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Abstract. Our general goal is to provide better automation in interactive proof
assistants such as Coq. We present an interpreter of proof traces in first-order
multi-sorted logic with equality. Thanks to the reflection ability of Coq, this in-
terpreter is both implemented and formally proved sound — with respect to a re-
flective interpretation of formulae as Coq properties — inside Coq’s type theory.
Our generic framework allows to interpret proofs traces computed by any auto-
mated theorem prover, as long as they are precise enough: we illustrate that on
traces produced by the CiME tool when solving unifiability problems by ordered
completion. We discuss some benchmark results obtained on the TPTP library.

The aim of this paper is twofold: first we want to validate a reflective approach
for proofs in interactive proof assistants, and second show how to provide a better au-
tomation for such assistants. Both aspects can be achieved by using external provers
designed to automatically solve some problems of interest: these provers can “feed” the
assistant with large proofs, and help to compare the direct and the reflective approaches,
and they can also release the user from (parts of) the proof.

The proof assistant doesn’t rely on the soundness of the external tool, but keeps
a skeptical attitude towards the external traces by rechecking them. Moreover incom-
pleteness of this tool is not an issue either, since when it fails to produce an answer,
the user simply has to find another way to do his proof. But a key point is that it has to
produce a trace which can be turned into a proof.

Proof checkers usually have a very fine grained proof notion, whereas automated
theorem provers tend to do complex inferences such as term normalization and para-
modulation in one single step. Reflection techniques [10] provide a good intermediate
layer to turn traces missing a lot of implicit information into fully explicit proofs. They
rely on the computation abilities of the proof assistant for trivial parts of proofs, leaving
the hard but interesting work of finding proofs to automated tools. Bezemet al. [3] use
reflection techniques to handle the clausification part of a proof but the derivation of the
empty clause is provided by an external tool.

Our approach extends the reflection technique to the proof itself, turning the proof
assistant into askeptical trace interpreterfrom an intermediate language of proof traces
to its own native format. We have implemented this technique inside the Coq proof
assistant [17] using a sequent calculus for multi-sorted intuitionistic first-order logic
with equality as a semantics for the intermediate language. To validate the reflective ap-
proach, we used the CiME tool [4] to produce traces when solving word and unifiability
problems by ordered completion and had these traces checked by Coq.
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Other works integrate either reflection and/or rewriting inside Coq. Nguyen [14]
explains how to produce term rewriting proofs, but does not use reflection, whereas
Alvarado [1] provides a reflection framework dedicated to proofs of equality of terms.
Both of them consider that the rewriting system is fixeda priori. Our approach is close
to the work of Crégut [6] who also interprets proof traces thanks to reflection, but for
quantifier-free formulae in Peano’s Arithmetic.

In our work, the rewriting system changes during the completion process, and in
order to address the problem of the trace, we add some information on the usual rules of
ordered completion. Thanks to this extra information, only the useful rules are extracted
from the completion process, and the resulting formal proof is significantly shorter than
the completion process. But this is far from a formal proof. We explain how to turn the
annotations into useful lemmata, that is universally quantified equalities together with
their proofs as sequences of equational steps.

Section 1 presents a general framework for reflection of first-order logic with equal-
ity in type theory. In Section 2, we give key details of the implementation. In Section 3,
we briefly recall ordered completion, give an annotated version of the completion rules
and show how to extract a CiME proof from a successful completion run. In Section
4, we explain the translation of CiME proofs into Coq reified proofs. In Section 5, we
comment some benchmarks obtained on the TPTP library with CiME and Coq.

1 Type Theory and the Reflection Principle

1.1 Type Theory and the Conversion Rule

Coq’s type theory is an extension of dependently-typedλ-calculus with inductive types,
pattern matching and primitive recursion. Coq acts as an interpreter/type-checker for
this language. The use of theproofs as programsparadigm allows its use as an interac-
tive proof assistant: the typing relationΓ ` t : T can be seen either as“according to
the types of variables inΓ , t is an object in setT ” or as“supposing the hypotheses in
Γ , t is a proof of the assertionT ” . Together with theλ function binder, Coq’s most im-
portant construction is the∀ binding operator, which builds either a dependent function
type or a universally quantified logical proposition. The term∀x : A.B is writtenA→B
as long asx does not occur free in B; in this case it represents the function space from
typeA to typeB or the implication between propositionsA andB. To establish a clear
distinction between informative objects (datatypes and functions) and non-informative
objects (proofs of propositions), types intended as datatypes are in the sortSet and logic
propositions are in the sortProp.

A main feature of Coq’s type theory, which will be essential for the reflection mech-
anism, is theconversionrule: if Γ ` t : T thenΓ ` t : T ′ for any typeT ′ equivalent
to T , i.e. having the same normal form with respect to the reduction of Coq terms. In
particular, any termt can be proved equal to its normal formnf(t) inside Coq’s type
theory : we can use the reflexivity axiomrefl= to build the proof(refl= t) : t = t
and thanks to the conversion rule this is also a proof oft = nf(t) e.g.take the term2×2
which reduces to4, then(refl= 4) is a proof of4 = 4 and a proof of2× 2 = 4 (both
propositions have4 = 4 as normal form).



