
From MITL to Timed Automata?

Oded Maler1, Dejan Nickovic1 and Amir Pnueli2,3

1 Verimag, 2 Av. de Vignate, 38610 Gières, France
[Dejan.Nickovic | Oded.Maler]@imag.fr
2 Weizmann Institute of Science, Rehovot 76100, Israel

3 New York University, 251 Mercer St. New York, NY 10012, USA
Amir.Pnueli@cs.nyu.edu

Abstract. We show how to transform formulae written in the real-time tempo-
ral logic MITL into timed automata that recognize their satisfying models. This
compositional construction is much simpler than previously known and can be
easily implemented.

Prediction is very difficult, especially about the future.
Niels Bohr

1 Introduction

Decision procedures for model-checking of temporal logic formulae [MP91,MP95]
play a central role in algorithmic verification [CGP99]. Such procedures are based,
in the linear-time context, on deriving from a formula ϕ an automaton-like device
that accepts exactly sequences of states or events that satisfy it [VW86]. For discrete-
time models, used for functional verification of software or synchronous hardware,
the logical situation is rather mature. Logics like LTL (linear-time temporal logic) or
CTL (computation-tree logic) are commonly accepted and incorporated into verifica-
tion tools. LTL admits a variety of efficient algorithms for translating a formula into an
equivalent automaton [GPVW95,SB00,GO01,KP05] and it even underlies the industrial
standard PSL [KCV04,HFE04].

When considering timed models and specification formalisms whose semantics in-
volves the time domain R+ rather than N, the situation is somewhat less satisfactory
[A04]. Many variants of real-time logics [Koy90,AH92a,Hen98,HR04] as well as timed
regular expressions [ACM02] have been proposed but the correspondence between
simply-defined logics and variants of timed automata (automata with auxiliary clock
variables [AD94]) is not as simple and canonical as for the untimed case, partly, of
course, due to the additional complexity of the timed model. Consequently, existing
verification tools for timed automata rarely use temporal properties other than safety.
One of the most popular dense-time extensions of LTL is the logic MITL introduced in
[AFH96] as a restriction of the logic MTL [Koy90]. The principal modality of MITL
is the timed until UI where I is some non-singular interval. A formula p U[a,b] q is

? This work was partially supported by the European Community project IST-2003-507219
PROSYD (Property-based System Design).



satisfied by a model at any time instant t that admits q at some t′ ∈ [t + a, t + b],
and where p holds continuously from t to t′. The decidability of MITL was estab-
lished in [AFH96] and it was, together with MTL, subject to further investigations
[AH92b,RSH98,HRS98,OW05]. However, the automaton construction in [AFH96] is
very complicated (11 pages) and, to the best of our knowledge, has never been imple-
mented. The only logic that has been integrated into a real-time model-checking tool
was the timed version of CTL, TCTL [HNSY94], used in the tool Kronos [Y97].4

In this paper we remedy this situation somewhat by presenting a simple construction
of timed automata that accept exactly models of MITL formulae. The construction is
based on two ideas, the first being the modular construction of property testers for
untimed formulae [KP05] and the other is the observation, similar to the one already
made in [AFH96], that the evolution over time of the satisfiability of a formula of the
form pU[a,b] q is of bounded variability, regardless of the variability of p and q.

The rest of the paper is organized as follows. In Section 2 we illustrate the modular
construction of testers for (untimed) LTL formulae. The logic MITL is presented in
Section 3 together with its semantic domain (Boolean signals) and timed automata. The
main result, the construction of property testers for MITL, is presented in Section 4,
followed by a brief discussion of the differences between the version of MITL that we
use and the one presented in [AFH96].

2 Temporal Testers for LTL

In this section we discuss some of the problems associated with the construction of
automata that accept models of LTL formulae, and describe the modular procedure of
[KP05] which we later extend for MITL. We feel that, independently of its timed gen-
eralization, this construction, based on composition of acausal sequential transducers,
improves our understanding of temporal logic and can serve as a unifying framework
for both verification and monitoring. We assume familiarity with basic notions of LTL,
whose syntax is defined according to the grammar

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | © ϕ | ϕ1Uϕ2

where p belongs to a set P = {p1, . . . , pn} of propositions. LTL is interpreted over
n-dimensional Boolean ω-sequences of the form ξ : N→ Bn. We abuse p to denote the
projection of the sequence ξ on p. The semantics of LTL formulae is typically given via
a recursive definition of the relation (ξ, t) |= ϕ indicating that the sequence ξ satisfies
ϕ at position t. The satisfaction of a compound formula op(ϕ1, ϕ2), where op is a
temporal or propositional operator, by a sequence ξ is an op-dependent function of the
satisfaction of the sub formulae ϕ1 and ϕ2 by ξ. Functionally speaking, the satisfaction
of ϕ by arbitrary sequences can be viewed as a characteristic function χϕ which maps
sequences over Bn into Boolean sequences such that β = χϕ(ξ) means that for every
i, β[i] = 1 iff (ξ, i) |= ϕ. The semantics of LTL can thus be formulated5 as a recursive

4 An efficient emptiness checking algorithm for timed Büchi automata has been proposed and
implemented in [TYB05] but without an upstream translation from a logical formalism.

