C vs. Rust

C (the good parts)

Efficient code especially in resource-constrained envir
onments

Direct control over hardware

Performance over safety
* Memory managed manually
* No periodic garbage collection
* Desirable for advanced programmers

But...

Type errors easy to make
* Integer promotion/coercion errors
* Unsigned vs. signed errors
* Integer casting errors

and...

Memory errors easy to make
* Null pointer dereferences
* Buffer overflows, out-of-bound access (no array-bounds chec
king)
* Format string errors

* Dynamic memory errors
* Memory leaks
* Use-after-free (dangling pointer)
* Double free

Cause software crashes and security vulnerabilities.

®

Example: Cis good

Lightweight, low-level control of memory

typedef struct Dummy { int &a; int b; } Dummy;

f Precise memory layout

void foo (void) {
= (Dummy *) malloc (sizeof (struct Dummy)) ;

Dummy *ptr
ptr->a = 2048; <= . .
free (ptr) ; — Lightweight reference

} Destruction

Stack Heap @

LU

Example: Cis not so good

typedef struct Dummy { int a; int b; } Dummy;

void foo (void) {
Dummy *ptr = (Dummy *) malloc (sizeof (struct Dummy)) ;
Dummy *alias = ptr;
free(ptr);
int a = alias.a;« Use after free

free(alias);‘~~.~~~~~~~
}

Aliasing < Mutation

Double free

Stack Heap

Solved by managed languages

Java, Python, Ruby, C#, Scala, Go...

* Restrict direct access to memory

* Run-time management of memory via periodic garbage c
ollection

* No explicit malloc and free, no memory corruption issues
* But

* Overhead of tracking object references
* Program behavior unpredictable due to GC (bad for real-time systems)
* Limited concurrency (global interpreter lock typical)

Larger code size
VM must often be included

Needs more memory and CPU power (i.e. not bare-metal)

®

Requirements for system progra
ms

Must be fast and have minimal runtime overhead

Should support direct memory access, but be memor
y -safe

Rust

Rust

From the official website (http://rust-lang.org):

Rust is a system programming language barely on hardware.

No runtime requirement (runs fast)
Control over memory allocation/destruction.

Guarantees memory safety

Developed to address severe memory leakage and corruption bugs in Firefox
First stable release in 5/2015

®

http://rust-lang.org/

Rust overview

Performance, as with C
* Rust compilation to object code for bare-metal performance

But, supports memory safety

* Programs dereference only previously allocated pointers that have not been freed
* Out-of-bound array accesses not allowed

With low overhead
* Compiler checks to make sure rules for memory safety are followed
e Zero-cost abstraction in managing memory (i.e. no garbage collection)

Via
* Advanced type system
* Ownership, borrowing, and lifetime concepts to prevent memory corruption issues

But at a cost
* Cognitive cost to programmers who must think more about rules for using memory and

references as they program

Rust’'s type system

Rust and typing

Primitive types
*bool
* char (4-byte unicode)
*18/116/132/1i64/isize
*u8/ule/u32/ucd/usize
*£32/f64

Separate bool type
* C overloads an integer to get booleans

* Leads to varying interpretations in API calls
* True, False, or Fail? 1, 0, -1?
* Misinterpretations lead to security issues
* Example: PHP strcmp returns O for both equality *and* failure!

Numeric types specified with width
* Prevents bugs due to unexpected promotion/coercion/rounding

®

Rust and typing

Arrays stored with their length [T; N]

* Allows for both compile-time and run-time checks on arra
y access via []

C Rust

void main (void) { - fn main() {
. = ! 2.3.4.5.6.7.81"*
int nums[8] = let nums vec![1,2,3,4,5,6,7,8];

] - for x in 0..10 {
{1,2,3,4,5,06,7,8}; println!("{}",nums[x]);
for ((x = 0; x < 10; i++) }
printf (“sd\n”,nums [i]) ; }
}
.
8

thread 'main’ panicked at '"index out of bounds: the len 1s 8 but the index 1s 8°',
note: Run with ~RUST BACKTRACE=1 for a backtrace.