1.2 The Reflection Principle

The power of type theory appears when building types or propositions by case analysis
on informative objects: suppose there is a typeform of sortSet intended as a concrete
representation of logical formulas, and an interpretation functionJ_K : form→Prop,
then one can define a functiondecide : form→bool deciding whether an object in
form represents a tautology, and prove a correctness theorem:

decide_correct : ∀F : form, ((decide F ) = true)→ JF K
This gives a useful way of proving that some propositionA in the range ofJ_K is

valid. First, by some external means, A isreified, i.e. some representatioṅA such that
JȦK is convertible toA is computed. Then the term(decide_correctȦ(refl=true))
is built. This term is well typed if, and only if(decide Ȧ) is convertible totrue, and
then its type isJȦK so this term is a proof ofA. Otherwise, the term is not typable. The
advantage of this approach is that it is left to the internal reduction procedure of Coq
to check ifA is provable. Moreover, careful implementation of thedecide function
allows some improvement in the time and space required to check the proof.

The distinction between properties and their representations is necessary since there
is no way to actually compute something from a property (for example there is no func-
tion of typeProp→Prop→bool deciding the syntactic equality) since there is no such
thing as pattern-matching or primitive recursion inProp, whereas the representation of
properties can be defined as an inductive type such asform on which functions can be
defined by case analysis.

As tempting as this approach may seem, there are several pitfalls to avoid in order to
be powerful enough. First, the propositions that can be proven thanks to this approach
are the interpretations of the representationsF : form such that(decideF ) = true.
This set is limited by the range of the interpretation function and by the power of the
decision function: the function that always yieldsfalse is easily proved correct but is
useless. Besides, we need to take into account space and time limitations induced by
the cost of the reduction of complex Coq terms inside the kernel.

1.3 Reflecting First-Order Proofs

Since validity in first-order logic is undecidable, we have two options if we want to
prove first-order assertions by reflection: either restrict thedecide function to a de-
cidable fragment of the logic, or change thedecide function into a proof-checking
function taking a proof trace (of typeproof : Set) as an extra argument. The correct-
ness theorem for this functioncheck reads :

check_correct : ∀π : proof.∀F : form.((checkF π) = true)→ JF K
The proof process using this proof trace approach is shown in Figure 1, it shows how

an external tool can be called by Coq to compute a proof trace for a given formula. The
reification phase is done inside the Coq system at the ML level and not by a type-theory
function (remember there is no case analysis onProp).

The proof traces can have very different forms, the key point being the amount of
implicit information thatcheck will have to recompute when the kernel will type-check
the proof. Moreover, if too many things have to be recalculated, the correctness theorem
may become trickier to prove. What we propose is to give a derivation tree for a sequent
calculus as a proof trace, and this is what the next section is about.
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Fig. 1.Reflection scheme with proof traces

2 Proof Reflection for Multi-Sorted First-Order Logic

2.1 Representation for Indexed Collections

The first attempt to represent collections of indexable objects with basic lists indexed
by unary integers as in [3] was most inefficient, consuming uselessly time and space
resources. For efficiency purposes, lists were replaced by binary trees indexed by binary
integersB . These binary treesT(τ) containing objects of typeτ are equipped with
access and insertion functionsget : T(τ)→B→τ ? andadd : T(τ)→B→τ→T(τ).

The question mark in theget function stands for the basicoption type constructor
adding a dummy element to any type. Indeed any Coq function must be total, which
means that even the interpretation of badly formed objects needs a value. Most of the
time theoption types will be the solution to represent partiality.

Trees will sometimes be used as indexable stacks by constructing a pair in type
B ×T(τ), the first member being the next free index in the second member. The empty
stack and the empty tree will be denoted∅. As a shortcut, ifS = (i, T ), the notationS;x
stands for(i + 1, add(T, i, x)) (pushingx on top ofS). Thei index inS; i : x means
that i is the stack pointer ofS, i.e. the index pointing tox in S; i : x (see Example 1).
The notationSj stands forget(T, j), assumingj is a valid index, i.e.j < i.

2.2 Representation and Interpretation of Formulae

Since Coq’s quantifiers are typed, in order to be able to work with problems involving
several types that are unknown when proving the reflection theorems, our representation
will be parameterizedby adomain signature. This enables the representation of multi-
sorted problems, and not only problems expressed with a domain chosena priori. We
represent the quantification domains by our binary integers, referring to a binary tree
Dom : T(Set) which we calldomain signature. The interpretation function, given a
domain signature, is a Coq functionJ_KDom : B→Set, which maps undefined indices
to 1 : Set, the set with one element.

Given a domain signature, function symbols are defined by a dependent record: its
first field is a (possibly empty) list of binary integersd1, . . . , dn, the second field is an
integerr for the range of the function, and the third field is the function itself, of type
Jd1KDom→ . . .→ JdnKDom→ JrKDom (its type is computed fromDom and the two first
fields). Predicate symbols are defined in a similar way, except there is no range field and
the last field has typeJd1KDom→ . . .→ JdnKDom→Prop. Thefunction signatureFn is
defined as a tree of function symbols, and thepredicate signaturePred is defined as a
tree of predicate symbols.



