an approximation of) the
program behavior
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Static Analysis

Main objective:

statically compute some information about (an approximation of) the
program behavior

Examples: given (the source-code of) a program P

» does all executions of P satisfy a property ¢ ?

» does ¢ satisfied at a given (source) program location ?
= Of course, such questions are undecidable ... (why ?)

Possible work-arounds:
» over-approximate the pgm behaviour
— result is sound (no false negatives), but incomplete (3 false positives)
» under-approximate the pgm behaviour
— result is complete (no false negatives), but unsound (3 false negative)
» non-terminating analysis
— if the analysis terminates, then the result is sound and complete
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What static analysis can be used for ?

General applications
» compiler optimization
e.g., active variables, available expressions, constant propagations, etc.

» program verification
e.g., invariant, post-conditions, etc.

» worst-case execution time computation

v

parallelization
> etc.

2/31



What static analysis can be used for ?

General applications
» compiler optimization
e.g., active variables, available expressions, constant propagations, etc.

» program verification
e.g., invariant, post-conditions, etc.

» worst-case execution time computation

v

parallelization
> etc.

In the “software security” context

» disassembling
e.g., what are the targets of a dynamic jump
(be eax, content of eax ?)
» error and vulnerability detection
memory error (Null-pointer dereference, out-of-bound array access),
use-after-free, arithmetic overflow, etc.
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How to proceed ?

Typical problems
> need to reason on a set of executions (not on a single one)
exX:x =y x z
— compute values of x for all possible values of v and z ?
» need to cope with loops
ex: while (x < y) do ... end
— infer the loop behavior for all possible values of x and y ?
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A solution: over-approximate the program behavior
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2. safely merge memory abstract states produced from # paths
3. make loop iterations always finite
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How to proceed ?

Typical problems
> need to reason on a set of executions (not on a single one)
exX:x =y x z
— compute values of x for all possible values of v and z ?
» need to cope with loops
ex: while (x < y) do ... end
— infer the loop behavior for all possible values of x and y ?

A solution: over-approximate the program behavior
1. propagate an abstract state (over approximating the memory content)
eg.,x>0,p# NULL x < y+ z, pand q are aliases, etc.
— depends on the properties you want to check !
2. safely merge memory abstract states produced from # paths
3. make loop iterations always finite

Pb: How to find a suitable abstract domains ?
— accuracy vs scalability trade-offs . ..
3/31
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A basic programming language

Syntax
Exp == x|n|op(Exp,...Exp)
Stm = x:=Exp
= Stm; Stm
= skip

if Exp then Stm else Stm
while Exp do Stm end
m= assert Exp

In practice : arrays, structures, pointers, procedures, etc.
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Axiomatic Semantics

= programs viewed as predicate transformers where predicates are
assertions on program variables (Hoare, Dijkstra 1976).

» Weakest Preconditions (wp) : backward computation
Example :
x>0 {x:=x+1;}

» Strongest Postcondition (sp) : forward computation
Example :

{x=x+1,} x>0
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Weakest precondition / Strongest postcondition

Let / a statement, P, R,’, R’ some predicats

The weakest precondition P = wp(/, R) is such that:

VP (P = wp(l,R)) = (P = P)

A precondition P’ stronger than x > 0: x > 5.
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Weakest precondition / Strongest postcondition

Let / a statement, P, R,’, R’ some predicats

The weakest precondition P = wp(/, R) is such that:

VP (P = wp(l,R)) = (P = P)

A precondition P’ stronger than x > 0: x > 5.

The strongest postcondition R = sp(R, /) is such that:
VR (sp(P,)= R = (R=R)

A postcondition R" weaker than x > 0: x > —2.
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Substitution - free/bounded variables

Free and bounded variables

A variable x is bounded (resp. free) within formula F iff F contains an
occurrence of x which is (resp. which is not) within the scope of a quantifier.

Example:
¢ =Py, x) A Vx. Q(x,y)

— there is both a free and a bounded occurrence of x in ¢
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Substitution - free/bounded variables

Free and bounded variables

A variable x is bounded (resp. free) within formula F iff F contains an
occurrence of x which is (resp. which is not) within the scope of a quantifier.

Example:
¢ =Py, x) A Vx. Q(x,y)

— there is both a free and a bounded occurrence of x in ¢

Substitution

P[E/x] is the formula P in which all free occurrences of variable x have been
replaced by the term E.