5 Throughout the paper we use a variant of until in which pU q requires that p holds also at
the same time instant when q becomes true, which can be expressed as pU(p ∧ q) using the



definition of χϕ:

χp[t] = p[t]
χ¬ϕ[t] = ¬χϕ[t]
χϕ1∨ϕ2 [t] = χϕ1 [t] ∨ χϕ2 [t]
χ©ϕ[t] = χϕ[t+ 1]
χϕ1Uϕ2 [t] =

∨
t′≥t(χ

ϕ2 [t′] ∧∧t′′∈[t,t′] χ
ϕ1 [t′′])

(1)

Given a formula ϕ, its characteristic function is defined as a composition of sequential
functions, following the pattern of its parse tree, as illustrated in Figure 1. So what
remains to be done is to build an automaton that realizes the appropriate sequential
function for each LTL operator and use these building blocks, that we call temporal
testers, to construct a mechanism that computes the characteristic function for arbitrary
formulae, but some problem related to causality should be settled first.

χ¬p2 U p3

χ¬p2

χ(©p1)∨(¬p2 U p3)

χ©p1p1 = χp1

p2 = χp2

p3 = χp3

U

∨

¬

©

Fig. 1. Computing the characteristic function of (©p1) ∨ (¬p2 U p3).

A sequential function f : Aω → Bω is said to be causal if for every u ∈ A∗, v, v′ ∈ B∗
such that |u| = |v| = |v′| and every α ∈ Aω and β ∈ Bω

f(u · α) = v · β and f(u · α′) = v′ · β′ implies v = v′.

In other words, the value of f(α) at time t may depend only on the values {α[t′] :
t′ ≤ t}. Causal functions are realized naturally by deterministic automata with output
(sequential synchronous transducers). However, unlike the semantics of the past frag-
ment of LTL which is causal (see [HR02]), the semantics of future LTL is not. Looking
closely at (1) we can see that while the propositional operators define causal sequential
functions, the future temporal operators are acausal. The output of the next operator at
time t depends on the input at t+ 1 and, even worse, the output of the until operator at
t may depend on input values at some t′ which may be arbitrarily further in the future.

One can think of two ways to realize acausal sequential functions. The first ap-
proach, which works well for operators with a bounded level of acausality, such as the
next operator or several nestings of which (denoted by ©d) is to dissociate the time
scales of the input and the output. That is, let the automaton ignore the first d input

standard interpretation. For LTL this variation just simplifies the corresponding tester while
for MITL it avoids certain anomalies.



symbols, and then let β[t] = α[t + d]. Unfortunately this does not always work for
unbounded acausality.

Using the second approach the transducer responds to the input synchronously but
since at time t the information might not be sufficient for determining the output, it
will have to “guess” the output non-deterministically and split the computation into two
runs, one that predicts 0 and one that predicts 1. Each of the runs needs to remember
its predictions until sufficient input information is accumulated to abort all but one run.
The automaton for operators with acausality of depth d, may need to memorize up to
2d predictions. The first approach is more intuitive6 but since we do not know how to
extend it to unbounded acausality, we use the second one. The automaton that computes
the characteristic function of© is depicted in Figure 2 along with a sample run.7 State
s0 indicates that the prediction made in the previous step was 0, hence at this state,
observing p contradicts the prediction and the run is aborted. Input p confirms the pre-
diction and the run splits by generating two predictions for the next value and so on. For
every infinite input sequence ξ, only one infinite run survives and its output is χ©p(ξ).
The automaton for©dp follows the same pattern and is nothing but an output-driven
shift register of depth d (see Figure 2). States s00 and s01 of this automaton represent
predictions for unsatisfiability at t− 2 and hence admit only p-labeled transitions. It is
worth mentioning that these automata are output-deterministic and can be obtained by
reversing the transitions in the ordinary input-driven shift registers that correspond to
the past temporal operator previously, also known as the delay operator z−1.

s0 s1 p/1p/0

s00

s01

s11

s10

p/0

p/1

p/0

p/1

p/1

p/1

p/0

p/0

p/1

p/0
p/1

s0 s1

p/1p/0

s0 s1

s0 s1

· · ·· · ·

p/0

p/0

p/1

p/0

p/1

Fig. 2. The testers for©p and for©(©p); An initial fragment of the behavior for the©p-tester
while computing χ©(pppp · · · ) = 110 · · · .

6 After all, it is more natural to reply “I don’t know yet” rather than saying “the answer now
could be either 0 or 1, but only in the next step I will tell you which of them is actually true”.

7 To ease readability we use {p, p} instead of {0, 1} as the input alphabet for unary operators
and {pq, pq, pq, pq} for the binary ones. Moreover, we use p as a shorthand for {pq, pq}.