L

Rust and bounds checking

But...
* Checking bounds on every access adds overhead

~ fn main() {
let nums = vec![1,2,3,4,5,6,7,8];
= for x in 0..10 {
println!("{}",nums[x]);

}
}
* Arrayst ~ fn main() { erators
let nums = vec![1,2,3,4,5,6,7,8];
* Canus - - for num in &nums {
println!("{}",num);
}

Rust vs C typing errors

Recall issues with implicit integer casts and promotio
ninC
-1 > 0U
21474836470 < -2147483648

Rust’s type system prevents such comparisons

int main() { fn “?ig[;,ﬂ:ﬁ :
unsigned int a = 4294967295; let b:i32 = -1;
‘ 1. ifa==5b{
]._gt(b = i; println!("{} == {}", a, b);
1 a == }
printf ("$u == %d\n",a,b); }
}

rustc 1.15.1 (021bd294c 2017-02-08)

error[EO308]: mismatched types
mashimaro <~> 9:44AM % ./a.out
--> <anon>:4:13
4294967295 == -1 |
4 | if a == b {

error: aborting due to previous error @

Rust vs C typing errors

Same or different?

int main () {

char a=251;

unsigned char b = 251;
printf("a = %$x\n", a);
printf ("b = %$x\n", b);

if (a == b)
printf ("Same\n") ;
else

printf ("Not Same\n");

[e)

mashimaro<> % ./a.out
a = fffffffb

b = fb

Not Same

fn main() {
let a:i8
let b:ug

ifa==>b{
println!{"Same");
} else {
println!("Not Same"};
}

rustc 1.15.1 (021bd294c 2017-02-08)

error[EQ308]: mismatched types
--> <ganon=:5:13

I
5 | if a ==b {

error: aborting due to previous error

®

Rust vs C typing errors
201 > 2007

#include <stdio.h> fn main() {

int main () { let ui:u32 = 201;
: : - let c:i8 =
unsigned int ui = 201; ifui > c {
char c=200; println! ("ui({}) > c({})",ui,c);
: : } else
if (ui > ¢) println! ("ui({}) < c({})",ui,c)
printf ("ui (%d) > c(%d)\n",ui,c); } }
else
} printf ("ui (5d) < c(5d)An", ui,c); rustc 1.15.1 (021bd294c 2017-02-08)

error[EQ308]: mismatched types
--> <anon>:4:13
mashimaro <~> 12:50PM % ./a.out |
ui(201) < c(-50) 4 | if ui =c {

Rust vs C typing errors

In Rust, casting allowed via the “as” keyword

* Follows similar rules as C

* But, warns of literal problem before performing the prom
otion with sign extension

#include <stdio.h> fn main() {
' : let c:i8 = ;
1nt maln () { let uc:u32 = ¢ as u3z;
char c=128: println!("uc = {}", uc);
’ }
unsigned int uc;
uc = (unsigned int) c; rustc 1.15.1 (621bd294c 2017-02-08)
printf ("%$x %u\n",uc, uc); warning: literal out of range for i8, #
} default

--> <anon=:2:16
I
2 | let c:18 = 128;
uc = 4294967168

mashimaro <~> 1:24PM % ./a.out
fffff£f80 4294967168

Rust vs C typing errors

Recall issues with unchecked underflow and overflow

* Silent wraparound in C

int main () {
unsigned int a = 4;
a =a - 3;

printf ("$u\n",a-2);
}
mashimaro <~> 9:35AM % ./a.out

4294967295
fn main() {
PY | let mut a:u32 =
a=a - 3;
println!("{}", a - 2};

}

rustc 1.15.1 (021bd294c 2017-02-08)

thread 'main' panicked at 'attempt to subtract with overflow',

stack backtrace:

®

Recall previous C vulnerability

DNS parser vulnerability

* count read as byte, then count bytes concatenated to
namesStr

char *indx;
int count;
char nameStr[MAX LEN]; //256

.. test.jim.com
memset (nameStr, '\0', sizeof (nameStr)) ?
indx=(char*)(pkt+rwf/>4t AN N A N R
count = (char) *indx;
while (count) { What if count = 128?

(char *)indx++; Sign extended then used in strncat

strncat (nameStr, (char *)indx, countkﬁ

indx += count; \\\\\\\\\\\

Type mismatch in Rust

count = (char) *indx;

strncat (nameStr, ".%“, sizeof (nameStr) - strlen(nameStr));
}
nameStr[strlen (nameStr)-1] = '\0';

\'%
char *strncat (char *dest, const char *src, size t n);iéi}

http://www.informit.com/articles/article.aspx?p=686170&seqNum=

Another C vulnerability

2002 FreeBSD getpeername () bug (B&O Ch. 2)
* Kernel code to copy hostname into user buffer

* copy from kernel () call takes signed int for size from user
* memcpy call uses unsigned size t

* What if adversary gives a length of “-1” for his buffer size?