Example 1.In order to express properties of integers inN and arrays of integers (in
AN), we define the domain signature asDom = 1 : N ; 2 : AN.

In the signature, we put the0 constant as well as two relations< and≥ over the
integers. We also add theget andset functions over arrays and thesorted predicate.
Thevalid predicate states that an integer is a valid index for a given array. The function
and predicate signatures corresponding to this theory will be:

Fn = 1 : {∅, 1,0}; 2 : {[2; 1], 1, get}; 3 : {[2; 1; 1], 2, set}
Pred = 1 : {[1; 1], <}; 2 : {[1; 1],≥}; 3 : {[2], sorted}; 4 : {[1; 2], valid}

Definition 1 (term, formula). Terms and formulae are recursively defined as follows:
term := FvB | BvN | App B args args := ∅ | term, args
form := Atom B args | term .=

B
term | ⊥̇ | ∀̇B form | ∃̇B form

| form →̇ form | form ∧̇ form | form ∨̇ form
In terms, theFv constructor represents free variables and their indices will refer to the
slot they use in the sequent context (see below). TheBv constructor represents bound
variables under quantifiers, using the deBruijn notation [7]: the indices are unary inte-
gersN , 0 standing for the variable bound by the innermost quantifier over the position
of the variable, 1 for the next innermost, etc. The indices in theApp andAtom con-
structors refer to symbols in the signature, whereas those in the equality and quantifiers
refer to domains inDom. There is no variable in the quantifiers since the deBruijn no-
tation takes care of which quantifier binds which variable without having to name the
variable. The logical negation of a formulaF can be expressed byF →̇ ⊥̇.

A term is closed if it contains noBv constructor, and a formula is closed if allBv
constructors have indices less than their quantifier depth.
Example 2.Using the signature of the previous example, the property:
∀a : AN, sorted(a)→∃i : N,∀ : j : N, valid(j, a)→

((j < i)→(get(a, j) < 0)) ∧ ((j ≥ i)→(get(a, j) ≥ 0)) is represented by:

∀̇2(Atom 3 Bv0)→̇∃̇1∀̇1(Atom 4 (Bv0,Bv2))→̇
(Atom 1 (Bv0,Bv1))→̇(Atom 1 (App 2 (Bv2,Bv0),App 1 ∅))∧̇
(Atom 2 (Bv0,Bv1))→̇(Atom 2 (App 2 (Bv2,Bv0),App 1 ∅))

Definition 2 (Sequent). A sequent is a pair writtenΓ ` G, whereΓ is the context,
of typeT(B + form) containing objects inB or in form. Objects inform represent
logical hypotheses whereas objects inB represent the domain of assumed variables
(referred to using theFv constructor).G : form is called the goal of the sequent.

On Figure 2, we explain how to interpret reified objects as Coq propositions. The in-
terpretation functions useglobal and local valuations, these valuations contain depen-
dent pairs{v ∈ d} in type val : Set. They contain a domain indexd and an object
v : JdKDom. The letterγ will usually denote global valuations, inT(val). We sayγ is
aninstantiationfor a contextΓ if it maps indices of global variables inΓ to pairs in the
same domain (it gives values to global variables inΓ ). The local context usually written
δ, is a list of the above pairs (addition ofx in the listL is written(x :: L)).

The interpretation of terms takes an extra argument which is the intended domain
r of the result, and returns an optional value inJrK?Dom. If the represented term is not
well typed, the dummy optional value is returned. The interpreter for arguments uses
an accumulatorΦ which is successively applied to the interpretation of arguments. This
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γ,δ = x if δn = {x ∈ r′} andr = r′

JFviKr
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Fig. 2. Interpretation of terms, formulae, sequents

accumulator trick is necessary to build well typed terms, as well as the use of a Coq
proof of r = r′ to coerce objects ofJr′KDom to JrKDom. The interpretation of atomic
formulae uses the arguments interpreter with a different kind of accumulator. The in-
terpretation of badly formed formulae is>, the trivial formula. The interpretation of
contexts is presented inside out so it is easier to reason about, it builds a functionΨ
from global valuations toProp by adding hypotheses recursively.

2.3 Proof traces

We define the proof traces and their meaning in Figure 3. The judgementπ : Γ ` G
means“ π is a correct proof trace for the sequentΓ ` G” . We adapted Roy Dychkoff’s
contraction free sequent calculus for intuitionistic logic [8], in order to allow multiple
sorts and possibly empty domains. Even though the choice of this sequent calculus may
seem exotic, the proof technique is quite generic and our proofs may be easily adapted
to other kinds of mono-succedent sequent calculi such as classical ones with excluded
middle axiom or implicit non-empty domains.

In order to reify first-order reasoning, it is necessary to decide syntactic equality
between terms and between formulae, which is done by the boolean functions=term

and=form. Theinst function implements the substitution of a given closed term (no lift
operator needed) to the first bound variable in a formula, which is used in the definition
of proof steps for quantifiers. Finally, therewrite function replaces a closed term by
another at a given set of occurrences, checking that the first term is the same as the
subterms at the rewrite positions.