The situation with pU q is more involved because a priori, due to the unbounded
horizon, one might need to generate and memorize 2ω predictions. However the seman-
tics of until implies that at most two confirmable predictions may co-exist simultane-
ously.

Lemma 1. Let β = χpU q(ξ). Then for every t such that ξ[t] = ξ[t + 1] = pq, β[t] =
β[t+ 1].

Proof. There are three possibilities: 1) The earliest t′ > t + 1 such that β[t′] 6= pq
satisfies β[t′] = pq. In that case, the property is satisfied at t and t + 1; 2) The same
t′ satisfies β[t′] = p and the property is falsified at both t and t + 1; 3) β[t′] = pq for
every t′ > t+ 1 and the property is falsified from both time points.8

This fact is reflected by the tester of Figure 3. At time instants where p is observed, the
value of the output is determined to be 0. Likewise when pq is observed the output is
determined to be 1. The only situation that calls for non-determinism is when pq occurs
and we do not know in which of the three cases of Lemma 1 we will eventually find
ourselves. Hence we split the run into positive and negative predictions (states spq and
spq , respectively). The only input sequences that will lead to two infinite runs are those
ending with an infinite suffix of pq’s. To choose the correct one among the two we add a
Büchi condition requiring infinitely many visits in the set {sp, spq , spq} which amounts
to rejecting runs that stay forever in spq . With these two testers (and simple testers for
the Boolean operators) one can build testers for arbitrary LTL formulae. Note that in
both the next and until testers, all transitions entering a state are decorated by the same
output symbols so, in fact, one might view outputs as associated with states rather than
with transitions, as is done in [KP05].

The notion of compositional temporal testers, as introduced in [KP05], is based on
several key ideas. One of them is the allocation of an individual Boolean variable to each
sub-formula of an LTL formula. This idea, to which we refer in [KP05] as statification
of the sub-formula, has been considered first in [BCM+92] in the context of symbolic
implementation of a tableau construction. The observation that such a Boolean variable
can replace the sub-formula itself in the context of model checking has been considered
in [CGH94]. It is worth mentioning the translation of LTL to alternating automata
[Var96] which, like the temporal testers approach, works inductively on the structure of
the formula but not in a compositional manner.

3 Signals, their Temporal Logic and Timed Automata

Extending the construction of temporal testers from discrete to dense time requires
adaptations of the semantic domain, the logic and the automata. The interaction between
discrete transitions and dense time may give rise to certain anomalies and complications
that we avoid by deviating slightly from the original definitions of [AFH96].

8 This is the “strong” interpretation of until. For the weak version both t and t + 1 will satisfy
the property.



pq/1

pq/0

pq/1

pq/0

pq/1

pq/0p/0

pq/1

sp spq

spqspq

p/0

pq/1

pq/1

sp spq

spqspq

pq/0p/0

pq/1pq/1

p/0

Fig. 3. The tester for pU q for sequences (left) and for signals (right). All states except spq are
accepting. All transitions in the signal tester should be decorated by z > 0/z := 0, with z being
an auxiliary clock, to force signals to maintain each value for a non-punctual duration.

3.1 Signals

Two basic semantic domains for describing timed behaviors have been introduced in
an algebraic form in [ACM02,A04]. The first semantic objects are the time-event se-
quences, elements of the free product (shuffle) of the monoids Σ∗ and R+. Time-event
sequences consist of instantaneous events (or finite sequences of events) separated by
numbers that represent time durations. The other semantic domain is that of signals,
elements of the free product of several copies of the monoidR+, a copy for each alpha-
bet symbol. Signals are thus viewed as concatenations of “typed” real numbers, where
σ5

1 · σ3
2 represents a σ1 period of duration 5 followed by a σ2 period of duration 3. Zero

is the identity element of each of the monoids and it is absorbed when signals are trans-
formed to a canonical form, that is σt11 · σ0 · σt22 = σt11 · σt22 . A signal-event monoid
containing both can be defined as well [ACM02].

The transformation of these objects into the form of functions from the time domain
to the alphabet is not painless. For time-event sequences a “super-dense” time [MMP92]
had to be invented, a subset of the product of R+ and N, where a sequence of discrete
events, all taking place at time t, is mapped to the sequence (t, 1), (t, 2), . . . of general-
ized time instants. The timed traces of [AD94] constitute another representation of the
same objects. Signals, which are the natural domain for MITL, are more well-behaving
in this respect and can be mapped bijectively to functions from R+ to the alphabet if
one accepts some restrictions. The one we adopt is to view a signal of the form σt11 ·σt22

as a function whose value is σ1 in the left-closed right-open interval [0, t1) and σ2 in
the interval [t1, t1 + t2). Since such intervals cannot be punctual without being empty,
we exclude from the discussion signals that may have a distinct value in some isolated
point.9 Since our construction is based on characteristic functions and signal transduc-

9 Other possibilities are left-open right-closed intervals with the exclusion of time zero, or a
non-bijective representation which may map the algebraic object into two time functions that
differ on t1.



ers, we need this property of signals to be preserved by the temporal operators, hence
we deviate from [AFH96] by restricting the quantitative temporal modalities to closed
intervals.