#define KSIZE 1024
char kbuf[KSIZE]
void *memcpy (void *dest, void *src, size_t n);

int copy from kernel (void *user dest, int maxlen) {
/* Attempt to set len=min(KSIZE, maxlen) */
int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy (user _dest, kbuf, len); < Type mismatch in Rust
return len;

(KSIZE < -1) is false,so len = -1
memcpy casts -1 to 232-1
Unauthorized kernel memory copied out @

Rust's Ownership & Borrowing

Almsifs 4 Mbration

Compiler enforced:
* Every resource has a unique owner.

* Others can borrow the resource from its owner (e.g.
create an alias) with restrictions

* Owner cannot free or mutate its resource while it is
borrowed.

= | ™~

No need for runtime Memory safety Data-race freedom

®

But first...mutability

By default, Rust variables are immutable
* Usage checked by the compiler

mut is used to declare a resource as mutable.

* fn main() { fn main () {
let a: 132 = 03 let mut a: 132 = 0;
a=a+ 13 a =a + 1;
println!(”{}” , a); println! ("{}" , a);

}
'} http://is.gd/OQDszP

rustc 1.14.0 (e8a012324 2016-12-16) §UStC 1.14.0 (e8a012324 20le-12-16)

Program ended.

error[E0384]: re-assignment of immutable variable “a’
--> <anon>:3:5

2 | let a: 132 = 0;

| - first assignment to “a°
3 a=a+ 1;

|

AAAAAAAAA

re—-assignment of immutable variable
error: aborting due to previous error @

http://is.gd/OQDszP

Ownership and lifetimes

There can be only one “owner” of an object
* When the “owner” of the object goes out of scope, its data is automa

tically freed
* Can not access obJect beyond its Ilfetlme (checked at compile-time)
struct Dummy ({ i32, b: i32 }
- Memory allocation
fn foo () { y
let mut res = Box::new (Dummy {

a: 0O,
b: 0

}) s
res.a = 2048;

) }
— Resource owned by res is freed automatically

- @
Stack

Assignment changes ownership

struct Point { x: 132, y: 132 }

let a
let b

Point { x: 1, y: 2}3

~ fn main() {
= aj

println! ("{}, {}", a.x, a.y);

http://is.gd/pZKiBw

rustc 1.15.1 (021bd294c 2017-02-08)
error[E0382]: use of moved value: "a.x
-=> <gnon=:8:24

arr yalue used here after move

6 | let b = a;
| - value moved here

7 |

8 | println!("{}, {}", a.x, a.y);
|
|

®

http://is.gd/pZKiBw

Ownership transfer in function ca
s

struct Dummy { a: 132, b: i32 }

fn foo () {
let mut res = Box::new (Dummy {
a: 0,
b: 0O

}) s

- take (res) ;
)

printlk! (“res.a = {}”, res.a); <= Compiler Error!
}

Ownership is moved from res to arg

v

fn take(arg: Box<Dummy>) {

=) }1
arg is out of scope and the resource is freed automatically

®

Borrowing

You can borrow ownership of an object in order to modif
y it with some restrictions

* You cannot borrow mutable reference from immutable object
* Or mutate an object immutably borrowed

* You cannot borrow more than one mutable reference (atomic
ity)

* You can borrow an immutable reference many times

* There cannot exist a mutable reference and an immutable on
e simultaneously (removes race conditions)

* The lifetime of a borrowed reference should end before the lif
etime of the owner object does (removes use after free)

®

Borrowing example

You cannot borrow mutable reference from immutab
le object

struct Dummy { a: i32, b: i32 }

fn foo () {
let res = Box::new(Dummy{a: 0, b: 0});

res.a = 2048; «— Error: Resource is immutable

let borrower = &mut res;

C Error: Cannot get a mutable borrowing
of an immutable resource

Borrowing example (&)

You cannot mutate an object immutably borrowed

struct Dummy { a: i32, b: i32 }

fn foo () {
let mut res = Box::new (Dummy {
a: 0,
b: 0
b);
- take (&res) ;
- res.a =/2048;

} N .
. S%rs%eu’rscéelgulm %‘;%%ri"y %'grrtgv'\}ee%l by arg from res

£n take(arg: &Box<Dummy>) { Compiler Error: Cannot mutate via
arg.a = 2048; < .
an immutable reference

}
‘L Resource is still owned by res. No free here.