2.4 Correctness proof

For every object defined in the last paragraphs (terms, arguments, formulae, contexts,
sequents), there is an implicit notion of well-formedness contained in the definition of



the interpretation functions. These well-formedness properties are implemented inside
Coq both as inductive predicates inProp namedWF_∗ (with ∗ = term, args, form . . . )
and as boolean functionscheck_∗. For every object a correctness lemma is proved:

WF_checked_∗ : ∀x : ∗, (check_∗ x) = true→(WF_∗ x)
The next step is the definition ofWF_proof which is a Coq inductive predicate rep-

resenting the “:” in the well-formedness of proofs. Then, acheck_proof boolean func-
tion is implemented and the correspondingWF_checked_proof lemma can be proved.
Using these, the fundamental theorem can be stated.

Theorem 1 (Logical soundness).There are Coq proof terms of these two theorems:
∀π : proof.∀Γ,∀G, (WF_sequent Γ ` G)→(WF_proof Γ ` G π)→ JΓ ` GK (1)

∀π : proof.∀Γ,∀G,(check_sequent Γ ` G) = true→
(check_proof Γ ` G π) = true→ JΓ ` GK

(2)

(Ax i) : Γ ` G
Γi = G

π1 : Γ ` A π2 : Γ ; A ` G

(Cut A π1 π2) : Γ ` G (⊥E i) : Γ ` G
Γi = ⊥̇

π : Γ ; A ` B

(→I π) : Γ ` A→̇B

π : Γ ; B ` G

(→E i j π) : Γ ` G

{
Γi = A→̇B

Γj = A
π1 : Γ ; A; B→̇C ` B π2 : Γ ; C ` G

(→D i π1 π2) : Γ ` G
Γi = (A→̇B)→̇C

π1 : Γ ` A π2 : Γ ` B

(∧I π1 π2) : Γ ` A∧̇B

π : Γ ; A; B ` G

(∧E i π) : Γ ` G
Γi = A∧̇B

π : Γ ; A→̇B→̇C ` G

(∧D i π) : Γ ` G
Γi = (A∧̇B)→̇C

π : Γ ` A

(∨I1 π) : Γ ` A∨̇B

π : Γ ` B

(∨I2 π) : Γ ` A∨̇B

π1 : Γ ; A ` G π2 : Γ ; B ` G

(∨E i π1 π2) : Γ ` G
Γi = A∨̇B

π : Γ ; A→̇C; B→̇C ` G

(∨D i π) : Γ ` G
Γi = (A∨̇B)→̇C

π : Γ ;j d ` (inst A Fvj)

(∀I π) : Γ ` ∀̇dA

π : Γ ; (inst A t) ` G

(∀E i t π) : Γ ` G
Γi = ∀̇dA

π1 : Γ ` ∀̇dA π2 : Γ ; B ` G

(∀D i π1 π2) : Γ ` G
Γi = (∀̇dA)→̇B

π : Γ ` (inst A t)

(∃I t π) : Γ ` ∃̇dA

π : Γ ;j d; (inst A Fvj) ` G

(∃E i π) : Γ ` G
Γi = ∃̇dA

π : Γ ; ∀̇d(A→̇B) ` G

(∃D i π) : Γ ` G
Γi = (∃̇dA)→̇B

(=I t) : Γ ` t
.
=
τ

t

π : Γ ; A ` G

(=D i π) : Γ ` G
Γi = (t

.
=
τ

t)→̇A

π : Γ ` (rewrite s t p G)

(=E1 i � p π) : Γ ` G
Γi = s
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=
d

t
π : Γ ` (rewrite t s p G)

(=E1 i � p π) : Γ ` G
Γi = s

.
=
d

t
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(=E2 i j � p π) : Γ ` G

{
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d
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t
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Fig. 3.Well-formedness of proofs



Coq proofs for these theorems, along with all the definitions above are available at
http://www.lri.fr/~corbinea/ftp/programs/rfo.tar.gz .

Sketch of the proof.(2) is a consequence of (1) by composition with theWF_checked_∗
lemmata. Formula (1) is proved by induction on the proof trace, so it amounts to prove
that in each step the interpretation of the conclusion is a consequence of the interpreta-
tion of the premises. Many intermediate steps are needed, the key ones being lemmata
about the semantics ofinst andrewrite , weakening lemmata, and lemmata about
the stability of the interpretation functions (an interpretation is preserved by the addition
of variables in the context).

3 Rewriting Traces for Ordered Completion

3.1 Completion Rules

The purpose of ordered completion [15, 13, 2] is to build a convergent rewriting system
from a set of equations in order to decide the word problem. Some provers such as
CiME [4] or Waldmeister [12] use an enhanced version of ordered completion in order
to solve unifiability problems instead of word problems.

We adopt the classical presentation of the completion process as a sequence of ap-
plications of inference rules. The input is a pair(E0, s = t), whereE0 is a set of
(implicitly universally quantified) equalities defining an equational theory, ands = t is
a conjecture, that is an implicitly existentially quantified equation. The output is True
when there exists a substitutionσ such thatsσ andtσ are equal moduloE0, False other-
wise. Of course, this semi-decision procedure may not terminate. The whole procedure
is parameterized by a reduction ordering>. The completion rules are working on a
triple (E,R, C), whereE andC are sets of equations (unordered pairs of terms), and
R is a set of rules (ordered pairs of terms).