Definition 1 (Signals). Let R+ be the set of non-negative real numbers. A Boolean
signal is a function ξ : R+ → Bn such that for every σ ∈ Bn, ξ−1(σ) is a union of
left-closed right-open intervals.

A partial signal is a restriction of a signal to some interval [a, b). We will sometimes
refer to a partial signal of the form σt11 · σt22 · · ·σtkk as a σ1 · σ2 · · ·σk-segment of the
signal.

3.2 Real-time Temporal Logic

The syntax of MITL is defined by the grammar

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1U[a,b]ϕ2 | ϕ1Uϕ2

where p belongs to a set P = {p1, . . . , pn} of propositions and b > a ≥ 0 are rational
numbers (in fact, using normalization, it is sufficient to consider integers). From ba-
sic MITL operators one can derive other standard Boolean and temporal operators, in
particular the time-constrained eventually and always operators

3[a,b]ϕ = T U[a,b]ϕ and 2[a,b]ϕ = ¬3[a,b]¬ϕ.

We interpret MITL over n-dimensional Boolean signals and define the satisfiability re-
lation via characteristic functions, which for the propositional operators and the untimed
until are defined exactly as for LTL. The semantics of timed until is given by

χϕ1U[a,b]ϕ2 [t] =
∨
t′∈[t+a,t+b](χ

ϕ2 [t′] ∧∧t′′∈[t,t′] χ
ϕ1 [t′′])

The difference with respect to untimed until is that t′ ranges over the bounded (but
dense) interval [t+a, t+b] rather than over the unbounded set {t, t+1, . . .} of integers.
Our interpretation of the timed until slightly deviates from [AFH96] by requiring ϕ1 to
hold also at the moment t′ when ϕ2 becomes true, and not only in the open interval
(t, t′). A signal ξ satisfies the formula ϕ iff χϕ(ξ)[0] = 1.

The following lemma, proved also in [DT04], shows that timed until can be ex-
pressed by a combination of untimed until and timed eventually whose characteristic
function is

χ3[a,b]ϕ =
∨
t′∈[t+a,t+b] χ

ϕ[t′].

Lemma 2 (Timed Until is Redundant). For every signal ξ,

ξ |= pU[a,b]q ↔ ξ |= 2[0,a](pU q) ∧3[a,b]q.

Proof: One direction of the equivalence follows directly from the semantics of timed
until, so we will consider only the other direction which is proved via the following
observations:



1. If ξ |= 2[0,a]pU q then p is continuously true throughout [0, a].
2. If ξ |= 2[0,a]pU q, then pU q has to hold at a and hence there exists t′ ≥ a such

that q is true at t′ and p holds during [a, t′].
3. Formula 3[a,b]q requires the existence of t′ ∈ [a, b] such that q holds at t′

Combining these observations we can see that ξ |= 2[0,a](pU q) ∧ 3[a,b]q implies that
there exists t′ ∈ [a, b] such that q is true at t′ and p holds continuously during [0, t′],
which is exactly the semantic definition of p U[a,b] q.

For the sake of completeness, let us mention that the special case p U[0,b] q can be
written as pU q ∧ 3[0,b]q, and that pU[a,∞) q, which is not allowed by our syntax, can
be written as 2[0,a](pU q).

3.3 Timed Automata

We use a variant of timed automata which differs slightly from the classical definitions
[AD94,HNSY94,Alu99] as it reads multi-dimensional dense-time Boolean signals, and
outputs Boolean signals. Hence the input and output alphabet letters are associated with
states rather than with transitions. We also extend the domain of clock values to include
the special symbol ⊥ indicating that the clock is currently inactive10 and extend the
order relation on R+ accordingly by letting⊥ < v for every v ∈ R+. For a set A ⊆ Rn
we use cl(A) to denote its closure (in the topological sense).

The set of valuations of a set C = {x1, . . . , xn} of clock variables, each denoted
as v = (v1, . . . , vn), defines the clock space H = (R+ ∪ {⊥})n. A configuration of a
timed automaton is a pair of the form (q, v) with q being a discrete state. For a clock
valuation v = (v1, . . . , vn), v + t is the valuation (v′1, . . . , v

′
n) such that v′i = vi if

vi = ⊥ and v′i = vi + t otherwise. A clock constraint is a conjunction of conditions of
the form x ≤ d, x < d, x ≥ d or x > d for some integer d.

