COSE312: Compilers

Lecture 18 - Interval Analysis

Hakjoo Oh
2015 Fall

Static Analysis

A general method for automatic and sound approximation of sw run-time behaviors before the execution

- "before": statically, without running sw
- "automatic": sw analyzes sw
- "sound": all possibilities into account
- "approximation": cannot be exact
- "general": for any source language and property
- C, C++, C\#, F\#, Java, JavaScript, ML, Scala, Python, JVM, Dalvik, x86, Excel, etc
- "buffer-overrun?", "memory leak?", "type errors?", "x = y at line 2?", "memory use $\leq \mathbf{2 K}$?", etc

Static Analysis: "Abstract Interpretation" of Programs

- What is the value of the expression?

$$
128 \times 22+(1920 \times-10)+4
$$

- static analysis: "an integer"
- static analysis: "an even number"
- static analysis: "a number in $[-20000,20000]$ "
- What value will x have?

$$
\mathrm{x}:=1 \text {; repeat } \mathrm{x}:=\mathrm{x}+2 \text { until ... }
$$

- static analysis: "an integer"
- static analysis: "an odd number"
- static analysis: " $[1,+\infty]$ "

Interval Analysis Example

Node	Result
1	$x \mapsto \perp$ $y \mapsto \perp$
2	$x \mapsto[0,0]$ $y \mapsto[0,0]$
3	$x \mapsto[0,9]$ $y \mapsto[0,+\infty]$
4	$x \mapsto[1,10]$ $y \mapsto[0,+\infty]$
5	$x \mapsto[1,10]$ $y \mapsto[1,+\infty]$
6	$x \mapsto[10,10]$ $y \mapsto[0,+\infty$

Fixed Point Computation Does Not Terminate

The conventional fixed point computation requires an infinite number of iterations to converge:

Node	initial	1	2	3	10	11	k	∞
1	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$
2	$\begin{aligned} & y \mapsto \perp \\ & \hline x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{array}{\|l\|} \hline y \mapsto \perp \\ \hline x \mapsto[0,0] \\ y \mapsto[0,0] \end{array}$	$\begin{aligned} & y \mapsto \perp \\ & \hline x \mapsto[0,0] \\ & y \mapsto[0,0] \end{aligned}$	$\begin{aligned} & y \mapsto \perp \\ & \hline x \mapsto[0,0] \\ & y \mapsto[0,0] \end{aligned}$	$\begin{aligned} & y \mapsto \perp \\ & x \mapsto[0,0] \\ & y \mapsto[0,0] \end{aligned}$	$\begin{aligned} & y \mapsto \perp \\ & \hline x \mapsto[0,0] \\ & y \mapsto[0,0] \end{aligned}$	$\begin{aligned} & y \mapsto \perp \\ & \hline x \mapsto[0,0] \\ & y \mapsto[0,0] \end{aligned}$	$\begin{aligned} & y \mapsto \perp \\ & x \mapsto[0,0] \\ & y \mapsto[0.0] \end{aligned}$
3	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto[0,0] \\ & y \mapsto[0,0] \end{aligned}$	$x \mapsto[0,1]$ $y \mapsto[0,1]$	$\begin{aligned} & x \mapsto[0,2] \\ & y \mapsto[0,2] \\ & \hline \end{aligned}$	$\begin{aligned} & x \mapsto[0,9] \\ & y \mapsto[0,9] \end{aligned}$	$\begin{aligned} & x \mapsto[0,9] \\ & y \mapsto[0,10] \end{aligned}$	$\begin{aligned} & x \mapsto[0,9] \\ & y \mapsto[0, k-1] \end{aligned}$	$\begin{aligned} & x \mapsto[0,9] \\ & y \mapsto[0,+\infty] \end{aligned}$
4	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto[1,1] \\ & y \mapsto[0,0] \end{aligned}$	$x \mapsto[1,2]$ $y \mapsto[0,1]$	$x \mapsto[1,3]$ $y \mapsto[0,2]$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[0,9] \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[0,10] \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[0, k-1] \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[0,+\infty] \end{aligned}$
5	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$x \mapsto[1,1]$ $y \mapsto[1,1]$	$\begin{aligned} & x \mapsto[1,2] \\ & y \mapsto[1,2] \\ & \hline \end{aligned}$	$\begin{aligned} & x \mapsto[1,3] \\ & y \mapsto[1,3] \\ & \hline \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[1,10] \\ & \hline \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[1,11] \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[1, k] \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[1,+\infty] \end{aligned}$
6	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto[0,0] \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto[0,1] \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto[0,2] \end{aligned}$	$\begin{aligned} & x \mapsto[10,10] \\ & y \mapsto[0,9] \end{aligned}$	$\begin{aligned} & x \mapsto[10,10] \\ & y \mapsto[0,10] \end{aligned}$	$\begin{aligned} & x \mapsto[10,10] \\ & y \mapsto[0, k-1] \end{aligned}$	$\begin{aligned} & x \mapsto[10,10] \\ & y \mapsto[0,+\infty] \end{aligned}$