The set of completion rules may be divided into several subsets. First the ruleInit
initializes the process, by building the initial triple from the initial set of axioms and
the conjecture. Then there are the rulesOrient andOrient’ which create rewrite rules
for R from unordered pairs of termsu = v in E. If u andv are comparable for>,
a single rewrite rule is created, otherwise, two rules are created since it may be the
case thatuσ > vσ or vσ > uσ, depending onσ. The rewrite rules are used by the
Rewrite, Rewrite’ , CollapseandComposefor rewriting respectively in an equation,
in a conjecture, in the left-hand side of a rule and in the right-hand side of a rule. Some
new facts are computed by deduction, either between two rewrite rules (Critical pair )
or between a rewrite rule and a conjecture (Narrow ).

A recursive application of the rules may run forever, or stop with an application of
theSuccessrule. Due to lack of space, we do not recall the rules, they can be read from
Figure 4 by erasing the annotations.

3.2 Completion Rules with Traces

In order to build a trace for a formal proof management system as Coq, the inference
rules have to be annotated with some additional information. From this respect, there
are two kinds of rules, those whichsimplifyequations or rules by rewriting the inside
terms, and those whichcreatesome new facts. The application of the simplification



rules is recorded in the rewritten term itself as a part of its history whereas the new facts
contain the step by which they were created as a trace. Moreover, one has to precisely
identify the left- and right-hand sides of equations, which leads to duplicate some of the
rules. We shall only write down the left version of them and mention that there is a right
version when there is no ambiguity. Hence the data structures are enriched as follows:

– An equation is a pair of terms with a trace. It will sometimes be denoted byu = v,
u andv being the two terms, when the trace is not relevant.

– A term u has a current versionu∗, an original versionu0, and an history, that is
sequence of rewriting steps, which enables to rewriteu0 into u∗.

– A rewriting step is given by a position, a substitution and a rewrite rule.

– A rewrite rule is an oriented (+ or−) equationu = v denoted byu
+→ v or v

−→ u.
– A trace is either an axiom (ω), or a peak corresponding with a critical pair (κ) or

with a narrowing (either in a left-hand side (νL) or in a right-hand side (νR)).
– A peak is given by its top termt, two rewrite rulesrl1, rl2, and the positionp where

the lowest rewrite rulerl2 has to be applied tot: rl2
p ← t→rl1

Λ .

An axiom, that is a pair of usual termss = t, is lifted into an equation̂s = t by turn-
ing s andt into general terms with an empty history and by adding the traceω(s = t).
Given a termu, a rulel → r, a positionp and a substitutionσ, whenu∗|p = l∗σ the
term u can be rewritten into a new termRew(u,−→l→r

p,σ ) where the original version
keeps the same, the current value is equalu∗[r∗σ]p and the new history is equal to
h@(p, σ, l → r), h being the history ofu. The annotated completion rules are given in
Figure 4.

3.3 Constructing a Formal Proof from a Trace

When a triple(E,R, C) can trigger the completion ruleSuccessall the needed infor-
mation for building a formal proof can be extracted from the trace of the conjecture
s = t such thats∗ andt∗ are unifiable. Building the formal proof is done in two steps,
first the information (as sequences of equational steps) is extracted from the trace, then
the proof is built (either as a reified proof object or as a Coq script).

Word Problem We shall first discuss the easiest case, when the original conjecture
is an equation between two closed terms. The narrowing rules never apply, the set of
conjectures is always a singleton, and theSuccessrule is triggered when both current
sides of the conjecture are syntactically equal.

There are two possibilities for building a proof. The first one is to give a sequence
of equational steps with respect toE0 between both sides of the conjecture (cut-free
proof). Since extracting the information from the trace in order to build such a proof
is quite involved (the critical pairs have to be recursively unfolded), we start by the
other alternative which is more simpler, where the proof is given by a list of lemmata
mirroring the computation of critical pairs.

Critical Pairs as CutsFirst, it is worth noticing that all the applications of completion
rules made so far do not have to be considered, but only the useful ones, which can be
extracted and sorted by a dependency analysis, starting from the rewrite rules which
occur in the history ofs andt.



Init
Ê0, ∅, {ŝ = t}

if E0 is the set defining the equational theory ands = t is the conjecture.

OrientL

{u = v} ∪ E, R, C

E, {u +→ v} ∪R, C
if u∗ > v∗ OrientR

{u = v} ∪ E, R, C

E, {v −→ u} ∪R, C
if v∗ > u∗

Orient’
{u = v} ∪ E, R, C

E, {u +→ v; v
−→ u} ∪R, C

if u∗ andv∗ are not comparable w.r.t. to>.

RewriteL

{u = v} ∪ E, {l ±→ r} ∪R, C

{Rew(u, l
±→r−−−−−→
p,σ

) = v} ∪ E, {l ±→ r} ∪R, C

if u∗|p = l∗σ andl∗σ > r∗σ.