Definition 2 (Timed Signal Transducer). A timed signal transducer is a tuple A =
(Σ,Q, Γ, C, λ, γ, I,∆, q0, F ) where Σ is the input alphabet,Q is a finite set of discrete
states, Γ is the output alphabet and C is a set of clock variables. The input labeling
function λ : Q → Σ associates an input letter to every state while the output function
γ : Q → Γ assigns output letters. The staying condition (invariant) I assigns to every
state q a subset Iq of H defined by a conjunction of inequalities of the form x ≤ d or
x < d, for some clock x and integer d. The transition relation ∆ consists of elements
of the form (q, g, ρ, q′) where q and q′ are discrete states, the transition guard g is a
subset ofH defined by a clock constraint and ρ is the update function, a transformation
of H defined by an assignment of the form x := 0 or x := ⊥. Finally q0 is the initial
state and F ⊆ 2Q is a generalized Büchi acceptance condition.

The behavior of the automaton as it reads a signal ξ consists of an alternation be-
tween time progress periods where the automaton stays in a state q as long as ξ[t] =
λ(q) and Iq holds, and discrete instantaneous transitions guarded by clock conditions.
Formally, a step of the automaton is one of the following:

10 This is syntactic sugar since clock inactivity in a state can be encoded implicitly by the fact
that in all paths emanating from the state, the clock is reset to zero before being tested [DY96].



– A time step: (q, v)
σt/τ t−→ (q, v + t), t ∈ R+ such that σ = λ(q), τ = γ(q), and11

v + t ∈ cl(Iq).

– A discrete step: (q, v)
δ−→ (q′, v′), for some transition δ = (q, g, ρ, q′) ∈ ∆, such

that v ∈ g and v′ = ρ(v)

A run of the automaton starting from a configuration (q0, v0) is a finite or infinite se-
quence of alternating time and discrete steps of the form

ξ : (q0, v0)
σ
t1
1 /τ

t1
1−→ (q0, v0 + t1)

δ1−→ (q1, v1)
σ
t2
2 /τ

t2
2−→ (q1, v1 + t2)

δ2−→ · · · ,

such that
∑
ti diverges. A run is accepting if for every F ∈ F , the set of time instants

in which it visits states in F is unbounded. The input signal carried by the run is σt11 ·
σt22 · · · and the output is τ t11 · τ t22 · · · The automaton realizes a sequential relation fA
over its input and output alphabets defined by fA(ξ) = ξ′ iff the accepting run induced
by the input signal ξ, outputs the signal ξ′.

4 Main Result

In this section we show how to build for every MITL formula ϕ a property tester, a
timed signal transducer Aϕ whose associated sequential function coincides with the
characteristic function of ϕ, that is, fAϕ = χϕ. The construction follows the pattern
of the untimed one by composing testers corresponding to operators that appear in the
formula. The tester for the untimed until can be easily adapted to signals by associating
input and output symbols with states and removing self loops (see Figure 3). The only
missing link is the following proposition.

Proposition 1. One can construct a timed signal transducer that realizes χ3[a,b]p.

The construction used to prove this proposition follows the lines of the untimed
one, based on generating output predictions non-deterministically and aborting them
when they are contradicted by actual values of p in ξ. Dense time, however poses new
problems because the set of potential predictions of bounded duration includes signals
with an arbitrary number of switchings between true and false, and such predictions
cannot be memorized by a finite-state timed device. We first show in the following
lemma, also used in [AFH96], that predictions that switch too frequently cannot be true
for any sub formula of type 3[a,b]p. A similar property was used in [MNP05] to show
that past MITL is deterministic. We use the auxiliary variable u for the output of the
tester.

Lemma 3. Let β be a Boolean signal satisfying β = χ3[a,b]p(ξ) for 0 ≤ a < b and
some arbitrary ξ. Then for any factorization β = v ·0r1 ·1r2 ·0r3 ·w we have r2 ≥ b−a.

11 Note that we have chosen Iq to be “backward-closed” so that v+t ∈ cl(Iq) implies v+t′ ∈ Iq
for every t′, 0 ≤ t′ < t.



Proof: The following observation concerning the constraints on the values of u and
p at every t follows from the definitions: if p holds at t + b, u must hold throughout
the interval [t, t + b − a]. Let [t1, t2) be the corresponding interval for 1r2 . Since t1
is the first instant where u holds, p must start holding at t1 + b and not before that,
because otherwise this would imply that u holds before t1, contrary to our assumptions.
Following the observation, u has to hold during the entire interval [t1, t1 + b − a].
Consequently, t2 ≥ t1 + b− a and we are done.

r1 r2 r3

t1 t2

Fig. 4. A signal χ3[a,b]p(ξ) for an arbitrary ξ.

The importance of this property is that it bounds the variability of any realizable
prediction and constrains the relation between the number of changes and the duration
of candidate signals. Let d = b−a andm = db/de+1. Since every12 10 or 01 segment
of β has at least d duration, any acceptable prediction of the form (01)m or (10)m has
a duration beyond b and, hence, its initial segment can be forgotten. Consequently, 2m
clocks suffice to memorize relevant predictions.

