
C vs. Rust

C (the good parts)

Efficient code especially in resource-constrained envir
onments

Direct control over hardware
Performance over safety
•Memory managed manually
• No periodic garbage collection
• Desirable for advanced programmers

But…

Type errors easy to make
• Integer promotion/coercion errors
• Unsigned vs. signed errors
• Integer casting errors

and…

Memory errors easy to make
• Null pointer dereferences
• Buffer overflows, out-of-bound access (no array-bounds chec

king)
• Format string errors
• Dynamic memory errors
• Memory leaks
• Use-after-free (dangling pointer)
• Double free

Cause software crashes and security vulnerabilities.

Example: C is good
Lightweight, low-level control of memory
typedef struct Dummy { int a; int b; } Dummy;

void foo(void) {
 Dummy *ptr = (Dummy *) malloc(sizeof(struct Dummy));
 ptr->a = 2048;
 free(ptr);
}

ptr

.a

.b

Stack Heap

Precise memory layout

Lightweight reference

Destruction

.a = 2048

Example: C is not so good
typedef struct Dummy { int a; int b; } Dummy;

void foo(void) {
 Dummy *ptr = (Dummy *) malloc(sizeof(struct Dummy));
 Dummy *alias = ptr;
 free(ptr);
 int a = alias.a;
 free(alias);
}

ptr

alias

.a

.b

Stack Heap

Dangling Pointer

Use after free

Double free

Aliasing Mutation

Solved by managed languages

Java, Python, Ruby, C#, Scala, Go...
• Restrict direct access to memory
• Run-time management of memory via periodic garbage c

ollection
• No explicit malloc and free, no memory corruption issues
• But
• Overhead of tracking object references
• Program behavior unpredictable due to GC (bad for real-time systems)
• Limited concurrency (global interpreter lock typical)
• Larger code size
• VM must often be included
• Needs more memory and CPU power (i.e. not bare-metal)

Requirements for system progra
ms
Must be fast and have minimal runtime overhead

Should support direct memory access, but be memor
y -safe

Rust

Rust

From the official website (http://rust-lang.org):

Rust is a system programming language barely on hardware.
No runtime requirement (runs fast)
 Control over memory allocation/destruction.
Guarantees memory safety

Developed to address severe memory leakage and corruption bugs in Firefox
First stable release in 5/2015

http://rust-lang.org/

Rust overview

Performance, as with C
• Rust compilation to object code for bare-metal performance

But, supports memory safety
• Programs dereference only previously allocated pointers that have not been freed
• Out-of-bound array accesses not allowed

With low overhead
• Compiler checks to make sure rules for memory safety are followed
• Zero-cost abstraction in managing memory (i.e. no garbage collection)

Via
• Advanced type system
• Ownership, borrowing, and lifetime concepts to prevent memory corruption issues

But at a cost
• Cognitive cost to programmers who must think more about rules for using memory and

references as they program

Rust’s type system

Rust and typing

Primitive types
• bool
• char (4-byte unicode)
• i8/i16/i32/i64/isize
• u8/u16/u32/u64/usize
• f32/f64

Separate bool type
• C overloads an integer to get booleans
• Leads to varying interpretations in API calls

• True, False, or Fail? 1, 0, -1?
• Misinterpretations lead to security issues
• Example: PHP strcmp returns 0 for both equality *and* failure!

Numeric types specified with width
• Prevents bugs due to unexpected promotion/coercion/rounding

Arrays stored with their length [T; N]
• Allows for both compile-time and run-time checks on arra

y access via[]

Rust and typing

void main(void) {
 int nums[8] =
{1,2,3,4,5,6,7,8};
 for (x = 0; x < 10; i++)

printf(“%d\n”,nums[i]);
}

C Rust

But…
• Checking bounds on every access adds overhead

• Arrays typically accessed via more efficient iterators
• Can use x86 loop instruction

Rust and bounds checking

Rust vs C typing errors
Recall issues with implicit integer casts and promotio

n in C
-1 > 0U
2147483647U < -2147483648

Rust’s type system prevents such comparisons
int main() {
 unsigned int a = 4294967295;
 int b = -1;
 if (a == b)
 printf("%u == %d\n",a,b);
}

mashimaro <~> 9:44AM % ./a.out
4294967295 == -1

Rust vs C typing errors
Same or different?

int main() {
 char a=251;
 unsigned char b = 251;
 printf("a = %x\n", a);
 printf("b = %x\n", b);

 if (a == b)
 printf("Same\n");
 else
 printf("Not Same\n");
}

mashimaro<> % ./a.out
a = fffffffb
b = fb
Not Same

Rust vs C typing errors
201 > 200?

