
Software security, secure programming

An overview of
Software Security Analysis Techniques

Master M2 Cybersecurity & MoSiG

Academic Year 2020 - 2021

Software Security

The ability of a SW to function correctly under malicious attacks

“function correctly” ?

I CIA: no crash (!), no disclosure/erasure of sensible data
I no bypass of security policy rules
I no deviation from intended behavior (arbitrary code execution)

→ what the SW should not do ...

“malicious attacks” ?
I Well-crafted attack vectors, based on knowledge about:

I execution platform: libraries, OS/HW protections
I target software: code, patches
I up-to-date vulnerabilities and exploit techniques

I Coming from:
external user, other applications, internal threads, execution plateform

→ much beyond unexpected input/execution conditions

secure software 6= robust/safe/fault-tolerant software

2 / 10

Root causes of insecure softwares

“A software flaw that may become a security threat . . . ”
6= kinds of bugs w.r.t security:

I harmless: only leads to incorrect results or “simple” crash
I exploitable: can lead to unsecure behaviors . . .

Examples of exploitable vulnerabilities
(combinations of:)

I spatial/temporal memory errors
I unsecure coding patterns (lack of input sanitization, access control)
I (side-channel) information leakage
I race conditions

⇒ influence of programming language, compilation tool,
+ execution environment (plateform, OS, users . . .)

3 / 10

Vulnerability detection and analysis

A major security concern . . .

I 5200 new CVEs in 2012, 6400 in 2016, 14600 in 2017, 16400 in 2018 ...
I applications and OS editors, security agencies, defense departments, IT

companies, . . .

. . . and a business !
Some 0-day selling prices: see Zerodium web site . . .

Two distinct problems

1. detection: identify (security related) bugs (0-days)

2. analysis: evaluate their dangerousness
Are they exploitable? How difficult is it? Which consequences?

4 / 10

The current “industrial” practice

A 2-phase approach

1. (pseudo-random) fuzzing, fuzzing, and fuzzing . . .
↪→ to produce a huge number of program crashes

2. in-depth manual crash analysis
↪→ to identify exploitable bugs and obtain PoC exploits
(ignoring protections)

Drawbacks
I A time consuming activity

(very small ratio “exploitable flaws/simple bugs” !)
∼ 100,000 open bugs for Linux Ubuntu ; 8000 for Firefox

I Would require a better tool assistance . . .
(e.g., “smart” disassembler, trace analysis, debuggers ?)

example: crash of /bin/make on Linux . . .

5 / 10

The “academic” research trends

Re-use and adapt validation oriented code analysis techniques

I static analysis, bounded model-checking
I test generation:

symbolic/concolic execution, genetic algos, etc.
I dynamic (trace based) analysis

security analysis 6= safety analysis !

I should be carried on the executable code
I exploit analysis ⇒ beyond source-level semantics

(understand what can happen after an undefined behavior)

Main issue: scalability ! . . .

DARPA CGC: software security tool competition (1st prize: $2,000.000)

6 / 10

Outline

Checking Software Security ?

Outline of the next part of the course on this topic

Oral presentations

Some security-oriented code analysis techniques

I Fuzzing
how to make a program crash ?

I Dynamic Analysis
collect (more) useful information at runtime

I (Dynamic) Symbolic Execution (DSE)
explore a (comprehensive) subset of the execution sequences

I Static Analysis and Abstract Interpretation
analyse an approximation of the code behaviour without executing it

And (depending on time available !) an overview of:
I code obfuscation techniques
I stronger fault models (e.g., fault injection)

7 / 10

Course organization

I lectures

I paper exercises

I lab sessions (on tools)
static analysis, DSE, fuzzing, . . .

I oral presentations

8 / 10

Outline

Checking Software Security ?

Outline of the next part of the course on this topic

Oral presentations

Suggested topics (a non limitative list !)

I Programming languages and/or execution plateforms
↪→ focus on specific features, explain the strenght/weaknesses, and the
associated protections . . .

I Java JVM / Android / . . .
I Golang, . . .
I JavaScript / PhP . . .
I . . .

I Protections
I Control-Flow Integrity (CFI)
I Windows 10 protections

I Malwares
principles, detection and identification techniques

I Code (de)-obfuscation techniques

I Vulnerability exploitation techniques
Return-Oriented-Programming (ROP), defeating ASLR, etc.

I Side-channel attacks
I . . .

9 / 10

Organisation

One oral presentation per “binôme” (team of 2 students)

schedule:
I before Dec. the 9th

choose your subject (and binôme)
→ sent it to me by e-mail !

I [weeks of 5th and 11th of January]
oral presentations

I 15 mn. presentation per binômes (with slides) //
I a written report (3-5 pages)

10 / 10

	Checking Software Security ?
	Outline of the next part of the course on this topic
	Oral presentations