Let us first explain our construction in discrete time where 3[a,b] is just syntactic
sugar:

3[a,b]p ≡
∨

i∈[a,b]

©ip

As this operator is bounded by d = b − a, a tester will need to remember at most 2d

predictions, which can be encoded explicitly as states that correspond to elements ofBd.
For obvious reasons, this approach will not extend to dense time. Instead, we can encode
such sequences by the length (duration) of their 0 and 1 segments as is done in data
compression. For example, the sequence 00011011 can be encoded as 03120112. This
information can be memorized by an automaton augmented with additional discrete
clocks (counters), each reset upon a change between 0 and 1, and incremented at each
step. For this example, assuming x1 is reset at the first 0, y1 reset at the subsequent
occurrence of 1, and so on, we reach the end of the sequence with x1 = 8, y1 = 5,
x2 = 3 and y2 = 2. With such a “symbolic” representation, the relevant past predictions
at any time instant are identified via conditions on the clocks, which are used to admit
or reject actual values of the input.

Our construction does exactly that in dense time. Due to the symbolic encoding of
states, it is simpler to decompose the tester into two parts, as depicted in Figure 5: a pre-
diction generator (Figure 6) which generates output signals non-deterministically and
the checker (Figure 7) which checks whether actual inputs confirm these predictions.

12 To be more precise, the first 10 segment can be arbitrarily small.



x1 . . . ym

ξ

Generator

Checker

χ3[a,b]p(ξ)

Fig. 5. The architecture of the tester for 3[a,b]p.

The generator simply generates arbitrary Boolean signals subject to the sole restric-
tion of bounded variability, according to Lemma 3. This condition is imposed via the
guards of the form yi ≥ b−a on all transitions from 1 to 0. The values of the 2m clocks
x1, . . . xm and y1 . . . ym represent at time t the form of the prediction segment at the
time window [t− b, t]. Clocks whose value cross b become inactive and can be re-used
to memorize new events. This way the denotation of the clocks shifts circularly, and the
value of the active clocks always represents the boundaries of the relevant prediction
segments.

To see that the checker indeed aborts all but correct predictions observe a prefix of
its behavior as it moves through states {s1, s2, s3} trying to match prediction to input
(see Figure 8). The negative prediction segment at [t0, t1) forbids p anywhere in the
interval t0 + a, t1 + b) and this is guaranteed by forcing the checker to be at the p-state
s1 from the time x1 ≥ a until the time y1 = b. At time t1 + b, p must be observed and
a transition to s2 is taken. The positive prediction interval requires p to hold during the
interval [t1 + b, t2 + a) (which corresponds to the clock conditions y1 ≥ b and x2 < a)
except, possibly, for short episodes of p that last less than b − a time. This is reflected
in the transition from s2 to s3 which resets the clock z. If z = b− a and we are still in
s3, the run is aborted. When x2 ≥ a we arrive to a new negative prediction segment and
move to the next identical segment of the automaton. This bounded operator requires
no Büchi condition, and the proof of Proposition 1 is concluded.

To complete the construction for MITL we just need to compose the testers for the
propositional, untimed and timed operators according to the structure of the formula.
The parallel composition of transducers is fairly standard and we give only the definition
of an input-output composition of signal transducersA1 .A2 where the output ofA1 is
the input of A2. Note that the need for a generalized Büchi condition comes from such
a composition of testers for unbounded operators as we need to identify accepting runs
of A2 triggered by outputs of accepting runs of A1.

Definition 3 (I/O Composition). Let A1 = (Σ1, Q1, Γ 1, C1, λ1, γ1, I1, ∆1, q1
0 , F

1)
and A2 = (Σ2, Q2, Γ 2, C2, λ2, γ2, I2, ∆2, q2

0 , F
2) be timed signal transducers such

that Γ 1 = Σ2. Their I/O composition is the transducer

A = A1 .A2 = (Σ1, Q, Γ 2, C, λ, γ, I,∆, q0, F )



/x1 := y1 := . . . := xm := ym := ⊥

/x1 := 0 /y1 := 0

∧m
i:=1 xi < b ∧∧m

i:=1 yi < b

y1 ≥ b/y1 := ⊥

x1 ≥ b/x1 := ⊥

xm ≥ b/xm := ⊥

ym ≥ b/ym := ⊥

. . .

x2 := 0

x3 := 0
y2 ≥ b− a/

y1 ≥ b− a/

ym ≥ b− a/
x1 := 0

/y1 := 0

/y2 := 0

/ym := 0

/0 /1

/1/0

/0 /1

. . .

Fig. 6. The prediction generator. We use a StateChart-like notation when several states admit the
same transition or staying condition.

where
Q = {(q1, q2) ∈ Q1 ×Q2 s.t. γ1(q1) = λ2(q2)},

C = C1∪C2, λ(q1, q2) = λ1(q1), γ(q1, q2) = γ2(q2), I(q1,q2) = I1
q1∩I2

q2 , q0 = (q1
0 , q

2
0)

and F = F 1 ∪ F 2. The transition relation ∆ is the restriction to Q of the set of all
transitions of either of the following forms

((q1, q2), g1 ∩ g2, ρ1||ρ2, (q′1, q′2))
((q1, q2), g1 ∩ Iq2 , ρ1, (q′1, q2))
((q1, q2), Iq1 ∩ g2, ρ2, (q1, q′2))

such that (q1, g1, ρ1, q′1) ∈ ∆1 and (q2, g2, ρ2, q′2) ∈ ∆2.