#include <stdio.h>
int main() {
 unsigned int ui = 201;
 char c=200;
 if (ui > c)
 printf("ui(%d) > c(%d)\n",ui,c);
 else
 printf("ui(%d) < c(%d)\n",ui,c);
}

mashimaro <~> 12:50PM % ./a.out
ui(201) < c(-56)

Rust vs C typing errors
In Rust, casting allowed via the “as” keyword
• Follows similar rules as C
• But, warns of literal problem before performing the prom

otion with sign extension

#include <stdio.h>
int main() {
 char c=128;
 unsigned int uc;
 uc = (unsigned int) c;
 printf("%x %u\n",uc, uc);
}

mashimaro <~> 1:24PM % ./a.out
ffffff80 4294967168

Rust vs C typing errors
Recall issues with unchecked underflow and overflow
• Silent wraparound in C

• Run-time check in Rust

int main() {
unsigned int a = 4;
a = a - 3;
printf("%u\n",a-2);

}
mashimaro <~> 9:35AM % ./a.out
4294967295

Recall previous C vulnerability

DNS parser vulnerability
• count read as byte, then count bytes concatenated to
nameStr

http://www.informit.com/articles/article.aspx?p=686170&seqNum=6

 char *indx;
 int count;
 char nameStr[MAX_LEN]; //256
...
 memset(nameStr, '\0', sizeof(nameStr));
...
 indx = (char *)(pkt + rr_offset);
 count = (char)*indx;
 while (count){
 (char *)indx++;
 strncat(nameStr, (char *)indx, count);
 indx += count;
 count = (char)*indx;
 strncat(nameStr, ".“, sizeof(nameStr) – strlen(nameStr));
 }
 nameStr[strlen(nameStr)-1] = '\0';

What if count = 128?

Type mismatch in Rust

 Sign extended then used in strncat

char *strncat(char *dest, const char *src, size_t n);

Another C vulnerability
2002 FreeBSD getpeername() bug (B&O Ch. 2)
• Kernel code to copy hostname into user buffer
• copy_from_kernel() call takes signed int for size from user
• memcpy call uses unsigned size_t

•What if adversary gives a length of “-1” for his buffer size?
#define KSIZE 1024
char kbuf[KSIZE]
void *memcpy(void *dest, void *src, size_t n);

int copy_from_kernel(void *user_dest, int maxlen){
/* Attempt to set len=min(KSIZE, maxlen) */

 int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

}
(KSIZE < -1) is false, so len = -1

memcpy casts -1 to 232-1

Unauthorized kernel memory copied out

Type mismatch in Rust

Rust’s Ownership & Borrowing

Compiler enforced:
•Every resource has a unique owner.
•Others can borrow the resource from its owner (e.g.

create an alias) with restrictions
•Owner cannot free or mutate its resource while it is

borrowed.

Aliasing Mutation

No need for runtime Memory safety Data-race freedom

By default, Rust variables are immutable
• Usage checked by the compiler

mut is used to declare a resource as mutable.

But first…mutability

fn main() {
 let mut a: i32 = 0;
 a = a + 1;
 println!("{}" , a);
}

rustc 1.14.0 (e8a012324 2016-12-16)
error[E0384]: re-assignment of immutable variable `a`
 --> <anon>:3:5
 |
2 | let a: i32 = 0;
 | - first assignment to `a`
3 | a = a + 1;
 | ^^^^^^^^^ re-assignment of immutable variable

error: aborting due to previous error

rustc 1.14.0 (e8a012324 2016-12-16)
1
Program ended.

http://is.gd/OQDszP

http://is.gd/OQDszP

struct Dummy { a: i32, b: i32 }

fn foo() {
 let mut res = Box::new(Dummy {
 a: 0,
 b: 0
 });
 res.a = 2048;
}

Ownership and lifetimes
There can be only one “owner” of an object
• When the “owner” of the object goes out of scope, its data is automa

tically freed
• Can not access object beyond its lifetime (checked at compile-time)

res

.a = 0

.b = 0

Stack
Heap

.a = 2048

Memory allocation

Resource owned by res is freed automatically
owns

Assignment changes ownership

http://is.gd/pZKiBw

http://is.gd/pZKiBw

Ownership transfer in function ca
lls
struct Dummy { a: i32, b: i32 }

fn foo() {
 let mut res = Box::new(Dummy {
 a: 0,
 b: 0
 });
 take(res);
 println!(“res.a = {}”, res.a);
}

fn take(arg: Box<Dummy>) {
}

Ownership is moved from res to arg

arg is out of scope and the resource is freed automatically

Compiler Error!