Example:
(e[x +1/xD[f/y] = P(f,x + 1) A ¥x . Q(x,f)

7131



Computing weakest preconditions: basic instructions

Statement def. | WP

wp(skip, R) = R

wp(x := e, R) = Rle/x]

wp(h ; 2, R) = | wp(ir, wo(iz, R))

wp(assert(e), R)

eN R
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Computing weakest preconditions: basic instructions

Examples:

Statement

def. | WP
wp(skip, R) = R
wp(x := e, R) = Rle/x]
wp(is ; iz, R) = | wp(ir, wp(lz2, R))

wp(assert(e), R)

eN R

1. wp(x :=x+1,x>0)
2. wp(z:=2;,y:=z+1;, x:=z2+y, x€3.8)
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Another way to write WPs

skip;

wp(i, wo(iz, R))
i1;

W,O(/g, R)

i2;

Rle/x]
X:=e;

PA R
assert(P)
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Example

2+2+1€3.8
z:=2;
z+2z4+1€3.8
y:i=z+1;
z+ye3.8
X:=Z+Y;
x€3.8
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Computing weakest precondition: conditional statement

wp(if P then iielse i end, R)
= (P = wp(ir, R)) A (P = wp(k, R))

11/31



Computing weakest precondition: conditional statement

wp(if P then iielse i end, R)
= (P = wp(ir, R)) A (P = wp(k, R))

Examples:
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Computing weakest precondition: conditional statement

wp(if P then iielse i end, R)
= (P = wp(ir, R)) A (P = wp(k, R))

Examples:

> Define wp(if ethen iend , R).

» What does the following program compute ? Prove the result ...

begin
if x> ythenm:=xelse m:=yend;
if z> mthen m:=z end

end
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Solution (1)

(x>y=Fx/m)A (=(x>y)=]Rly/m]) =F
if x>y

Filx/m]

then m:= x

Fily/m]

else m:=yend;
(z>m= Ri[z/m]) A (=(z > m)= Ry) =F
ifz>m

Ri[z/m] ;

then m:=z

R ;

else skip ;
end
Ry
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Solution (2)

Postcondition :

(m=xVv m=yvm=z)Am>xAm>yAm>z

Let’s process Ry = m > x.

Computing F; :
(z>m=m[z/m > x)A (=(z>m)=m>Xx)
which can be rewritten:

(z>m=2z>x)N(~(z>m)=m>x)
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Solution (3)

Computing Fa:

(x>y = Rlx/m)A(=(x>y) = Fly/m])

leading to:
(x>yANz>x =z>X) A
(x>yA =(z>x) =X>Xx) A
(x>y)ANz>y =X>Xx) A
(

A(X>Y)ANA(z>y) =y 2=2Xx)

Each of these 4 propositions is equivalent to true.
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Computing weakest precondition: iteration

wp(while bdo Send,R) 7

Partial correctness
— compute the WP assuming the loop will terminate
» need to reason about an arbitrary number of iteration;
» find a loop invariant / such that:
1. lis preserved by the loop body:

IANb= wp(S,I)

2. if and when the loop terminates, the post-condition holds:

IN-b= R

Then
wp(while bdo Send,R) =1
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Computing weakest precondition: iteration

wp(while bdo Send,R) 7

Partial correctness
— compute the WP assuming the loop will terminate

» need to reason about an arbitrary number of iteration;
» find a loop invariant / such that:
1. lis preserved by the loop body:

IANb= wp(S,I)
2. if and when the loop terminates, the post-condition holds:
IN-b=R

Then
wp(while bdo Send,R) =1

Total correctness: prove that the loop do terminate . ..
need to introduce a loop variant

(i.e, a measure strictly decreasing at each iteration towards a limit).

15/31



Example

Prove the following program using WP

{x=n && n>0}

y =17
while x <> 1 do
y = y*X ;

x 1= x-1 ;
end

{y=n! && n>0}
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Implementing WP computation ?
1. WP computation:

> based on the program structure (Abstract Syntax Tree)

> leaves ~~ root, following the instruction structure
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Implementing WP computation ?

1. WP computation:
> based on the program structure (Abstract Syntax Tree)

> leaves ~~ root, following the instruction structure

2. Decidability problems:

> simplification and proof of formula
undecidable in general, heuristics . ..