Fixed Point Computation with Widening and Narrowing

Two staged fixed point computation:
(1) increasing widening sequence
(2) decreasing narrowing sequence

1. Fixed Point Computation with Widening

Node	initial	1	2	3
1	$\begin{aligned} & \hline x \mapsto \perp \\ & y \mapsto \perp \\ & \hline \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$
2	$\begin{aligned} & \hline x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto[\mathbf{0 , 0]} \\ & y \mapsto[\mathbf{0}, \mathbf{0}] \end{aligned}$	$\begin{aligned} & x \mapsto[\mathbf{x}, \mathbf{0}] \\ & \boldsymbol{y} \mapsto[\mathbf{0}, \mathbf{0}] \end{aligned}$	$\begin{aligned} & x \mapsto[0,0] \\ & y \mapsto[0,0] \end{aligned}$
3	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto[\mathbf{0 , 0]} \\ & y \mapsto[0,0] \end{aligned}$	$\begin{aligned} & x \mapsto[0,9] \\ & y \mapsto[0,+\infty] \\ & \hline \end{aligned}$	$\begin{aligned} & x \mapsto[0,9] \\ & y \mapsto[0,+\infty] \end{aligned}$
4	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto[\mathbf{1 , 1]}] \\ & y \mapsto[\mathbf{0 , 0}] \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[0,+\infty] \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[0,+\infty] \end{aligned}$
5	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto[1,1] \\ & y \mapsto[1,1] \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[1,+\infty] \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[1,+\infty] \end{aligned}$
6	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto \perp \end{aligned}$	$\begin{aligned} & x \mapsto \perp \\ & y \mapsto[0,0] \end{aligned}$	$\begin{aligned} & x \mapsto[10,+\infty] \\ & y \mapsto[0,+\infty] \end{aligned}$	$\begin{aligned} & x \mapsto[10,+\infty] \\ & y \mapsto[0,+\infty] \end{aligned}$

2. Fixed Point Computation with Narrowing

Node	initial	1	2
1	$x \mapsto \perp$	$\boldsymbol{x} \mapsto \perp$	$x \mapsto \perp$
2	$\begin{aligned} & y \mapsto \perp \\ & x \mapsto[0,0] \\ & y \mapsto[0,0] \end{aligned}$	$\begin{aligned} & y \mapsto \perp \\ & x \mapsto[0,0] \\ & y \mapsto[0,0] \end{aligned}$	$\begin{aligned} & y \mapsto \perp \\ & x \mapsto[0,0] \\ & y \mapsto[0,0] \end{aligned}$
3	$\begin{aligned} & x \mapsto[0,9] \\ & y \mapsto[0,+\infty] \end{aligned}$	$\begin{aligned} & x \mapsto[0,9] \\ & y \mapsto[0,+\infty] \end{aligned}$	$\begin{aligned} & x \mapsto[0,9] \\ & y \mapsto[0,+\infty] \end{aligned}$
4	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[0,+\infty] \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[0,+\infty] \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[0,+\infty] \end{aligned}$
5	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[1,+\infty] \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[1,+\infty] \end{aligned}$	$\begin{aligned} & x \mapsto[1,10] \\ & y \mapsto[1,+\infty] \end{aligned}$
6	$\begin{aligned} & x \mapsto[10,+\infty] \\ & y \mapsto[0,+\infty] \end{aligned}$	$\begin{aligned} & x \mapsto[10,10] \\ & y \mapsto[0,+\infty] \end{aligned}$	$\begin{aligned} & x \mapsto[10,10] \\ & y \mapsto[0,+\infty] \end{aligned}$

Programs

Represent a program by a control-flow graph:

$$
(\mathbb{C}, \hookrightarrow)
$$

- \mathbb{C} : the set of program points (i.e., nodes) in the program
- $(\hookrightarrow) \subseteq \mathbb{C} \times \mathbb{C}$: the control-flow relation
- $c \hookrightarrow c^{\prime}: c$ is a predecessor of c^{\prime}
- Each program point \boldsymbol{c} is associated with a command, denoted $\mathbf{c m d}(\boldsymbol{c})$