It is not hard to see thatA1 .A2 realizes the sequential function obtained by composing
the sequential functions realized by A1 and A2.

Corollary 1 (Main Result). MITL formulae can be transformed into timed automata
using a simple procedure.

This construction provides a decision procedure for MITL by emptiness checking. Fol-
lowing the results in [TYB05,Tri06], timed Büchi emptiness checking can be reduced to
the search of accepting cycles in the zone-closed simulation graph, which is generated
in practice by timed verification tools such as KRONOS citekronos, UPPAAL [LPY97]



/z := 0

/z := 0

/z := 0

p

p

p

p

p

p

p

p

p

y1 ≥ b/

y2 ≥ b/

ym ≥ b/

s1 s2 s3

· · ·

x1 ≥ a

y1 < b

y2 < b

ym < b

x1 < a y1 < a

· · ·

x1 ≥ a/

x1 ≥ 0/ y1 ≥ 0/

x2 ≥ a/

x3 ≥ a/

z < b− a

z < b− a

z < b− a

y1 ≥ a/

x2 < a

x3 < a

x1 < a

z := 0
y1 ≥ a/

Fig. 7. The automaton for checking predictions.

χ :

p :
t0 + a t1 + b

s1 s2 s3 s2

t0 t1 t2

s3 s2

t2 + a

Fig. 8. A behavior of the checker on a prediction-input pair.



or IF [BGM02]. The test for emptiness can be conducted efficiently on-the-fly using
standard maximal SCC or double DFS algorithms [CVWY92]. Due to the generalized
Büchi conditions, our implementation is based on the nested DFS algorithm of [Tau06].

Given a real-time system S modeled by a timed automaton AS and an MITL for-
mula ϕ, the model checking problem, that is, the language inclusion L(AS) ⊆ L(ϕ)
between the possible behaviors of AS and the behaviors satisfying ϕ, reduces to the
timed Büchi emptiness check on the product automatonAS ×A¬ϕ, where A¬ϕ is ob-
tained from the negated MITL formula ϕ using the modular construction described in
this paper.

5 Discussion

Our definitions deviate from those of [AFH96] in the following respects:

1. We disallow signals that admit punctuality;
2. We restrict the temporal modalities to closed intervals;
3. We modify the semantics of pU q to require a “handshake” moment where both p

and q hold.

The restriction to non-punctual signals is very reasonable from a semantic point of
view and constitutes the natural choice for signals. The two other modifications are
consequences of this choice as we want the output of the testers to be valid signals as
well. The main limitation of this logic is the inability to specify events (or the rising and
falling of a signal) which prevents, for example, expressing properties such as bounded
variability. The extension of the logic to express subsets of the more general signal-
event monoid [ACM02] is a topic for future research.

Let us also remark that giving preference to results proved with respect to the most
general existing definitions is a mathematicians attitude that should not be adopted with-
out a critical examination. Such an attitude can be counter-productive in young domains
where “classical” results and definitions are only decade old, and the most appropriate
formalization has not yet stabilized.
Acknowledgment We thank anonymous referees of several conferences for their re-
marks and suggestions.

References

[Alu99] R. Alur, Timed Automata, CAV’99, LNCS 1633, 8–22, Springer, 1999.
[AD94] R. Alur and D.L. Dill, A Theory of Timed Automata, Theoretical Computer Science

126, 183–235, 1994.
[AFH96] R. Alur, T. Feder, and T.A. Henzinger, The Benefits of Relaxing Punctuality, Journal

of the ACM 43, 116–146, 1996 (first published in PODC’91).
[AH92a] R. Alur and T.A. Henzinger, Logics and Models of Real-Time: A Survey, REX

Workshop, Real-time: Theory in Practice, 74–106. LNCS 600, 1992.
[AH92b] R. Alur and T.A. Henzinger, Back to the Future: Towards a Theory of Timed Regular

Languages, FOCS’92, 177-186, 1992.
[A04] E. Asarin, Challenges in Timed Languages, Bulletin of EATCS 83, 2004.



[ACM02] E. Asarin, P. Caspi and O. Maler, Timed Regular Expressions, The Journal of the
ACM 49, 172–206, 2002.

[BGM02] M. Bozga, S. Graf and L. Mounier, IF-2.0: A Validation Environment for
Component-Based Real-Time Systems, CAV’02, 343–348, LNCS 2404, 2002.

[BCM+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill and L.J. Hwang, Symbolic
Model Checking: 1020 States and Beyond, Information and Computation 98, 140–
170, 1992.

[CGH94] E.M. Clarke, O. Grumberg and K. Hamaguchi, Another look at LTL Model Check-
ing, CAV’94, 415–427, LNCS 818, 1994.