Borrowing

You can borrow ownership of an object in order to modif
y it with some restrictions
• You cannot borrow mutable reference from immutable object

• Or mutate an object immutably borrowed

• You cannot borrow more than one mutable reference (atomic
ity)
• You can borrow an immutable reference many times

• There cannot exist a mutable reference and an immutable on
e simultaneously (removes race conditions)
• The lifetime of a borrowed reference should end before the lif

etime of the owner object does (removes use after free)

Borrowing example

You cannot borrow mutable reference from immutab
le object

struct Dummy { a: i32, b: i32 }

fn foo() {
 let res = Box::new(Dummy{a: 0, b: 0});

 res.a = 2048;

 let borrower = &mut res;
}

Error: Resource is immutable

Error: Cannot get a mutable borrowing
 of an immutable resource

Borrowing example (&)

struct Dummy { a: i32, b: i32 }

fn foo() {
 let mut res = Box::new(Dummy{
 a: 0,
 b: 0
 });
 take(&res);
 res.a = 2048;
}

fn take(arg: &Box<Dummy>) {
 arg.a = 2048;
}

Resource is immutably borrowed by arg from res

Resource is still owned by res. No free here.

Resource is returned from arg to res

Compiler Error: Cannot mutate via
an immutable reference

You cannot mutate an object immutably borrowed

Borrowing example (&mut)

Aliasing Mutationstruct Dummy { a: i32, b: i32 }

fn foo() {
 let mut res = Box::new(Dummy{a: 0, b: 0});

 take(&mut res);
 res.a = 4096;

 let borrower = &mut res;

}

fn take(arg: &mut Box<Dummy>) {
 arg.a = 2048;
}

Mutably borrowed by arg from res

Returned from arg to res

Multiple mutable borrowings
are disallowed let alias = &mut res;

You cannot borrow more than one mutable reference

You can borrow more than one immutable reference
• But, there cannot exist a mutable reference and an immutable one s

imultaneously

Immutable, shared borrowing (&)

struct Dummy { a: i32, b: i32 }

fn foo() {
 let mut res = Box::new(Dummy{a: 0, b: 0});
 {
 let alias1 = &res;
 let alias2 = &res;
 let alias3 = alias2;
 res.a = 2048;
 }
 res.a = 2048;
}

Aliasing Mutation

Finally,

The lifetime of a borrowed reference should end befo
re the lifetime of the owner object does

Use-after free in C
Memory allocated to int

Then freed

Then used after free

If these calls are far away from each other,
this bug can be very hard to find.

Caught by Rust at compile-time

Unique ownership, borrowing, and lifetime rules easil
y enforced

Dangling pointer in C

Recall scoping issues example (B&O Ch 3, Procedure
s)
int* func(int x) {

int n;
int *np;
n = x;
np = &n;
return np;

}

What does np point to after function returns?
What happens if np is dereferenced after being retur

ned?

http://thefengs.com/wuchang/courses/cs201/class/08/invalid_ref.c

Local variable is allocated in stack,
a temporal storage of function.

Reference returned, but variable now out
of scope (dangling pointer)

Caught by Rust at compile-time

borrowed pointer
cannot outlive
the owner!!

Ownership/Borrowing rules ensure objects are not accessed beyond lifetime

http://is.gd/3MTsSC

http://is.gd/3MTsSC

Summary

Languages offer trade-offs in terms of performance, e
ase of use, and safety
• Learn to be multi-lingual
• Learn how to choose wisely

Sources

•Haozhong Zhang “An Introduction to
Rust Programming Language”
•Aaron Turon, The Rust Programming Language, Colloquium

on Computer Systems Seminar Series (EE380) , Stanford Un
iversity, 2015.
•Alex Crichton, Intro to the Rust programming language,

http://people.mozilla.org/~acrichton/rust-talk-2014-12-10/
•The Rust Programming Language,

https://doc.rust-lang.org/stable/book/
•Tim Chevalier, “Rust: A Friendly Introduction”, 6/19/2013

http://people.mozilla.org/~acrichton/rust-talk-2014-12-10/
http://people.mozilla.org/~acrichton/rust-talk-2014-12-10/
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/