Commands

A simple set of commands:

$$
\begin{aligned}
c m d & \rightarrow \text { skip }|x:=e| x<n \\
e & \rightarrow n|x| e+e|e-e| e * e \mid e / e
\end{aligned}
$$

Interval Domain

- Definition:

$$
\mathbb{I}=\{\perp\} \cup\{[l, u] \mid l, u \in \mathbb{Z} \cup\{-\infty,+\infty\} \wedge l \leq u\}
$$

- An interval is an abstraction of a set of integers:
- $\gamma([1,5])=$
- $\gamma([3,3])=$
- $\gamma([0,+\infty])=$
- $\gamma([-\infty, 7])=$
- $\gamma(\perp)=$

Concretization/Abstraction Functions

- $\gamma: \mathbb{I} \rightarrow \mathcal{P}(\mathbb{Z})$ is called concretization function:

$$
\begin{aligned}
\gamma(\perp) & =\emptyset \\
\gamma([a, b]) & =\{z \in \mathbb{Z} \mid a \leq z \leq b\}
\end{aligned}
$$

- $\alpha: \mathcal{P}(\mathbb{Z}) \rightarrow \mathbb{I}$ is abstraction function:
- $\alpha(\{2\})=$
- $\alpha(\{-1,0,1,2,3\})=$
- $\alpha(\{-1,3\})=$
- $\alpha(\{1,2, \ldots\})=$
- $\alpha(\emptyset)=$
- $\alpha(\mathbb{Z})=$

$$
\begin{aligned}
\alpha(\emptyset) & =\perp \\
\alpha(S) & =[\min (S), \max (S)]
\end{aligned}
$$

Partial Order $(\sqsubseteq) \subseteq \mathbb{I} \times \mathbb{I}$

- $\perp \sqsubseteq i$ for all $i \in \mathbb{I}$
- $i \sqsubseteq[-\infty,+\infty]$ for all $i \in \mathbb{I}$.
- $[1,3] \sqsubseteq[0,4]$
- $[1,3] \mathbb{Z}[0,2]$

Definition:

- Mathematical:

$$
i_{1} \sqsubseteq i_{2} \text { iff } \gamma\left(i_{1}\right) \subseteq \gamma\left(i_{2}\right)
$$

- Implementable:

$$
i_{1} \sqsubseteq i_{2} \text { iff }\left\{\begin{array}{l}
i_{1}=\perp \vee \\
i_{2}=[-\infty,+\infty] \vee \\
\left(i_{1}=\left[l_{1}, u_{1}\right] \wedge i_{2}=\left[l_{2}, u_{2}\right] \wedge l_{1} \geq l_{2} \wedge u_{1} \leq u_{2}\right)
\end{array}\right.
$$

Partial Order

Join \sqcup and Meet \sqcap Operators

- The join operator computes the least upper bound:
- $[1,3] \sqcup[2,4]=[1,4]$
- $[1,3] \sqcup[7,9]=[1,9]$
- The conditions of $i_{1} \sqcup i_{2}$:
(1) $i_{1} \sqsubseteq i_{1} \sqcup i_{2} \wedge i_{2} \sqsubseteq i_{1} \sqcup i_{2}$
(2) $\forall i . i_{1} \sqsubseteq i \wedge i_{2} \sqsubseteq i \Longrightarrow i_{1} \sqcup i_{2} \sqsubseteq i$
- Definition:

$$
\begin{aligned}
i_{1} \sqcup i_{2} & =\alpha\left(\gamma\left(i_{1}\right) \cup \gamma\left(i_{2}\right)\right) \\
\perp \sqcup i & =i \\
i \sqcup \perp & =i \\
{\left[l_{1}, u_{1}\right] \sqcup\left[l_{2}, u_{2}\right] } & =\left[\min \left(l_{1}, l_{2}\right), \max \left(l_{1}, l_{2}\right)\right]
\end{aligned}
$$

