Computer Security Course. Dawn Song

Software Security: Vulnerability Analysis

Finding Bugs/Vulnerabilities

e Attackers:
— Find vulnerabilities
— Weaponize them (exploit the vulnerabilities)
— Use exploits to compromise machines & systems
— Exploits are worth money

Find Create
e = : e
Vulnerability Exploit e

Market for Odays

Sell for S10K-1M
> eERO DAY
e.:GLEG & INITIATIVE

¢ 0day Market @

; eEye Digital Security”
@0daybid ye Lig y
This is the place where you can buy unpatched and
(Il .. 5 3 sye, e
Breakimpo’ih undisclosured vulnerabilities

Find it before they do.” Sq u 0 rQ.
. Security

iDEFEl‘ISE®

Dawn Song

Finding Bugs/Vulnerabilities

e Defenders:

— Find vulnerabilities & eliminate them
* Improve security of software

* Easier and cheaper to fix a vulnerability before software deployed
* After deployed: patching is expensive

— ldeally prove a program is free of vulnerabilities

Bug finding g Bug fixing [

Internal fix —> Lower cost

=

Patch —> Higher cost

Dawn Song

Example: Static Device Verifier

e Verifies that drivers are not making illegal function calls or
causing system corruption

— SLAM project at Microsoft
— http://research.microsoft.com/en-us/projects/slam

 “The requirements for the Windows logo program (now
Windows Hardware Certification Program) state that a
driver must not fail while running under Driver Verifier.”

Techniques & Approaches

Automatic test
case generation

Fuzzing Dynamic
Symbolic
Execution
Lower coverage
Lower false positive
Higher false negative

Static analysis

Program
verification

Higher coverage
Lower false negative

Higher false positive

Dawn Song

Fuzzing

nnnnnnnn

Finding bugs in PDF viewer

PDF viewer R el o

?

nnnnnnnn

Black-box Fuzz Testing

e Given a program, simply feed it random inputs, see
whether it crashes

* Advantage: really easy

* Disadvantage: inefficient
— Input often requires structures, random inputs are likely
to be malformed

— Inputs that would trigger a crash is a very small fraction,
probability of getting lucky may be very low

Fuzzing

« Automatically generate test cases
* Many slightly anomalous test cases are input into a target
 Application is monitored for errors

 Inputs are generally either file based (.pdf, .png, .wav, .mpg)

e Or network based...
— http, SNMP, SOAP

Monitor
Input Inputs -
Generator Application

Dawn Song

Regression vs. Fuzzing

| Regression Fuzing

Definition

Goals

Run program on many normal Run program on many abnormal
inputs, look for badness. inputs, look for badness.

Prevent normal users from Prevent attackers from encountering
encountering errors (e.g. assertion exploitable errors (e.g. assertion

failures are bad). failures are often ok).

Dawn Song

Enhancement |: Mutation-Based Fuzzing

Take a well-formed input, randomly perturb (flipping bit, etc.)
Little or no knowledge of the structure of the inputs is assumed
Anomalies are added to existing valid inputs

Anomalies may be completely random or follow some heuristics (e.g. remove NUL, shift
character forward)

Examples:

- E.g., ZZUF, very successful at finding bugs in many real-world programs,
http://sam.zoy.org/zzuf/

— Taof, GPF, ProxyFuzz, FileFuzz, Filep, etc.

— . —> =) (Crash?
&{é}:@ ras

Take an input Perturb Feed to program

Dawn Song

Example: fuzzing a pdf viewer

Google for .pdf (about 1 billion results)
Crawl pages to build a corpus

Use fuzzing tool (or script)
1. Grabafile
2. Mutate that file
3. Feedittothe program
4. Record if it crashed (and input that crashed it)

Mutation-based Fuzzing In Short
I N e

Mutation-
based Super easy to Little to no protocol Limited by initial May fail for protocols

setup and knowledge required corpus with checksums, those
automate ‘ ; which depend on

- v = challenge

Dawn Song

Enhancement Il: Generation-Based Fuzzing

Test cases are generated from some description of the format: RFC,
documentation, etc.

— Using specified protocols/file format info
— E.g., SPIKE by Immunity
http://www.immunitysec.com/resources-freesoftware.shtml

Anomalies are added to each possible spot in the inputs
Knowledge of protocol should give better results than random fuzzing

H-(2- %, o

Take a spec Generate Feed to program
concrete inputs

Dawn Song

Example: Protocol Description

//png.spk
//author: Charlie Miller

// Header - fixed.
s _binary ("89504E470D0A1A0A"™) ;

// TIHDRChunk
s binary block size word bigendian ("IHDR"); //size of data field
s _block start ("IHDRcrc");

s _string ("IHDR"); // type

s _block start ("IHDR");
// The following becomes s _int variable for variable stuff
// 1=BINARYBIGENDIAN, 3=ONEBYE

s_push_int (0xla,

1); // Width
s _push int (0x14, 1

) ;

