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Abstract

In this paper we extend the automaton synthesis paradigm to in-
finitary languages, that is, to subsets of the set Σω of all infinite
sequences over some alphabet Σ. Our main result is a polynomial
algorithm for learning a sub-class of the ω-regular sets from member-
ship queries and counter-examples based on the framework suggested
by Angluin (Angluin, D., 1987, Information and Computation 75) for
learning regular subsets of Σ∗.
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1 Introduction

1.1 Motivation

The problem of sequence generalization is one of the fundamental
problems in learning theory. Its automata-theoretic instance con-
sists of the synthesis of a finite-state automaton whose behavior is
compatible with a given sample of sequences over some alphabet
(e.g., [Moore (1956)], [Trakhtenbrot and Barzdin (1973)], [Gold (1972)],
[Biermann and Feldman (1972)], [Angluin (1987)], [Pitt (1989)]). Within
this framework some aspects of real problems of learning from experience
can be modeled quite naturally. One may think of an agent (a baby, a robot)
thrown into some environment (a niche of the “real” world, an undocumented
artifact) who tries to find some order in apparently meaningless sequences
of actions and sensations (see [Rivest and Schapire (1987)] for an example of
recent work under this paradigm).

The motivation behind this paper is humbler, coming from the area of
system specification. Suppose a future customer of a computerized system
is asked to specify the system requirements. According to these require-
ments some of the potential behaviors (sequences of events) of the system
are considered as “good” and others are considered as “bad”. Hence the
requirements can be seen as nothing but a formal language over some al-
phabet. In many situations the customer of the system is not capable to
express himself formally (e.g., give a logical formula whose set of models is
exactly the set of good sequences), but rather can give examples of desired
and undesired sequences. In such a situation, as suggested by [Maler (1987)]
a learning algorithm can help the system designers to extract the formal
specifications from the examples.

Infinitary languages can serve as models for the behavior of systems be-
longing to the class of reactive non-terminating programs in the sense of
[Harel and Pnueli (1985)]. Such systems are supposed to maintain an on-
going interaction with their environments and many of their properties are
best expressible when we consider infinite behavioral sequences. Thus our
work is directed toward the generalization of samples consisting of good and
bad infinite sequences into ω-reguler sets.1 The main result of the paper is

1An alternative approach might be to learn the finitary set of prefixes as suggested in
[Ulehla (1988)].
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an algorithm for learning any ω-regular language U such that both U and
Σω − U are recognizable by a deterministic Büchi automaton.

1.2 Theoretical Significance

Extending the automaton synthesis framework to infinitary languages is not
straightforward for the the following reasons:

1. The domain of the target function is not countable and most of its
elements do not admit a finite representation. Such sample points can-
not be used by any terminating learning algorithm. Thus we must
learn these functions from samples consisting of “rational” points hav-
ing a finite representation.2 In the case of ω-regular sets we show that
ultimately-periodic infinite sequences are sufficient for exact identifica-
tion.

2. While in finitary languages, the Myhill-Nerode theorem tells us that
every regular set has a unique minimal automaton isomorphic to its
syntactic right-congruence, the situation in ω-automata is much more
involved. Two states in an automaton can be indistinguishable by any
“experiment” and still be unmergeable due to the role they play in the
infinite behavior of the automaton. As a consequence we can see that
the notion of a representative sample introduced by [Angluin (1981)]
should be refined in the infinitary case to distinguish between examples
of the finite and the infinite behavior of the automaton.

In section 2 we introduce the essentials of the theory of ω-regular sets
while in section 3 we give a short survey of learnability results for the finitary
case. In section 4 we discuss the technical problems associated with learning
infinitary sets. The partial solution of these problems, the algorithm Lω, is
presented in section 5, followed by an example run in section 6.

2This observation might be relevant to other investigations of probabilistic learnability
in uncountable domains, e.g., [Blumer et al. (1989)], because some pathological distribu-
tions must be excluded before distribution-independent results are discussed. Moreover,
the finite precision of the sample points should be reflected in the quality of the approxi-
mating function.
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2 Finite Automata and ω-Regular Sets

The the-
ory of automata over infinite words (see [Trakhtenbrot and Barzdin (1973)],
[Eilenberg (1974)], [Choueka (1974)], [Perrin (1985)],
[Hoogeboom and Rozenberg (1985)], [Staiger (1987)], [Thomas (1990)] for
expositions in various styles) deals with one of the simplest classes of in-
finitary languages, namely those that can be characterized by the infinite
behavior they induce on a finite-state device. This theory is a useful tool for
describing the behavior of non-terminating programs (called reactive systems
by [Harel and Pnueli (1985)]) and for solving decision problems for various
modal logics, see [Vardi and Wolper (1986)].