Borrowing example (&mut)

You cannot borrow more than one mutable reference

struct Dummy { a: i32, b: i32 } Am %= Mutation

fn foo () {
let mut res = Box::new (Dummy{a: 0, b: 0});

take (&mut re
res.a = 4096;

Mutably borrowed by arg from res

let Multiple mutable borrowings

are disallowed

Returned from arg to res

fn take(arg: &mut Box<Dummy>) {
arg.a = 2048;

) ®

rrower = &mut res;

Immutable, shared borrowing (&)

You can borrow more than one immutable reference

* But, there cannot exist a mutable reference and an immutable one s
imultaneously

struct Dummy { a: i32, b: i32 } g Mgtation
fn foo () {
let mut res = Box::new(Dummy{a: 0, b: 0});
{
let aliasl = &res;
let alias? = &res;
let alias3 = aliasZ;
res—a—2648+

Finally,

The lifetime of a borrowed reference should end befo
re the lifetime of the owner object does

[EEY

Use-after free in C

1~ void some_dumb_function(){

1

1

Ccwoo~Noup,hWwWN

=

int *used_after_free = malloc(sizeof(int)); Memory allocated to int

[* ... after use */
free(used _after_free); Then freed
/* what the... */ Then used after free

printf("%d", *used_after_free);

If these calls are far away from each other,
this bug can be very hard to find.

Caught by Rust at compile-time

Unique ownership, borrowing, and lifetime rules easil
y enforced

fn main() {

let name = from{"Hello world!");
let mut name ref = &name;
let newname = from("Goodbye!");
name ref = &newname;
println! ("name is {}", &mame ref);

}

rustc 1.15.1 (021bd294c 2017-02-08)
error: ‘newname does not live long enough
--> <anon=:8:5

I
7 | name_ref = &newname;
[it borrow occurs here
8 | }
9 | println! ("name is {}", &name ref);
10 | }

| - borrowed value needs to live until here

error: aborting due to previous error @

Dangling pointer in C

Recall scoping issues example (B&O Ch 3, Procedure

s)
int* func(int x) {
int n; Local variable is allocated in stack,
int *l’lp; a temporal storage of function.
n= xy Reference returned, but variable now out
np = &ny of scope (dangling pointer)

return np;

}
What does np point to after function returns?

What happens if np is dereferenced after being retur
ned?

http://thefengs.com/wuchanglcourses/c3201Iclassl08linvalid_re®

Caught by Rust at compile-time

Ownership/Borrowing rules ensure objects are not accessed beyond lifetime

* fn a_dumb_function() -> &i32 {
let local_variable: 1323

borrowed pointer
cannot outlive

&local_variable {}
the owner!!

}

* fn main() {
let raw_pointer = a_dumb_function()}

*raw_pointer = 1233

http://is.gd/3MTsSC

rustc 1.15.1 (021bd294c 2017-02-08)
error[E0106]: missing lifetime specifier
==> <gnon>:1:25
|

1| fn a dumb function() -> &i32 {
~ expected lifetime parameter

help: this function's return type contains a borrowed value,
help: consider giving it a 'static lifetime @

error: aborting due to previous error

http://is.gd/3MTsSC

Summary

Languages offer trade-offs in terms of performance, e
ase of use, and safety
* Learn to be multi-lingual
* Learn how to choose wisely

Sources

*Haozhong Zhang “An Introduction to
Rust Programming Language”

* Aaron Turon, The Rust Programming Language, Colloguium
on Computer Systems Seminar Series (EE380) , Stanford Un
iversity, 2015.

