
Grenoble INP UGA
Master CybserSecurity & Master MoSiG Year 2018-19

Software Security & Secure Programming

Written Assignment - Wednesday November the 14th, 2017

Duration : 60 minutes – Authorized documents : one A4 sheet of paper – Figures on next page

Exercise 1. (∼ 8 pts)

We consider the C code given on Figure 1, where process() is an external function we do not care about.
Here the programmer tried to prevent possible attacks by carefully checking the parameters of function
copy and process(). However, (at least !) two possible problems may still occur at runtime . . .

Q1. Indicate two (or three ?) possible vulnerabilities in the code of in Figure 1.
Clue : in C, overflow between signed integers is an undefined behavior, which can be freely interpreted
by compilers/optimizers

Q2. For each vulnerability you found, explain :
— how to trigger them, i.e., with which specific input and/or under which specific conditions) ;
— which gain an attacker could get if he/she manages to trigger the vulnerability.

Q3. Update this code to make it secure (while preserving the same “nominal behavior”).

Q4. Is there some external “protections” allowing to make the code given on Figure 1 “secure”, without
modifying it ? Explain your answer in a few lines . . .

Exercise 2. (∼ 8 pts).

We consider a Java Class C1 with a public method m1() allowing to perform some computations on a secret
resource key and returning some integer value. Clearly, this method should not be called by any untrusted
caller. To ensure that, the caller should provide as a parameter to m1() some credential as a string s. A check
is performed within m1() to verify that the caller is legitimate. When it is the case, permission P, allowing
to read key is granted. Later on this permission is disabled (when no longer required). The corresponding
code (in pseudo Java) is given on Figure 2.

Q1. Why is it necessary/useful to explicitly enable permissions to read key inside m1() (since the caller
credential is already explicitly checked beforehand) ? Indicate in which conditions enabling this permission
is required or not required . . .

Q2. The way permission P is enabled/disabled inside m1() is clearly insecure. Indicate why, and how to
correct it.

Q3. If this code was written in C or C++, it would not be possible to enable/disable permission P like in
Figure 2. Explain (in a few lines) which other solutions could be used in terms of access control (indicating
their advantages and drawbacks).

Q4. If a trusted caller executes method m1(), which information could it get about secret buffer key ?
Assuming that function call Hash(sum) returns no confidential information about sum, does m1() leak some
confidential information about key ? If yes, which information, if not, why not ?

Exercise 3. (∼ 4 pts).

In most programming languages the lifetime of a local variable of a function cannot exceed this function
lifetime. In Rust this rules is enforced at compile time. As an example, in Figure 3, the lifetime of local
variable x is the one of function foo. Hence, when function main attempts to write at address p an error
occurs (since p now refers to a non live variable).

Q1. Indicate which vulnerability is avoided by Rust in this example.

Q2. This vulnerability would not be avoided by a similar code written in C. Give a concrete example of gain
an attacker may get when exploiting such a vulnerability.

Q2. When using C, is there some solutions to protect a code from this kind of vulnerabilities ?

Figure 1 – A still vulnerable C code . . .

1 #include <s t d l i b . h>
2 #include <s t d i o . h>
3
4 #define N 128
5
6 void copy and proces s (signed int base , signed int o f f s e t , char s r c []) {
7 // copy src [base+o f f s e t . .N−1] in t o a l o c a l b u f f e r tmp and proces s i t
8 char tmp [N] ;
9 signed int i ;

10
11 i f (base<0 | | o f f s e t <0) {
12 p r i n t f (” i n v a l i d negat ive argument\n”) ;
13 e x i t (1) ;
14 } ;
15
16 i f (base + o f f s e t >= N) {
17 p r i n t f (” use o f index l a r g e r than the array s i z e . . . \ n”) ;
18 e x i t (1) ;
19 } ;
20
21 i f (base + o f f s e t < 0) {
22 p r i n t f (” use o f negat ive index . . . \ n”) ;
23 e x i t (1) ;
24 } ;
25
26 for (i=base ; i < base + o f f s e t ; i++)
27 tmp [i] = s r c [i] ;
28 p r i n t f (”copy i s ok , now p r o c e s s i n g tmp . . . \n”) ;
29 proce s s (tmp) ; // we do not care about t ha t . . .
30 }
31
32 int main () {
33 char ∗T ;
34 signed int b , o ;
35
36 T = malloc (N) ; // a l l o c a t e a b u f f e r T o f s i z e N
37 s can f (”%d” , &b) ; // read b from the keyboard
38 s can f (”%d” , &o) ; // read o from the keyboard
39 copy and proces s (b , o ,T) ;
40 }

Figure 2 – A critical Java class . . .

1 #include <s t d l i b . h>
2 import java . u t i l .∗ ;
3
4 c l a s s C1 {
5
6 int key [N] ; // s e c r e t resource o f s i z e N
7
8 pub l i c int m1 (St r ing s , int l ength) {
9 // s i s used to au t h en t i c a t e the c a l l e r

10 int i , sum , r e s u l t ;
11 b = checkAcess (s) ;
12 i f (b) enab lePermiss ion (P) ; // g i v e read acces to b u f f e r key
13 try {
14 i f (b) {
15 i=0 ;
16 sum= 0 ;
17 while (i<l ength) {
18 sum = key [i] + sum ;
19 i = i+1 ;
20 } ;
21 d i s ab l ePe rmi s s i on (P) ; // d i s a b l e accces s to b u f f e r key
22 i f (sum>0)
23 r e s u l t = Hash (sum) ; // re turns a p o s i t i v e hash va lue
24 else
25 r e s u l t = −1 ;
26 return r e s u l t ;
27 }
28 } catch (IndexOutofBoudsException e) {
29 // in case key i s accessed out o f bounds
30 System . out . p r i n t l n (” Error ! ”) ;
31 }
32 }
33 }

Figure 3 – An example of Rust code . . .

1 fn foo () −> &i32 { // foo re turns a po in t e r to a 32 b i t s i n t e g e r
2 l e t x : i 32 := 0 ; // x i s a l o c a l v a r i a b l e i n i t i a l i z e d to 0
3 &x ; // re turns the address o f x
4 }
5
6 fn main () {
7 l e t p = bar () ; // p i s i n i t i a l i z e d wi th the r e s u l t o f foo
8 ∗p = 42 ; // at tempts to s t o r e 42 at address p => error !
9 }