Rewrite’L
E, {l ±→ r} ∪R, {s = t} ∪ C

E, {l ±→ r} ∪R, {Rew(s, l
±→r−−−−−→
p,σ

) = t} ∪ C

if s∗|p = l∗σ andl∗σ > r∗σ.

RewriteR Rewrite’R

Collapse+
E, {l +→ r; g

±→ d} ∪R, C

{Rew(l, g
±→d−−−−−→

p,σ
) = r} ∪ E, {g ±→ d} ∪R, C

if l∗|p = g∗σ.

Collapse−
E, {l −→ r; g

±→ d} ∪R, C

{r = Rew(l, g
±→d−−−−−→

p,σ
)} ∪ E, {g ±→ d} ∪R, C

if l∗|p = g∗σ.

Compose
E, {l ±→ r; g

±→ d} ∪R, C

E, {l ±→ Rew(r, g
±→d−−−−−→

p,σ
); g

±→ d} ∪R, C

if r∗|p = g∗σ.

Critical pair
E, {l ±→ r; g

±→ d} ∪R, C
l∗ρ1[d

∗ρ2]pσ = r∗ρ1σ

by κ( g
±→d←−−−−−
p

lρ1σ
l
±→r−−−−−→
Λ

)

∪E, {l ±→ r; g
±→ d}∪R, C

if l∗ρ1|pσ=g∗ρ2σ.

NarrowL

E, {g ±→ d} ∪R, {s = t} ∪ C

E, {g ±→ d}∪R,


s∗ρ1[d

∗ρ2]pσ = t∗ρ1σ

by νL( g
±→d←−−−−−
p

sρ1σ
s
+→t−−−−−→
Λ

)

∪{s = t}∪C

if s∗ρ1|pσ=g∗ρ2σ.

NarrowR

E, {g ±→ d} ∪R, {s = t} ∪ C

E, {g ±→ d}∪R,


s∗ρ1σ = t∗ρ1[d

∗ρ2]pσ

by νR( g
±→d←−−−−−
p

tρ1σ
t
−→s−−−−−→
Λ

)

∪{s= t}∪C

if t∗ρ1|pσ=g∗ρ2σ.

Success
E, R, {s = t} ∪ C

True
if s∗ andt∗ are unifiable.

Fig. 4.Annotated rules for ordered completion.



Now each critical pair can be seen as a lemma stating a universally quantified equal-
ity between two terms, and can be proven by using either the original equalities inE0

or the previous lemmata.

When the trace ofl
±→ r is ω(u = v), this means that the rule is obtained from

the original equationu = v of E0 by possibly rewriting both left and right hand sides.
l∗ and r∗ can be proven equal by the sequence of equational steps obtained by the
concatenation of1. the reverted history ofl, 2. u = v at the top with the identity
substitution either forward when the rule has the same orientation as it parent equation
(+ case) or backward when the orientation is different (− case),3. the history ofr.

When the trace of a rulel
±→ r is κ( l2

±→r2←−−−−
p

l1σ
l1
±→r1−−−−→
Λ

), the rule is obtained from

a critical pair between two rules and possibly a change of orientation.l∗ andr∗ can be
proven equal by the sequence of equational steps obtained from the concatenation of
1. the reverted history ofl, 2. a proof betweenl0 andr0 depending on the orientation;

when there is no change of orientation,2.a l2
±→ r2 applied backward at positionp

with the substitutionσ2 such thatl∗2σ2 = l∗1σ|p andr∗2σ2 = l0|p, 2.b l1
±→ r1 applied

forward at the top with the substitutionσ1 such thatl∗1σ1 = l∗1σ andr∗1σ1 = r0, (when

there is a change of orientation,2.a’ l1
±→ r1 applied backward at the top with the

substitutionσ1 such thatl∗1σ1 = l∗1σ andr∗1σ1 = l0, 2.b’ l2
±→ r2 applied forward at

positionp with the substitutionσ2 such thatl∗2σ2 = l∗1σ|p andr∗2σ2 = r0|p), 3. the
history ofr.

The proof of the original conjectures0 = t0 is then given by the concatenation of
the history ofs and the reverted history oft.

Unfolding the ProofThe main proof betweens0 andt0 can be unfolded: as soon as a
rule is used betweenu andv, at positionp with the substitutionσ, this rule is recursively
replaced by its proof, plugged into the contextu[_]p when used forward or the context
v[_]p when used backward, and the whole sequence being instantiated byσ.

Unifiability Problem In this case the narrowing rules may apply and the proof can be
given as a sequence of lemmata, or as a substitution and a sequence of equational steps
using onlyE0.

There are two kinds of lemmata, those coming from critical pairs as above, and those
coming from narrowing. Again, the useful ones can be extracted from the conjecture
s = t which triggered theSuccessrule.

Critical Pairs and Narrowing Steps as CutsThe computation of the set of useful lem-
mata is similar as in the word case when the trace ofs = t is of the formω(_), but the

starting set has to be extended withl1
±→ r1 andl2

±→ r2 when the trace is of the form

νL/R( l2
±→ r2←−−−−
p

l1σ
l1
±→r1−−−−→
Λ

). This set can be sorted as above, and the proof of a critical

pair lemma is exactly the same. The proof of a narrowing lemma is different: lets′ = t′

be a conjecture obtained by narrowing from the ruleg
±→ d and the conjectures = t.