* Alex Crichton, Intro to the Rust programming language,
http://people.mozilla.org/~acrichton/rust-talk-2014-12-10/

* The Rust Programming Language,
https://doc.rust-lang.org/stable/book/

*Tim Chevalier, “Rust: A Friendly Introduction”, 6/19/2013

®

http://people.mozilla.org/~acrichton/rust-talk-2014-12-10/
http://people.mozilla.org/~acrichton/rust-talk-2014-12-10/
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/

Resources

* Rust website: http://rust-lang.org/
* Playground: https://play.rust-lang.org/
* Guide: https://doc.rust-lang.org/stable/book/
* User forum: https://users.rust-lang.org/

* Book:
https://doc.rust-lang.org/stable/book/academic-research
.html

*IRC: server: irc.mozilla.org, channel: rust
* Cargo: https://crates.io/
* Rust by example: http://rustbyexample.com/

®

http://rust-lang.org/
https://play.rust-lang.org/
https://play.rust-lang.org/
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/
https://users.rust-lang.org/
https://users.rust-lang.org/
https://doc.rust-lang.org/stable/book/academic-research.html
https://doc.rust-lang.org/stable/book/academic-research.html
https://crates.io/
https://crates.io/
http://rustbyexample.com/

Extra

Ownership and borrowing examp
le

~ fn main() {
let mut v = vec![]} v is an owner of the vector

v.push("Hello") s
let x = &v[0]} x borrows the vector from v

v.push("world")s now v cannot modify the vector
because it lent the ownership to x

printinii* 4L}, x)3

http://is.gd/dEamuS

®

http://is.gd/dEamuS

More than that ...

C/C++ Haskell/Python

more control, less control,

less safety more safety
Rust

more control,
more safety

Concurrency & Data-race Freedo
m

struct Dummy { a: 132, b: i32 }

fn foo () {
let mut res = Box::new(Dummy {a: 0, b: 0});

~ ~—— Spawn a new thread
std: :thread: :spawn (move || {
let borrower = &mut res;
borrower.a += 1; “_—resis mutably borrowed

});

res.a += 1; «<— FError: res is being mutably borrowed

®

Mutably Sharing

* Mutably sharing is inevitable in the real world.
* Example: mutable doubly linked list

My

struct Node {
prev: option<Box<Node>>,
next: option<Box<Node>>

Rust’s Solution: Raw Pointers

|

struct Node {
prev: option<Box<Node>>,

next: *mut Node Raw pointer

prev
next

}

* Compiler does NOT check the memory safety of mo
st operations wrt. raw pointers.

* Most operations wrt. raw pointers should be encaps
ulated in a unsafe {} syntactic structure.

®

Rust’s Solution: Raw Pointers

let a = 3;

unsafe {
let b = &a as *const u32 as *mut u3?;
*b = 4;

}

println! (Ya = {}”, a);

Unsafe

Foreign Function Interface (FFI)

All foreign functions are unsafe (e.g. libc calls)

extern {
fn write(fd: 132, data: *const u8, Ien: u32) -> 132;

}

fn main () {
let msg = b”Hello, world!\n”;
unsafe {
write(l, &msgl[0], msg.len());
}

Inline Assembly is unsafe

fn outl (port: ul6e, data: u32) {
unsafe {
(“outl %0, %1”
: Ya” (data), “d” (port)

: “wolatile”);

	C vs. Rust
	C (the good parts)
	But…
	and…
	Example: C is good
	Example: C is not so good
	Solved by managed languages
	Requirements for system programs
	Rust
	Rust
	Rust overview
	Rust’s type system
	Rust and typing
	Rust and typing
	Rust and bounds checking
	Rust vs C typing errors
	Rust vs C typing errors
	Rust vs C typing errors
	Rust vs C typing errors
	Rust vs C typing errors
	Recall previous C vulnerability
	Another C vulnerability
	Rust’s Ownership & Borrowing
	But first…mutability
	Ownership and lifetimes
	Assignment changes ownership
	Ownership transfer in function calls
	Borrowing
	Borrowing example
	Borrowing example (&)
	Borrowing example (&mut)
	Immutable, shared borrowing (&)
	Finally,
	Use-after free in C
	Caught by Rust at compile-time
	Dangling pointer in C
	Caught by Rust at compile-time
	Summary
	Sources
	Resources
	Extra
	Ownership and borrowing example
	More than that …
	Concurrency & Data-race Freedom
	Mutably Sharing
	Rust’s Solution: Raw Pointers
	Rust’s Solution: Raw Pointers
	Unsafe
	Foreign Function Interface (FFI)
	Inline Assembly is unsafe