Let Σ denote a finite alphabet. An infinite sequence (or an ω-sequence)
α ∈ Σω can be considered as a function α : IN → Σ. Some similarities and
differences between Σ∗ and the uncountable set Σω of all infinite sequences
are worth mentioning. The sequential concatenation operation is not defined
on Σω × Σω but rather on Σ∗ × Σω. Every α ∈ Σω has infinitely many fac-
torizations of the form α = uβ into a finite prefix u and an infinite suffix β.
Given a finite sequence u, uω is the infinite sequence obtained by concate-
nating infinitely many instances of u. An infinite sequence α that admits
a factorization of the form uvω is said to be ultimately-periodic, where u is
called the prefix and v is called the period of the factorization. Note also
that being a suffix is not an order relation over Σω: for example, (ab)ω and
(ba)ω are suffixes of each other. An infinitary set is a subset of Σω. There
are several ways to relate infinitary sets to finitary ones:

Definition 1 For every U, V ⊆ Σ∗ and W ⊆ Σω

1. V ω ⊆ Σω denotes the set of all ω-sequences α = v1v2 . . . such that
vi ∈ V for every i.

2. UW ⊆ Σω denotes the set of all ω-sequences α = uβ such that u ∈ U

and β ∈ W .

3. lim U ⊆ Σω denotes the set of all ω-sequences having infinitely-many
prefixes in U .

For example the infinitary set 0(0∗1)ω = lim(0(0∗1)∗) consists of all the ω-
words starting with 0 and containing infinitely many 1’s. The infinitary
counter-part of the regular sets are the ω-regular sets defined as:
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Definition 2 (ω-regular sets) A set W ⊆ Σω is ω-regular if

W =
k⋃

i=1

UiV
ω
i

where Ui and Vi are finitary regular sets.

The following self-evident lemma is due to Büchi ([Buc62]):

Claim 1 Every non-empty ω-regular set contains an ultimately-periodic se-
quence.

Proof: Take α = uvω, u ∈ Ui, v ∈ Vi for some i ≤ k.
The underlying computational structure that reads an infinite sequence

is the same as in the finitary case:

Definition 3 (Transition graphs) A transition graph (transition struc-
ture, semi-automaton) is a system (Σ, Q, δ, q0) where Σ is a finite alphabet,
Q is a finite set of states, δ : Q × Σ → Q is the transition function3 and
q0 ∈ Q is the initial state.

When an infinite word α = α1, α2, . . . ∈ Σω is fed into such a graph it induces
an infinite run ξ(α) = ξ0, ξ1 . . . ∈ Qω through its states, such that ξ0 = q0 and
for every i > 0, ξi = δ(ξi−1, αi). As Q is finite, some states occur infinitely
often in ξ(α) and we denote the set of these states by Inf(α). In order to use
automata as acceptors of ω-sets various kinds of acceptance conditions based
on the induced run can be defined. The most commonly-used conditions
are based on a relation (inclusion, disjointness or equality) between Inf(α)
and some subsets of Q that stand for “good” or “bad” states. The following
two conditions classify infinite sequences according to whether good states
are visited infinitely many times or bad states are visited only finitely many
times:

Definition 4 (B and B automata) Let (Σ, Q, δ, q0) be a transition graph
and let F be a subset of Q.

• A B-automaton A = (Σ, Q, δ, q0, F ) accepts the set

LA = {α ∈ Σω : Inf(α) ∩ F 6= ∅} (1)

3All transition graphs considered in this paper are deterministic.
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• A B-automaton A = (Σ, Q, δ, q0, F ) accepts the set

LA = {α ∈ Σω : Inf(α) ⊆ F} (2)

The first acceptance condition (introduced by Büchi) states that LA consists
of all sequences that pass infinitely many times through one of the members
of F . The second condition defines the set of sequences that after some point
stay within F (or visit the bad states in Q − F only finitely many times).
Since, syntactically, both types of automata are equivalent to acceptors of
finitary sets, we will sometimes refer to B and B-acceptance by the same
automaton A. The classes B and B denote respectively the set of all subsets
of Σω that can be accepted by some automaton using B and B conditions.
Clearly, if U ∈ B then Σω − U ∈ B and vice versa.

Example 1 The automaton in figure 1 with F = {q2} accepts the finitary set
Σ∗b. Viewed as an ω-automaton it B-accepts (Σ∗b)ω (all sequences containing
infinitely many b’s), and it B-accepts the set Σ∗bω (sequences containing only
finitely many a’s).

q2q1

q0

ba

b

b

a

a

Figure 1: An automaton.