From the formal proof point of view, this means that the goals = t has been replaced
by s′ = t′; one has to demonstrate that the replacement is sound, that iss′ = t′ implies
s = t. Hence the proof ofs = t is actually a sequence of rewriting steps betweens∗



andt∗ instantiated by the appropriate substitution, usings′ = t′ and some smaller crit-
ical pair lemmata. In the case of left narrowing, for example, the substitution is equal
to σ1 such thats∗σ1 = s∗σ andt∗σ1 = t′0 and the sequence of rewriting steps is ob-

tained by the concatenation of1. the forward application of the ruleg
±→ d at position

p with the substitutionσ2 such thatg∗σ2 = s∗σ|p andd∗σ2 = s′0|p, 2. the history of
s′, 3. the forward application ofs′ = t′ at the top with the identity substitution,4. the
reverted history oft′. The case of right narrowing is similar, and the case of the original
conjecture has already been described in the word problem case.

The proof of the last goal, that is the conjectures = t which actually triggered the
Successrule is the substitutionσ which unifiess∗ andt∗, and the sequence of rewriting
steps obtained by the concatenation of the history ofs and the reverted history oft,
every step being then instantiated byσ.

Unfolding the ProofAs in the word problem case, the main proof can also be unfolded,
but one has also to propagate the substitution introduced by each narrowing lemma.

4 Translation of CiME Proofs into Reified Proofs

First we describe the way we model unifiability problems inside Coq, then in Subsection
4.2 we explain how to reify a single sequence of rewrite steps in an suitable context, and
finally in Subsections 4.3 and 4.4 how to obtain a global proof from several lemmata by
building the needed contexts, and by combining the small proofs together.

4.1 Modelling Unifiability Problems inside Coq

A natural way to represent unifiability problems inside Coq is to represent algebraic
terms with Coq terms (deep embedding), but since Coq has a typed language we first
need to suppose we have a typedomain in the Coq sortSet.

This encoding is not harmless at all since Coq types are not inhabited by default,
which contradicts the semantics of unifiability problems: with an empty domain, the
provability of the conjecturef(x) = f(x) (which is implicitly existentially quantified)
depends on the existence of a constant symbol in the signature. Therefore we assume we
have adummyconstant in ourdomain type to model the non-emptiness assumption.

We need to introduce a Coq object of type

n times︷ ︸︸ ︷
domain→ · · · → domain→ domain for

everyn-ary function symbol in our signature. To represent the equality predicate we use
Coq’s standard polymorphic equality which is the interpretation of the

.= construction.
Since we always use thedomain type, with index 1 in our domain signature, 1 will be
the default subscript for

.=, ∀̇ and∃̇. For each equalitys = t we choose an arbitrary total
ordering on variables. We suppose rules will always be quantified in increasing order
with respect to this ordering.

A unifiability problem is formed by a list of universally quantified equalities
R1, . . . , Rn which are declared as Coq hypotheses and an existentially quantified equal-
ity G which is declared as the goal we want to prove.

4.2 Sequence of Rewrite Steps

In a tool like CiME, the equations and the rewrite rules are implicitly universally quan-
tified and some new variables are created when needed, whereas in the intermediate



sequent calculus, any variable has to come from a context. The main difficulty of the
subsection is to fill this gap by explaining in which contexts we are able to reify a
sequence of rewrite steps.

Let R1, . . . , Rn be rules, suppose CiME has given a rewriting trace betweens1 and

t as follows:s1
±R1−−−−→
σ1,p1

s2
±R2−−−−→
σ2,p2

· · · ±Rn−−−−→
σn,pn

sn+1 = t. We sayΓ is anadapted

contextfor this trace if it contains a representation ofy1, . . . , ym, the free variables in
s1 and t, a representation ofdummy, and the closed hypothesesṘ1, . . . , Ṙn. In such
a contextΓ , the reification of an open termt is defined by ift = (f a1 . . . ap) then
ṫ = (ḟ ȧ1 . . . ȧp), otherwise ift = yi thenṫ is the corresponding variable inΓ , and if t
is an unknown variable theṅt = ˙dummy. These unknown variables appear for example
when the conjecturef(a, a) = f(b, b) is proven using the hypothesis∀xy.f(x, x) = y.

Theorem 2. There exists a proof-trace ofΓ ` ṡ1
.= ṫ for any adapted contextΓ .