Join \sqcup and Meet \sqcap Operators

- The meet operator computes the greatest lower bound:
- $[1,3] \sqcap[2,4]=[2,3]$
- $[1,3] \sqcap[7,9]=\perp$
- The conditions of $\boldsymbol{i}_{1} \sqcap i_{2}$:
(1) $i_{1} \sqsubseteq i_{1} \sqcup i_{2} \wedge i_{2} \sqsubseteq i_{1} \sqcup i_{2}$
(2) $\forall i . i \sqsubseteq i_{1} \wedge i \sqsubseteq i_{2} \Longrightarrow i \sqsubseteq i_{1} \sqcap i_{2}$
- Definition:

$$
\begin{aligned}
& i_{1} \sqcap i_{2}=\alpha\left(\gamma\left(i_{1}\right) \cap \gamma\left(i_{2}\right)\right) \\
\perp \sqcap i= & \perp \\
i \sqcap \perp & =\perp \\
{\left[l_{1}, u_{1}\right] \sqcap\left[l_{2}, u_{2}\right] } & =\left\{\begin{array}{ll}
\left.\perp \max \left(l_{1}, l_{2}\right), \min \left(l_{1}, l_{2}\right)\right] & \begin{array}{l}
\text { o.w. }
\end{array}
\end{array}\right) . \begin{array}{l}
\max \left(l_{1}, l_{2}\right)>\min \left(l_{1}, l_{2}\right)
\end{array}
\end{aligned}
$$

Widening and Narrowing

A simple widening operator for the Interval domain:

$$
\begin{array}{rccl}
{[a, b]} & \nabla & \perp & =[a, b] \\
\perp & \nabla & {[c, d]} & =[c, d] \\
{[a, b]} & \nabla & {[c, d]} & =[(c<a ?-\infty: a),(b<d ?+\infty: b)]
\end{array}
$$

A simple narrowing operator:

$$
\begin{array}{rlll}
{[a, b]} & \triangle & \perp & =\perp \\
\perp & \triangle & {[c, d]} & =\perp \\
{[a, b]} & \triangle & {[c, d]} & =[(a=-\infty ? c: a),(b=+\infty ? d: b)]
\end{array}
$$

Interval-based Abstract States

$$
\mathbb{S}=\operatorname{Var} \rightarrow \mathbb{I}
$$

Partial order, join, meet, widening, and narrowing are lifted pointwise:

$$
\begin{aligned}
& s_{1} \sqsubseteq s_{2} \text { iff } \forall x \in \operatorname{Var} . s_{1}(x) \sqsubseteq s_{2}(x) \\
& s_{1} \sqcup s_{2}=\lambda x . s_{1}(x) \sqcup s_{2}(x) \\
& s_{1} \sqcap s_{2}=\lambda x . s_{1}(x) \sqcap s_{2}(x) \\
& s_{1} \nabla s_{2}=\lambda x . s_{1}(x) \nabla s_{2}(x) \\
& s_{1} \triangle s_{2}=\lambda x . s_{1}(x) \triangle s_{2}(x)
\end{aligned}
$$

The Domain of Interval Analysis

$$
\mathbb{D}=\mathbb{C} \rightarrow \mathbb{S}
$$

Partial order, join, meet, widening, and narrowing are lifted pointwise:

$$
\begin{gathered}
d_{1} \sqsubseteq d_{2} \text { iff } \forall c \in \mathbb{C} . d_{1}(x) \sqsubseteq d_{2}(x) \\
d_{1} \sqcup d_{2}=\lambda c . d_{1}(c) \sqcup d_{2}(c) \\
d_{1} \sqcap d_{2}=\lambda c \cdot d_{1}(c) \sqcap d_{2}(c) \\
d_{1} \nabla d_{2}=\lambda c . d_{1}(c) \nabla d_{2}(c) \\
d_{1} \triangle d_{2}=\lambda c . d_{1}(c) \triangle d_{2}(c)
\end{gathered}
$$

Abstract Evaluation of Expressions

$$
\begin{aligned}
& e \rightarrow n|x| e+e|e-e| e * e \mid e / e \\
& e v a l: e \times \mathbb{S} \rightarrow \mathbb{I} \\
& \operatorname{eval}(n, s)=[n, n] \\
& \operatorname{eval}(x, s)=s(x) \\
& \operatorname{eval}\left(e_{1}+e_{2}, s\right)=\operatorname{eval}\left(e_{1}, s\right) \hat{+} \operatorname{eval}\left(e_{2}, s\right) \\
& \operatorname{eval}\left(e_{1}-e_{2}, s\right)=\operatorname{eval}\left(e_{1}, s\right) \hat{-} \operatorname{eval}\left(e_{2}, s\right) \\
& \operatorname{eval}\left(e_{1} * e_{2}, s\right)=\operatorname{eval}\left(e_{1}, s\right) \hat{*} \operatorname{eval}\left(e_{2}, s\right) \\
& \operatorname{eval}\left(e_{1} / e_{2}, s\right)=\operatorname{eval}\left(e_{1}, s\right) \hat{/} \operatorname{eval}\left(e_{2}, s\right)
\end{aligned}
$$

