
-128

Two’s complement  representation

unsigned

    

127

255

-1

0

0xFF0x00 0x0F

127 128126

1260

hexadecimal

signed

    

In case of wrap-around :
     - signed : 255+1=0
     - unsigned : 127+1=-128  and -128+1 = 127



Exercise 1- explanation

int offset, len ;  // signed integers
...
/* first check that both offset and len are positives */
if (offset < 0 || len <= 0)
    return -EINVAL;  
/* if offset + len exceeds the MAXSIZE threshold, or in case of overflow, 
    return an error code */
 offset and len are both signed positive values and signed integer overflow 
is an undefined behavior
  => offset + len <0 is not expected to happen, this check is removed by the 
optimizer !
if ((offset + len > MAXSIZE) || (offset + len < 0) 
    return -EFBIG // offset + len does overflow
/* assume from now on that len + offset did not overflow ... */
offset + len can be a negative value ...



Exercise 1- possible corrections

1) See the corresponding CERT secure coding pattern 

2) used unsigned integers 
(no undefined behaviors, always wrap-arround)

3) use compiler options to enfore wrap-aroud :
     -fno-strict-overflow and -f-wrapv

https://wiki.sei.cmu.edu/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow


Exercise 2 



Exercise 3

typedef struct {void (*f)(void);} st;
void nothing (){ printf("Nothing\n"); }
 
int main(int argc , char * argv [])
{ st *p1;
 char *p2;
 p1=(st*) malloc(sizeof(st));
 p1 ->f=& nothing;
 free(p1);
 p2=malloc(strlen(argv [1]));     – p2 may point to the memory cell just freed
 strcpy(p2 ,argv [1]);                   -- this cell is initialized with a user input
 p1 ->f();
return 0;}

=>  arbitrary code execution ! (see next Lab)



Assigning pointers to NULL when they are 
freed ? 

– Apply this solution to the previous example
– Explain why this solution may not work in case of 

compiler optimization
• Assignment p1=null may be suppressed if p1 is not re-used (but 

one of its aliases is)

– Explain why this solution is not complete
• Pointer aliases are not set to NULL

– Propose a more complete solution
• Use a static alias detection analysis (pb : undecidable, over-

approximation)
• Runtime garbage collection (pb : efficiency issues?)



Exercise 4

$userName = $_POST["user"];
$command = 'ls -l /home/' . $userName;
system($command);

Explain and correct the security weaknesses of 
this code ?
Possible input: ;rm -rf /

=> assigns to $command:
                           ls -l /home/;rm -rf /



Exercise 4 - correction

• Black listing : check for occurrences of 
dangerous characters (e.g, ; | &) 

• White listing with a regular expression
•         ^[a-z0-9_-]{3,15}$ 

• https://unix.stackexchange.com/questions/15
7426/what-is-the-regex-to-validate-linux-users

https://unix.stackexchange.com/questions/157426/what-is-the-regex-to-validate-linux-users
https://unix.stackexchange.com/questions/157426/what-is-the-regex-to-validate-linux-users


static bool is_valid_name (const char *name) 
{ /* * User/group names must match [a-z_][a-z0-9_-]*[$] */ 
   if (('\0' == *name) || 
   !((('a' <= *name) && ('z' >= *name)) || ('_' == *name)))  { 
   return false; 
} 
while ('\0' != *++name) { 
if (!(( ('a' <= *name) && ('z' >= *name) ) || 
     ( ('0' <= *name) && ('9' >= *name) ) || ('_' == *name) || 
     ('-' == *name) || ( ('$' == *name) && ('\0' == *(name + 1)) ) )) { 
     return false; } } 
return true; }

(assuming the input size has been checked beforehand)

Exercise 4  - Example



Exercise 5 question 1

• os.mkdir(path[, mode]) : Create a directory 
named path with numeric mode mode. The 
default mode is 0777 (octal). If the directory 
already exists, OSError is raised.

• Possible caveats:
– mkdir is a potentialy dangerous operation
– Defaults permissions are not necessarily known
– 0777 gives very liberal permissions (drwxrwxrwx)

https://docs.python.org/2/library/exceptions.html#exceptions.OSError


Exercise 5 question 2

What is the security issue in this code ?

def makeNewUserDir(username):
   if invalidUsername(username):
   #avoid CWE-22 and CWE-78
   print('Usernames cannot contain invalid characters')
   return False
try:
   raisePrivileges()
   os.mkdir('/home/' + username)
   lowerPrivileges()
except OSError:
   print('Unable to create new user directory for user:' + username)
   return False
return True
 

- May end with high priviledges set
- Beware of the permissions



Exercise 5 question 3

 

https://cwe.mitre.org/data/definitions/732.html
 
 
function createUserDir($username){
$path = '/home/'.$username;
if(!mkdir($path)){ return false;}
if(!chown($path,$username)){rmdir($path); return false;}
return true;}

- the directory is created with permissions 0777
- changing the owner does not change the rights (any user may 
still read/write/execute in the directory)
- no verification of the username
- no error handling (in case an operation fails)



chown()

http://pubs.opengroup.org/onlinepubs/7908799/xsh/chown.html
 NAME
chown - change owner and group of a file  
SYNOPSIS
#include <sys/types.h> 
#include <unistd.h> 
int chown(const char *path, uid_t owner, gid_t group); 

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno is set to indicate the error. If -1 
is returned, no changes are made in the user ID and group ID of the file. 

 ERRORS
The chown() function will fail if: 
[EACCES] Search permission is denied on a component of the path prefix. 
[ELOOP] Too many symbolic links were encountered in resolving path. 
[ENAMETOOLONG] The length of the path argument exceeds {PATH_MAX} or a pathname component is longer 
than {NAME_MAX}. 
[ENOTDIR] A component of the path prefix is not a directory. 
[ENOENT] A component of path does not name an existing file or path is an empty string. 
[EPERM] The effective user ID does not match the owner of the file, or the calling process does not have 
appropriate privileges. 
[EROFS] The named file resides on a read-only file system. 

http://pubs.opengroup.org/onlinepubs/7908799/xsh/chown.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/chown.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/chown.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/systypes.h.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/systypes.h.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/unistd.h.html


Exercise 6

int get_and_verify_password(char *real_password) {
   int  result;
   char *user_password[64];   
  get_password_from_user_somehow(user_password, sizeof(user_password));
  result = !strcmp(user_password, real_password);
  memset(user_password, 0, strlen(user_password));   
  return result;
}

https://www.safaribooksonline.com/library/view/secure-programming-cookbook/
0596003943/ch13s02.html
 
Declare password as volatile, encode memset operation by hand, use special 
functions like SecureZeroMemory() (on Windows)

https://www.safaribooksonline.com/library/view/secure-programming-cookbook/0596003943/ch13s02.html
https://www.safaribooksonline.com/library/view/secure-programming-cookbook/0596003943/ch13s02.html