)

)

s _push int (0x8, 3 // Bit Depth - should be 1,2,4,8,16, based on colortype
s_push int (0x3, 3); // ColorType - should be 0,2,3,4,6

s _binary("00 00"); // Compression || Filter - shall be 00 00
s_push int (0x0, 3); // Interlace - should be 0,1

4
s _block end("IHDR");

s _binary block crc word _littleendian ("IHDRcrc"); // crc of type and data

s_block_end("IHDRcrc")'

Dawn Song

Generation-Based Fuzzing In Short
I e

Mutation- Super easy to Little to no protocol
based setup and knowledge required
automate “u" 4,
Generation Writing Have to have spec of
-based generator can be Protocol (Often can

labor intensive find good tools for

for complex

protocols == g, SLE]

existing protocols e.g.

Limited by
initial corpus

Completeness

May fail for protocols
with checksums, those
which depend on =
challenge

Can deal with complex
dependencies e.g.
checksums

Dawn Song

Fuzzing Tools & Frameworks

@ =) Q@@ -»E

Input generation Input injection Bug detection

nnnnnnnn

Input Generation

Existing generational fuzzers for common protocols (ftp, http, SNMP, etc.)
— Mu Dynamics, Codenomicon, PROTOS, FTPFuzz, WebScarab

Fuzzing Frameworks: providing a fuzz set with a given spec
— SPIKE, Peach, Sulley

Mutation-based fuzzers
— Taof, GPF, ProxyFuzz, PeachShark

Special purpose fuzzers
— ActiveX (AxMan), regular expressions, etc.

b

Dawn Song

Input Injection

* Simplest

— Run program on fuzzed file

— Replay fuzzed packet trace
Modify existing program/client

— Invoke fuzzer at appropriate point
Use fuzzing framework

— e.g. Peach automates generating COM interface fuzzers

hE

a
€33,

Bug Detection

See if program crashed
— Type of crash can tell a lot (SEGV vs. assert fail)

Run program under dynamic memory error detector (valgrind/purify)
— Catch more bugs, but more expensive per run.

See if program locks up
Write your own checker: e.g. valgrind skins

q@@@q

Dawn Song

Workflow Automation

e Sulley, Peach, Mu-4000
— Provide tools to aid setup, running, recording, etc.

* Virtual machines: help create reproducible
workload

nnnnnnnn

How Much Fuzzing Is Enough?

Mutation based fuzzers may generate an infinite number of
test cases... When has the fuzzer run long enough?

Generation based fuzzers may generate a finite number of
test cases. What happens when they’ re all run and no bugs

are found?

Code Coverage

Some of the answers to these questions lie
in code coverage

Code coverage is a metric which can be used
to determine how much code has been
executed.

Data can be obtained using a variety of
profiling tools. e.g. gcov

nnnnnnnn

Line Coverage

V

OO0 o w
Vv
NN N

Line/block coverage: Measures how many lines of 1f(
source code have been executed.

1f(
For the code on the right, how many test cases
(values of pair (a,b)) needed for full(100%) line

coverage?

Dawn Song

Branch Coverage

Branch coverage: Measures how many if(a>2)
branches in code have been taken a = 2;
(conditional jmps) if(b > 2)

b = 2;

For the code on the right, how many test cases
needed for full branch coverage?

Dawn Song

Path Coverage

Path coverage: Measures how many £
paths have been taken. CE

OO0 o o
v I Vv

For the code on the right, how many test cases
needed for full path coverage?

Dawn Song

Code Coverage

e Benefits:
— How good is this initial file?
— Am | getting stuck somewhere?

if(packet[0x10] < 7) { //hot path
} else { //cold path

h
— How good is fuzzer X vs. fuzzer Y
— Am | getting benefits from running a different fuzzer?

Dawn Song

Problems of code coverage

For: mySafeCpy (char *dst, char* src) {
if (dst && src)
strcpy(dst, src);

}

Does full line coverage guarantee finding the bug?
O Yes O No

Problems of code coverage

For: mySafeCpy (char *dst, char* src) {
if (dst && src)
strcpy(dst, src);

}

Does full line coverage guarantee finding the bug?
O Yes O No

Does full branch coverage guarantee finding the bug?
O Yes O No

Fuzzing Rules of Thumb

Protocol specific knowledge very helpful
— Generational tends to beat random, better spec’ s make better fuzzers

More fuzzers is better
— Each implementation will vary, different fuzzers find different bugs

The longer you run, the more bugs you may find
Best results come from guiding the process
— Notice where your getting stuck, use profiling!
Code coverage can be very useful for guiding the process: AFL
Can we do better?

Dawn Song

Symbolic Execution
(Next Lecture)

nnnnnnnn