This is an instance of the following claim:

Claim 2 (Characterization of B and B) If A = (Σ, Q, δ, q0, F ) accepts
the finitary set U then it B-accepts lim U and B-accepts Σω − lim(Σ∗ − U).
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Not every ω-regular set is of the form lim U or Σω − lim U . In other words,
there are certain ω-regular sets that cannot be recognized by either determin-
istic B-automata or deterministic B-automata. A more general acceptance
condition due to [Muller (1963)], allows one to be more specific about Inf(α):

Definition 5 (M-automata) An M-automaton A = (Σ, Q, δ, q0,F) is a
transition graph augmented with a family of subsets F ⊆ 2Q. The language
accepted by A is defined as

LA = {α ∈ Σω : Inf(α) = F for some F ∈ F} (3)

The celebrated Büchi-McNaughton theorem, [McNaughton (1966)], states
that M-automata accept exactly the ω-regular sets.

Example 2 : The automaton in figure 1 with F = {{q1, q2}} accepts all the
sequences that pass infinitely often through both q1 and q2, that is, the set
Σ∗(a+b+)ω = Σω − Σ∗(aω + bω).

When we consider Inf(α) we can refer only to states that reside in
strongly-connected components (SCCs) of the transition graph – other states
cannot be visited infinitely often. Let S be the set of all SCCs of a given
automaton, partially ordered according to set inclusion. Muller condition
can be viewed as partitioning S into good (accepting) and bad (rejecting)
SCCs. An important complexity measure for ω-regular sets is the number
of alternations between good and bad SCCs along the inclusion chains. For
example, the automaton in figure 2, whose corresponding partially-ordered
marked SCCs appear in figure 3, has three alternations along the chain
{2} ⊆ {1, 2} ⊆ {1, 2, 3} ⊆ {1, 2, 3, 4}.

From this point of view B and B automata can be considered as restricted
forms of M-automata, where in B-automata no superset of an accepting
SCC can be rejecting, and in B-automata no subset of an accepting SCC
can be rejecting. [Wagner (1979)] has shown that this complexity measure
is language-specific and is invariant over all automata accepting the same
language. This means, for example, that if U ∈ B then for any M-automaton
accepting U the family F is upward-closed and can be expressed as the set
of reachable SCCs having a non-empty intersection with some fixed F ⊆ Q.

An important (at least for this paper) sub-class of the ω-regular sets is
the class B ∩ B consisting of sets recognizable both by B and B-automata.
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32

1

Figure 2: An M-automaton with an accepting family F =
{{1}, {2}, {1, 4}, {1, 2, 3}}.

From the above discussion it follows that in any M-automaton recognizing a
B∩B set, the family F is both upward-closed and downward-closed. In other
words, no alternation between good and bad SCCs along any inclusion chain
is allowed and all the SCCs that are contained in the same maximal SCC
(MSCC) should be uniformly marked as accepting or as rejecting. Every
B ∩ B-set can be accepted by a B ∩ B-automaton which is a B-automaton
whose set of accepting states F is a union of MSCCs (or equivalently a B-
automaton with a set of rejecting states Q − F ). The structure of a typical
B ∩ B-automaton is depicted in figure 4.

For the sake of completenss we mention some connections between accep-
tance conditions and topological properties – they are not essential for the
rest of the paper. There are various ways to make Σω a topological space,
either by letting the sets of the form LΣω, for some L ⊆ Σ∗, be the open sets
or by defininig a metric (e.g., d(α, β) = 1

2k where k is the least integer such
that αk 6= βk). In this space one can see that B and B are included in the
Borel classes Fσ and Gδ respectively. The class of ω-regular sets, which is the
boolean closure of B, is contained in Fσδ∩Gδσ. A fully detailed account of the
topological complexity hierarchy of the ω-regular sets, its refinements and its
correspondence with other complexity measures can be found in the works
of [Wagner (1979)], [Kaminski (1985)], [Hoogeboom and Rozenberg (1985)],
[Manna and Pnueli (1991)] and [Staiger (1987)].
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Figure 3:
The partially-ordered set of marked SCCs for the automaton in figure 2.

3 The Synthesis of Automata from Examples

The phenomenon investigated under titles such as machine learning and in-
ductive inference is the reconstruction of some functions from a sample of
their graphs; see [Angluin and Smith (1984)] for a survey. In the most gen-
eral setting, we have some source of information that tells us for every sample
point w ∈ V ⊆ Σ∗ whether or not it is a member of some set U , and the
goal of learning is to build an automaton that accepts U , or, at least, an
automaton compatible with the sample V ).