Proof. We prove by downwards induction oni that for any adapted contextΓ there
existπ such thatπ : Γ ` ṡi

.=ṫ :
If i = n + 1 thensi is t, so we have=I :Γ ` (t .= t) for anyΓ .
Otherwise, letΓ be an adapted context of lengthh andk be the index ofṘi in Γ ,

let z1, . . . , zl be the free variables inRi. We can build the following proof tree:

Induction hypothesis withΓ ;h+1 : ˙Ri{z1 7→ z1σi} . . . ;h+l : ˙Riσi
:

π : Γ ; . . . ;h+l : ˙Riσi ` ˙si+1
.= ṫ

(=E1 (h+l)↔ ṗi π) : Γ ; . . . ;h+l : ˙Riσi ` ṡi
.= ṫ.... l ∀E steps

(∀E k ˙z1σi(∀E (h+1) ˙z2σi . . . (∀E (h+l−1) ˙zlσi(=E1 (h+l)↔ pi π)) . . . ):Γ ` ṡi
.=ṫ

The induction step is valid since any extension of an adapted context stays adapted.ut
4.3 Closed Goals and Critical Pairs

Theorem 3. LetG be a closed goal,O1, . . . , On some original rules andC1, . . . , Cm

an ordered list of critical pairs used in the CiME trace ofG. Let Γ k be the context
�; ˙dummy; Ȯ1; . . . ; Ȯn; Ċ1; . . . ; Ċk with 0 ≤ k ≤ m. There is a proof traceπ for
Γ 0 ` Ġ.

Proof. We build inductively a proof traceπ for the sequentΓ i ` Ġ, starting fromi = m
and going backwards toi = 0.

– We can build a proof traceπ such thatπ : Γm ` Ġ using the Theorem 2 and the
trace given by CiME forG.

– Suppose we have a proof traceπ such thatπ : Γ i ` Ġ, and supposeCi is of the
form ∀x1 . . . xp.s = t, we build the following tree to obtain a proof ofΓ i−1 ` G :

Theorem 2
:

π′ : Γ i−1; ẋ1; . . . ; ẋp ` ṡ
.= ṫ

.... p ∀I steps

(∀I . . . (∀I π′) . . . ) : Γ ` ∀̇1 . . . ∀̇1ṡ
.= ṫ

Induction hypothesis
:

π : Γ i ` Ġ

(Cut Ċi (∀I . . . (∀I π′) . . . ) π) : Γ i−1 ` Ġ ut



4.4 Open Goals and Narrowings

Open Goals When the goal is of the form∃x1, . . . , xn.s = t, CiME provides a sub-
stitutionσ and a rewriting trace forsσ = tσ. Using Theorem 2 we build a traceπ for
˙sσ .= ˙tσ. The proof trace for the quantified goal is(∃I ˙x1σ . . . (∃I ˙xnσ π) . . . ).

Narrowings Assume the current goal is an equality∃x1, . . . , xn.s = t and CiME
gives a proof trace with a narrowingN = ∃y1, . . . , ym.s′ = t′. We do a cut onṄ .
In the left premise, the goal becomesṄ and we build here the trace for the rest of the
lemmata. In the right premise, we applym times the∃E rule to obtain the hypotheses
ẏ1, . . . , ẏm, ṡ′

.= ṫ′, and we are in the case of the open goal described above.

5 Benchmarks

We run successfully CiME and Coq together on 230 problems coming from the TPTP
library [16]. These problems are a subset of the 778 unifiability and word problems
of TPTP. Some of the 778 TPTP problems are discarded because they are not solved
within the given time (298), some others because they do not have a positive answer
(11) or because they involve AC symbols (239), not handled by our framework yet.

The experiments were made on a 1.8GHz Pentium PC with 1Gb RAM, and a time-
out of 600s on the completion process. For each of the 230 completion successes, 4
proofs were automatically generated, a short reified proof, a short proof with tactics, a
cut-free reified proof and a cut-free proof with tactics. We used the current CVS ver-
sions of CiME3 and Coq, with the virtual machine turned on, which helps the Coq
kernel reduce terms (see [9]).

Coq has been run on each of the 4*230 generated proofs, again with a timeout of
600s. We have observed that the short proofs are always checked in less that 1 second,
for reified proofs as well as for tactics proofs, whatever the completion time. A short
reified proof takes less time than the corresponding short tactics proof, but this is on
very short times, so not very significant. The cut-free reified proofs take less time than
the cut-free tactics, and the factor varies between 1 and 30. There is even an example
(GRP614-1) where the reified proof is checked in 2 seconds and Coq gives up on the
tactics proof. Some of the cut-free proofs are actually huge (several millions of lines)
and cannot be handled by Coq (14 reified proofs and 16 script proofs).

6 Conclusion

We have described how to use reflection for proofs in Coq, how to annotate the usual
ordered completion rules in order to build a trace, and how to turn the obtained trace into
a reflective proof. The experiments made so far have validated the reflective approach
and shown that some automation may be introduced in Coq and release the user from a
part of the proof.

Previous works on reflection either aimed at proving meta-properties of proof trees
in a very general framework [11] or at actually solving domain specific problems and
at providing some automation for interactive provers [3, 6]. We claim that our work
belongs to the second trend but without loss of generality since our development is
parameterized by the signature. Special care has been devoted to efficiency of proof-
checking functions written in the Coq language.



We plan to work in several directions. First finalize the existing implementation as
a Coq tactic by adding glue code, then extend the reflection mechanism to other calculi;
for exampleLJTI which adds arbitrary non-recursive connectives to first-order logic
with a contraction-free presentation [5], or classical multi-succedent calculi to handle
more general traces producede.g. by classical tableaux provers. Finally handle AC
function symbols by reflecting AC-steps.
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