» invariant generation
undecidable in general, only specific invariant can be generated in some
restricted conditions (i.e., inductive invariants)

17/31



Accurracy vs Effectiveness trade-off

Assertion language

Theories Complexity | Rappels

First order logic | undecidable | Interactive provers
Booleans decidable state enumeration
Intervals quasi linear | approximation
Polyhedras exponential | (better) approximation

Tools:

Frama-C/WP (proofs), Frama-C/Value (intervals), Polyspace (polyhedras) ...

18/31
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A general framework : abstract interpretation

Although this theory has been invented here in Grenoble ...
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A general framework : abstract interpretation

Although this theory has been invented here in Grenoble ...

...let’'s jump to Dillig’s slides (from UT Austin, Texas) !
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Analysis example: Value-Set Analysis

Objective:
compute a (super)-set of possible values of each variable at each program
location ...

Env(x, ) = value set of variable x at program location 1

Several possible abstract domains to express these sets:

>

>

bounded value sets (k-sets)
ex: Env(x,l) ={0,4,9,10}, Env(y,l) = {1}, Env(z,/) =T

intervals
ex: Env(x,l) =[2,8], Env(y,!) = [-o0,7], Env(z,[) = [—00, +o0]

differential bounded matrix (DBM)
ex:Env(l)=x—-y<10Az<0

polyhedra (conjonction of linear equations)
ex: Env(l=x+y>10Az<0

etc.
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VSA with intervals (example 1)

1. x = x+ty ;
if x>0 then
2. y:=x + 2
else
3. y:= —x
4. fi
5. return x+y

Asumming (pre-condition) that:
X € [_373]7}/ € [_175]

compute Env(x,/) and Env(y,I) for each program location /
what is the set of return values ?
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Computing intervals on expressions

Syntax of expressions

e—n|ixlet+elexe]...

Computation rules

Val(e, Env) is the interval associated to e within Env
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Syntax of expressions

e—n|ixlet+elexe]...

Computation rules
Val(e, Env) is the interval associated to e within Env

Val(n,Env) = [n,n]

22/31



Computing intervals on expressions

Syntax of expressions

e—n|ixlet+elexe]...

Computation rules
Val(e, Env) is the interval associated to e within Env

Val(n,Env) = [n,n]
Val(x,Env) = Env(x)
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Computing intervals on expressions

Syntax of expressions

e—n|x|letelexe]|...

Computation rules

Val(e, Env) is the interval associated to e within Env

Val(n,Env) = [n,n]
Val(x,Env) = Env(x)
Val(el + e2,Env) = [a+ c,b+ d] where

Val(el, Env) = [a, b] A Val(e2, Env) = [c, d]
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Computing intervals on expressions

Syntax of expressions

e—n|x|letelexe]|...

Computation rules
Val(e, Env) is the interval associated to e within Env

Val(n, Env)
Val(x, Env)
Val(el + e2, Env)

[, n]
Env(x)
[a+ ¢, b+ d] where

Val(el, Env) = [a, b] A Val(e2, Env) = [c, d]
Val(el x e2,Env) = [x,y]where
Val(el, Env) = [a, b] A Val(e2, Env) = [c, d]
x=min(ax c,ax d,bxc,bxd)

y=max(ax c,axd,bxc,bxd)
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Intervals propagation

Propagation rules along the statement syntax:

» assignment
{Envi} x := e {Env2}

where

Env2(x) = Val(e, Env1) A Env2(y) = Envi(x) for y # x
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Intervals propagation

Propagation rules along the statement syntax:

» assignment
{Envi} x := e {Env2}

where
Env2(x) = Val(e, Env1) A Env2(y) = Envi(x) for y # x
> sequence
{Env1} s1;s2 {Env2}
where

{Env1} s1 {Env3} A {Env3} s2 {Env2}
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Intervals propagation

Propagation rules along the statement syntax:

» assignment
{Envi} x := e {Env2}

where
Env2(x) = Val(e, Env1) A Env2(y) = Envi(x) for y # x
> sequence
{Env1} s1;s2 {Env2}
where

{Env1} s1 {Env3} A {Env3} s2 {Env2}
» conditionnal

{Env} if (b) then sl else s2 {Env'}

where
» {Env N Val(b, Env)} s1 {Env1}
» {Env N Val(= b, Env)} s2 {Env2}
» Env’ = Envi LI Env2
(Env’(x) is the smallest interval containing Env1(x) and Env2(x), Vx)
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Iteration ? (example 1)

1. x : =0 ;
while (x < 2) do
2. x = x+1

3. end

4. return x

compute Env(x, /) for each program location /, where ...

