www.bsik-bricks.nl

File Edit Navigation Try Tactics Templates Queries Compile Windows

A Declarative Proof Language for the Coq Proof Assistant

What is Coqg ?

Coq is an interactive proof assistant developed by the
LogiCal team at the French INRIA institute. It allows
to formally define mathematical objects and helps the
user prove properties of those objects. Coq is based
on a variant of Type Theory called Calculus of Induc-
tive Constructions. The architecture of the Coq proof
assistant ensures the correctness of the proofs writ-
ten by the user. Coq is mostly used for two kinds of
applications :

e the certification of computer systems and software:
Javacard virtual machine, certified compilers. ..

e the formalisation of mathematics :
Four color theorem, C-CoRN...

The basic use of Coq follows three steps:
1. Define the objects and axioms used.
2. State a theorem.

3. Provide steps of the proof (proof script) until it is
completed.

Finally, a proof object is built, double-checked by the
small, trusted kernel and saved.
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A theorem from the book

Theorem 1 (Int. Math. Olympiads 1972, B2)

Let f and g be real-valued functions defined on the real
line such that for all x and y, f(x +y) + flx —y) =
2f(x)g(y). If f is not identically zero and |f(x)] < 1 for

all x, prove that |g(x)| < 1 for all x.

Proof: Let k be the least upper bound for | f(x)|. Suppose
lg(y)] > 1. Take any x with |f(z)| > 0, then

2k > |f(x+y)| + |f(z —y)
> |f(z+y)+ flz —y)
= 2|g(y)||f(x)

so |f(x)] < k/|g(y)|. In other words, k/|g(y)| is an upper
bound for | f(x)| which is less than k. Contradiction. ]

formal statement

Require Import Reals.

Theorem B2: forall f g :
(forall x vy,
f x+y)+f &x-y)=2*x=fx*xgy) >
— “(forall x, £f x =0) —>

R -> R,
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Formalising Mathematics

The Foundations Team in Nijmegen uses Coq to de-
velop a library of formalised mathematics known as
C-CoRN. It contains constructive mathematics.

The process of formalising mathematics is quite cum-
bersome since textbook mathematics are not writ-
ten in a formal language. The difficulties arise from
the formal system (Type Theory), but also to a much
greater extend from the proof language.

Those difficulties are the impossiblility to read the
proof scripts without running them in Coq, the steep
learning curve to for new proof developers, the exotic
look of the proof script and the trouble to keep older
proofs running for newer Coqg versions.

To solve these problems, our approach consists In
providing a new proof language for the Coq proof as-
sistant, which needs to be:

e readable (by casual mathematicians)

e accessible (easy to learn)

e natural (like textbook proofs)

e maintainable (resistant to software updates)
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Procedural vs. Declarative style

A proof language consists of commands that modify
the proof state, which keeps track of what needs prov-
ing. A procedural style language emphasises the use
of specific methods to proceed, while a declarative
style language emphasises the target proof state.

On the one hand, the declarative style is more read-
able because the script explicitly contains the succes-
sive proof states, more accessible because it relies on
a few basic operations, more natural because com-
mands use English words and standard logical formu-
lae, and much maintainable because modifications af-
fect the behaviour of the script only locally.

The declarative style on the other hand, is much more
verbose than the procedural style and relies heavily
on automation to verify proof steps.

Previous uses of the declarative style include the
Mizar Proof assistant and the ISAR language for the
Isabelle proof assistant.
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Basic commands

#assume H: (0 < 2xx). putinthe context a hypoth-
esis named H asserting that 0 < 2xx.

#have H’:(x > 0) by H. derive a new fact assert-
ing that x > 0 from the fact named H, and name it
H.

#then (x > 0). derive a new anonymous fact as-
serting that x > 0 from the fact on the previous line.

#thus (x > 0). derive a new anonymous fact as-
serting that x > 0, and use it to conclude the proof
or part of it.

#per cases of (x=0 \/ x<>0) by EM. derive a
new fact asserting that x=0 \/ x<>0 from EM (the ax-
lom of excluded middle), and start a case analysis
from this fact.

# suppose nzx: (x<>0).  start proving the subcase

where (x <> 0).

NYO N

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Universiteit Utrecht

technische universiteit eindhoven

Links

s= http://coq.inria.fr/
The Coq proof assistant

s http://www.cs.ru.nl/~corbineau/mmode.html
The Declarative Proof Language for Coa.

s== http://c-corn.cs.ru.nl/
The C-CoRN library of formalised mathematics.

s http://pauillac.inria.fr/~xleroy/
compcert-backend/
A certified compiler backend in Coq

s== http://mizar.org/
Mizar: the first declarative proof assistant

s http://isabelle.in.tum.de/Isar/
ISAR, a declarative language for the Isabelle proof
assistant
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