[CGP99] E.M. Clarke, O. Grumberg, and D.A. Peled, Model Checking. The MIT Press, 1999.
[CVWY92] C. Courcoubetis, M.Y. Vardi, P. Wolper and M. Yannakakis, Memory-Efficient Al-

gorithms for the Verification of Temporal Properties, Formal Methods in System
Design 1, 275–288, 1992.

[DY96] C. Daws and S. Yovine, Reducing the Number of Clock Variables of Timed Au-
tomata, RTSS’96, 73–81, 1996.

[DT04] D. D’Souza and N. Tabareau, On Timed Automata with Input-determined Guards,
FORMATS/FTRTFT’04, 68–83, LNCS 3253, 2004.

[GO01] P. Gastin and D. Oddoux, Fast LTL to Büchi Automata Translation, CAV’01, 53–65,
LNCS 2102, 2001.

[GPVW95] R. Gerth, D.A. Peled, M.Y. Vardi and P. Wolper, Simple On-the-fly Automatic Veri-
fication of Linear Temporal Logic, PSTV, 3–18, 1995.

[Hen98] T.A. Henzinger, It’s about Time: Real-time Logics Reviewed, CONCUR’98, 439–
454, LNCS 1466, 1998.

[HR02] K. Havelund and G. Rosu, Synthesizing Monitors for Safety Properties, TACAS’02,
342–356, LNCS 2280, 2002.

[HFE04] J. Havlicek, D. Fisman and C. Eisner, Basic results on the semantics of Accellera
PSL 1.1 foundation language, Technical Report 2004.02, Accelera, 2004.

[HNSY94] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, Symbolic Model-checking for
Real-time Systems, Information and Computation 111, 193–244, 1994.

[HRS98] T.A. Henzinger, J.-F. Raskin, and P.-Y. Schobbens, The Regular Real-time Lan-
guages, ICALP’98, 580–591, LNCS 1343, 1998.

[HR04] Y. Hirshfeld and A. Rabinovich, Logics for Real Time: Decidability and Complexity,
Fundamenta Informaticae 62, 1–28, 2004.

[KP05] Y. Kesten and A. Pnueli, A Compositional Approach to CTL∗ Verification, Theoret-
ical Computer Science 331, 397–428, 2005.

[Koy90] R. Koymans, Specifying Real-time Properties with Metric Temporal Logic, Real-
time Systems 2, 255–299, 1990.

[KCV04] A. Kumari B. Cohen and S. Venkataramanan, Using PSL/Sugar for Formal and
Dynamic Verification, VhdlCohen Publishing, 2004.

[LPY97] K.G. Larsen, P. Pettersson and W. Yi, Uppaal in a Nutshell, International Journal of
Software Tools for Technology Transfer 1 134–152, 1997.

[MMP92] O. Maler, Z. Manna, and A. Pnueli, From Timed to Hybrid Systems, Real-Time:
Theory in Practice, 447–484, LNCS 600, 1992.

[MN04] O. Maler and D. Nickovic, Monitoring Temporal Properties of Continuous Signals,
FORMATS/FTRTFT’04, 152–166, LNCS 3253, 2004.

[MNP05] O. Maler, D. Nickovic and A. Pnueli, Real Time Temporal Logic: Past, Present,
Future, FORMATS’05, 2–16, LNCS 3829, 2005.

[MP91] Z. Manna and A. Pnueli, Temporal Verification of Reactive Systems: Specification,
Springer, 1991.

[MP95] Z. Manna and A. Pnueli, Temporal Verification of Reactive Systems: Safety,
Springer, 1995.



[OW05] J. Ouaknine and J. Worrell, On the Decidability of Metric Temporal Logic, LICS’05,
188–197, 2005.

[RSH98] J.-F. Raskin, P.Y. Schobbens and T.A. Henzinger, Axioms for Real-Time Logics,
Concur’98, 219–236, 1998.

[SB00] F. Somenzi and R. Bloem, Efficient Büchi automata from LTL formulae, CAV’00,
248–263, LNCS 1855, 2000. 1855.

[Tau06] H. Tauriainen, Nested Emptiness Search for Generalized Bchi automata Funda-
menta Informaticae, 70, 127–154, 2006.

[Tri06] S. Tripakis, Checking Timed Büchi Automata Emptiness on Simulation Graphs,
Technical Report 2006-1, Verimag, 2006.

[TYB05] S. Tripakis, S. Yovine and A. Bouajjani, Checking Timed Büchi Automata Empti-
ness Efficiently, Formal Methods in System Design 26, 267-292, 200.

[Var96] M.Y. Vardi, Alternating Automata and Program Verification, Current Trends in Com-
puter Science, 267–278, LNCS 1000, 1996.

[VW86] M.Y. Vardi and P. Wolper, An Automata-theoretic Approach to Automatic Program
Verification, LICS’86, 322–331, 1986.

[Y97] S. Yovine, Kronos: A Verification Tool for Real-time Systems, International Journal
of Software Tools for Technology Transfer 1, 123–133, 1997.