Env(x,2) = Env(x,1) U Env(x,3)
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Iteration ? (example 1)

1. x : =0 ;
while (x < 2) do
2. x = x+1

3. end

4. return x

compute Env(x, /) for each program location /, where ...

Env(x,2) = Env(x,1) U Env(x,3)

Actually, what we aim to compute is the least solution of function Env, i.e:

Env®(L, /) U Env'(L,l) U Env3(L,0) U ... UEnV(L, 1) U ...

24/31



Iteration ? (example 2)

1. x : =203

while (x < 1000) do
2. X 1= x+1

3. end

4. return x

Compute Env(x, [) for each program location /...
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Iteration ? (example 2)

1. x : =203

while (x < 1000) do
2. X 1= x+1

3. end

4. return x

Compute Env(x, [) for each program location /...

What happens if we replace x := x+1byx := x-17?

How to cope with such loooong, or even infinite, computations ?
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A practical solution : Widening & Narrowing operators

See Hakjoo Oh slides ...
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Challenges for static analysis

Accuracy vs scalability trade-off . ..

vVvYvyVvyyy

inter-procedural analysis (+ recursivity . ..

multi-threading

dynamic memory allocation
modular reasonning
libraries (+ legacy code)
etc.

)
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Application to vulnerability detection ?

Clearly may provide some useful features:

>

>
>
>
>

out-of-bounds array access

arithmetic overflows

incorrect memory access (null pointer, mis-aligned address)
use-after-free

etc.
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Application to vulnerability detection ?

Clearly may provide some useful features:

» out-of-bounds array access

» arithmetic overflows

» incorrect memory access (null pointer, mis-aligned address)
» use-after-free

> etc.

But still some limitations:
» exploitability analysis (beyond standard program semantics) ?
» relevant and accurate memory model (for heap and stack)
» self-modifying code (e.g., malwares)
» binary code analysis (see next slide !)
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Static analysis on binary code

Static analysis relies on a (clear) program semantics
» can be done at the assembly-level (or IR)
» but disassembling is undecidable ...

» ...and disassemblers may rely on static analysis !
(to retrieve the program CFG)
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Static analysis on binary code

Static analysis relies on a (clear) program semantics
» can be done at the assembly-level (or IR)
» but disassembling is undecidable ...

» ...and disassemblers may rely on static analysis !
(to retrieve the program CFG)

Static analysis on low-level code is difficult

> no types (a single type for value, addresses, data, code, ..

> address computation is pervasive ...
ex: mov eax, [ecx + 42]

» function bounds cannot always be retrieved
— many un-initialized memory locations

» sacalability issues
> efc.

)
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What help for “security analysis” ?

“security analysis” = vulnerability detection

A pragmatic approach:

1. annotate the code with “vulnerability checks” (e.g., frama-c -rte)
i.e., assertions to detect integer overflows, invalid memory accesses
(arrays, pointers), etc
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What help for “security analysis” ?

“security analysis” = vulnerability detection

A pragmatic approach:

1. annotate the code with “vulnerability checks” (e.g., frama-c -rte)
i.e., assertions to detect integer overflows, invalid memory accesses
(arrays, pointers), etc

2. run a VSA
— reveals a lot of hot spots (= unchecked assertions)

3. add user-defined assertions when possible ...
e.g., function pre/post conditions, loop invariants, extra information ...
— consider proving (some of) these assertions ?
4. run the VSA again . ..
= a set of potential vulnerabilities remains, to be discharged by other means,
possibly on a program slice
(false positive ? real bug but harmless w.r.t security ? real vulnerability ?)

Rk: some static analysis tools also provide bug finding facilities
(i.e., no false postives, .. .but false negatives instead)
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Tool examples

Disclaimer: non limitative nor objective list | (see wikipedia for more info)

Source-level tools
> Astree
» Coverity, Polyspace, CodeSonar, HP Fortify, VeraCode
» Frama-C, Fluctuat
> efc, efc, ...
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Tool examples

Disclaimer: non limitative nor objective list | (see wikipedia for more info)

Source-level tools
> Astree
» Coverity, Polyspace, CodeSonar, HP Fortify, VeraCode
» Frama-C, Fluctuat
> etc, efc, ...

Some binary-level tools
> x86-CodeSurfer

» VeraCode

» Angr

» BinSec plateform

> etc ?

You can see also:
» the CERT webpages
» the Microsoft “Secure Development Lifecycle” . ..
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