Resources

•Rust website: http://rust-lang.org/
• Playground: https://play.rust-lang.org/
• Guide: https://doc.rust-lang.org/stable/book/
• User forum: https://users.rust-lang.org/
• Book:

https://doc.rust-lang.org/stable/book/academic-research
.html

• IRC: server: irc.mozilla.org, channel: rust
•Cargo: https://crates.io/
•Rust by example: http://rustbyexample.com/

http://rust-lang.org/
https://play.rust-lang.org/
https://play.rust-lang.org/
https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/
https://users.rust-lang.org/
https://users.rust-lang.org/
https://doc.rust-lang.org/stable/book/academic-research.html
https://doc.rust-lang.org/stable/book/academic-research.html
https://crates.io/
https://crates.io/
http://rustbyexample.com/

Extra

Ownership and borrowing examp
le

v is an owner of the vector

x borrows the vector from v

now v cannot modify the vector
because it lent the ownership to x

http://is.gd/dEamuS

http://is.gd/dEamuS

More than that …

C/C++

more control,
less safety

Haskell/Python

less control,
more safety

more control,
more safety

Rust

Concurrency & Data-race Freedo
m
struct Dummy { a: i32, b: i32 }

fn foo() {
 let mut res = Box::new(Dummy {a: 0, b: 0});

 std::thread::spawn(move || {
 let borrower = &mut res;
 borrower.a += 1;
 });

 res.a += 1;
}

Error: res is being mutably borrowed

res is mutably borrowed

Spawn a new thread

Mutably Sharing

•Mutably sharing is inevitable in the real world.
•Example: mutable doubly linked list

prev

next

prev

next

prev

next

struct Node {
 prev: option<Box<Node>>,
 next: option<Box<Node>>
}

Rust’s Solution: Raw Pointers

•Compiler does NOT check the memory safety of mo
st operations wrt. raw pointers.
•Most operations wrt. raw pointers should be encaps

ulated in a unsafe {} syntactic structure.

prev

next

prev

next

prev

next

struct Node {
 prev: option<Box<Node>>,
 next: *mut Node
}

Raw pointer

Rust’s Solution: Raw Pointers

let a = 3;

unsafe {
 let b = &a as *const u32 as *mut u32;
 *b = 4;
}

println!(“a = {}”, a);

I know what I’m doing

Print “a = 4”

Unsafe
Life is hard.

Foreign Function Interface (FFI)

All foreign functions are unsafe (e.g. libc calls)
extern {
 fn write(fd: i32, data: *const u8, len: u32) -> i32;
}

fn main() {
 let msg = b”Hello, world!\n”;
 unsafe {
 write(1, &msg[0], msg.len());
 }
}

Inline Assembly is unsafe
#![feature(asm)]
fn outl(port: u16, data: u32) {
 unsafe {
 asm!(“outl %0, %1”
 :
 : “a” (data), “d” (port)
 :
 : “volatile”);
 }
}

	C vs. Rust
	C (the good parts)
	But…
	and…
	Example: C is good
	Example: C is not so good
	Solved by managed languages
	Requirements for system programs
	Rust
	Rust
	Rust overview
	Rust’s type system
	Rust and typing
	Rust and typing
	Rust and bounds checking
	Rust vs C typing errors
	Rust vs C typing errors
	Rust vs C typing errors
	Rust vs C typing errors
	Rust vs C typing errors
	Recall previous C vulnerability
	Another C vulnerability
	Rust’s Ownership & Borrowing
	But first…mutability
	Ownership and lifetimes
	Assignment changes ownership
	Ownership transfer in function calls
	Borrowing
	Borrowing example
	Borrowing example (&)
	Borrowing example (&mut)
	Immutable, shared borrowing (&)
	Finally,
	Use-after free in C
	Caught by Rust at compile-time
	Dangling pointer in C
	Caught by Rust at compile-time
	Summary
	Sources
	Resources
	Extra
	Ownership and borrowing example
	More than that …
	Concurrency & Data-race Freedom
	Mutably Sharing
	Rust’s Solution: Raw Pointers
	Rust’s Solution: Raw Pointers
	Unsafe
	Foreign Function Interface (FFI)
	Inline Assembly is unsafe