Abstract Binary Operators

$$
\begin{aligned}
i_{1} \hat{+} i_{2} & =\alpha\left(\left\{z_{1}+z_{2} \mid z_{1} \in \gamma\left(i_{1}\right) \wedge z_{2} \in \gamma\left(i_{2}\right)\right\}\right) \\
i_{1} \hat{-} i_{2} & =\alpha\left(\left\{z_{1}-z_{2} \mid z_{1} \in \gamma\left(i_{1}\right) \wedge z_{2} \in \gamma\left(i_{2}\right)\right\}\right) \\
i_{1} \hat{*} i_{2} & =\alpha\left(\left\{z_{1} * z_{2} \mid z_{1} \in \gamma\left(i_{1}\right) \wedge z_{2} \in \gamma\left(i_{2}\right)\right\}\right) \\
i_{1} \hat{/} i_{2} & =\alpha\left(\left\{z_{1} / z_{2} \mid z_{1} \in \gamma\left(i_{1}\right) \wedge z_{2} \in \gamma\left(i_{2}\right)\right\}\right)
\end{aligned}
$$

Implementable version:

$$
\begin{aligned}
\perp \hat{+} i & = \\
i \hat{+} \perp & = \\
{\left[l_{1}, u_{1}\right] \hat{+}\left[l_{2}, u_{2}\right] } & = \\
{\left[l_{1}, u_{1}\right] \hat{-}\left[l_{2}, u_{2}\right] } & = \\
{\left[l_{1}, u_{1}\right] \hat{*}\left[l_{2}, u_{2}\right] } & = \\
{\left[l_{1}, u_{1}\right] /\left[l_{2}, u_{2}\right] } & =
\end{aligned}
$$

Abstract Execution of Commands

$$
\begin{aligned}
& f_{c}: \mathbb{S} \rightarrow \mathbb{S} \\
& f_{c}(s)=\left\{\begin{array}{l}
s \\
{[x \mapsto \operatorname{eval}(e, s)] s} \\
{[x \mapsto s(x) \sqcap[-\infty, n-1]] s}
\end{array}\right. \\
& \begin{array}{l}
\operatorname{cmd}(c)=\text { skip } \\
\operatorname{cmd}(c)=x:=e \\
\operatorname{cmd}(c)=x<n
\end{array}
\end{aligned}
$$

Equation

We aim to compute

$$
\boldsymbol{X}: \mathbb{C} \rightarrow \mathbb{S}
$$

such that

$$
X=\lambda c . f_{c}\left(\bigsqcup_{c^{\prime} \rightarrow c} X\left(c^{\prime}\right)\right)
$$

In fixed point form:

$$
X=F(X)
$$

where

$$
F(X)=\lambda c \cdot f_{c}\left(\bigsqcup_{c^{\prime} \hookrightarrow c} X\left(c^{\prime}\right)\right)
$$

The solution of the equation is a fixed point of

$$
F:(\mathbb{C} \rightarrow \mathbb{S}) \rightarrow(\mathbb{C} \rightarrow \mathbb{S})
$$

Fixed Point Computation

The least fixed point computation may not converge:

$$
f i x F=\bigsqcup_{i \in \mathbb{N}} F^{i}(\perp)=F^{0}(\perp) \sqcup F^{1}(\perp) F^{2}(\perp) \sqcup \cdots
$$

Instead, we aim to find a (not necessarily least) fixed point with widening and narrowing:
(1) widening iteration:

$$
\begin{aligned}
\boldsymbol{X}_{0} & =\perp & & \\
\boldsymbol{X}_{i} & =\boldsymbol{X}_{i-1} & & \text { if } \boldsymbol{F}\left(\boldsymbol{X}_{i-1}\right. \\
& =\boldsymbol{X}_{i-1} \nabla \boldsymbol{F}\left(\boldsymbol{X}_{i-1}\right) & & \text { otherwise }
\end{aligned}
$$

(2) narrowing iteration:

$$
Y_{i}= \begin{cases}\hat{A} & \text { if } i=0 \tag{1}\\ Y_{i-1} \triangle F\left(Y_{i-1}\right) & \text { if } i>0\end{cases}
$$

($\hat{\boldsymbol{A}}$ is the result from the widening iteration, i.e., $\lim _{\boldsymbol{i}} \boldsymbol{X}_{\boldsymbol{i}}$)

Need of Static Analysis Theory

- How to design or choose an abstract domain?
- How to ensure that the abstract execution is sound?
- How to design widening and narrowing?
- How to ensure the termination of widening and narrowing?
- ...

Abstract Interpretation Theory