Several variants of this problem can be charaterized by different assump-
tions concerning the presentation of the examples (e.g., whether they are
arbitrarily given or are selected by the learning algorithm) and by different
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Figure 4: A B ∩ B − ω-automaton.

criteria for the success of the learning process.
The simplest method of inductive inference is identification by enumera-

tion, introduced by [Gold (1967)]. This method requires that the hypothesis
space (or, more precisely, the set of their effective representations) can be
effectively enumerated, and that the consistency of a hypothesis with the
sample can be checked in finite time. Regular sets clearly satisfy these re-
quirements: it is possible to enumerate all automata (or regular expressions)
and it is decidable whether a word v belongs to such set. The algorithm em-
ploys an “oracle” EX that upon request produces a pair (v, b) ∈ Σ∗ × {0, 1}
such that b = 1 if v ∈ U (a positive example) and b = 0 otherwise (a nega-
tive example). The algorithm works as follows (sets are represented by, say,
deterministic automata):
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Algorithm 1 (Identification by Enumeration) Input: an oracle EX

producing an infinite sequence of examples. Output: an infinite sequence of
conjectured automata, each of them compatible with the examples presented
so far.

1. Let the current hypothesis H be the automaton A0 (the first according
to the enumeration) and let the set V of examples be ∅.

2. Get a new example from EX and add it to V .

3. While H = Aj contradicts V (Aj accepts a negative example or rejects
a positive one) let H be Aj+1

4. Goto 2.

This algorithm has been shown by [Gold (1967)] to identify all the regular sets
in the limit, i.e., for any regular set and every infinite sequence of examples,
there will be some stage where the hypothesis H will stop changing. Such
methods are inherently exponential (the number of automata we check is
exponential in the size of the smallest accepting automaton), no matter how
smart an enumeration scheme we may employ.

Practical algorithms are based on a sample-driven synthesis of au-
tomata. Most algorithms are variants of the state-characterization method
of [Gold (1972)], based on the Myhill-Nerode theorem which relates input-
output-based and state-based descriptions of systems:

Theorem 3 (Myhill-Nerode) For every finitary regular set U there exists
a unique minimal automaton isomorphic to the set of equivalence classes of
the following right-congruence relation (the syntactic right congruence):

w ≈ w′ iff ∀u ∈ Σ∗ : wu ∈ U ⇐⇒ w′u ∈ U (4)

The essence of this theorem for the purpose of learning is that internal
states can be characterized according to their input-ouput behavior, or in
other words, two states that accept exactly the same language can be merged
into a single state in the minimal automaton.

There have been several results concerning the complexity of recon-
structing the relation (4) from the partial information given in the sam-
ple. In particular [Gold (1978)] showed that finding the minimal automa-
ton compatible with a sample is NP -complete. [Pitt and Warmuth(1993)]
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showed that this hardness result holds also for the problem of approxi-
mating the minimal automaton. On the other hand, for the case where
the sample is uniform-complete (i.e., consists of all words up to a given
length), [Trakhtenbrot and Barzdin (1973)] gave a polynomial algorithm for
this problem. [Angluin (1987)] extended the negative results to samples
that are almost (up to polynomial proportion of missing entries) uniform-
complete. The positive results were extended by [Angluin (1981)] to repre-
sentative samples, which include words that excercise every transition in the
minimal automaton of the set. A more recent survey of complexity issues
appears in [Pitt (1989)].

The algorithm L∗, due to [Angluin (1987)], is an interactive algorithm
which uses two oracles: MEMBER(u) which answers the question whether
u is a member of the set, and an additional oracle, EQUIV (A), which accepts
as input a conjectured automaton, confirms this conjecture if it is correct,
or otherwise supplies a counter-example, i.e., a word misclassified by this
automaton. The second oracle prevents the learning algorithm from the
potential need to ask exponentially many membership queries. Within this
setting Angluin proved that every language accepted by an n-state automaton
can be learned using polynomially many queries and computation steps. In
this paper we give a similar result for B ∩ B ω-regular sets.

4 Difficulties in Learning Infinitary Regular

Sets

When we try to adapt the learning-from-examples framework to the infinitary
case we face several conceptual and technical problems.

4.1 Presentation of Infinite Examples

The first problem is concerned with the availability of examples: how can one
observe an infinite object? So we are restricted to those ω-words that have
a finite representation. The most natural choice involves ultimately-periodic
words of the form uvω, and, indeed, one can come out easily with our first
result:

14



Claim 4 The class of ω-regular sets is identifiable in the limit from
ultimately-periodic examples.

Proof: We show that the identification by enumeration algorithm of
[Gold (1967)] is applicable. Clearly, ω-automata are effectively enumerable.
The set Inf(uvω) can be computed for every automaton and every u, v ∈ Σ∗.
Thus, the membership of an ultimately-periodic sequence in an ω-regular set
is decidable and, consequently, the compatibility of a hypothesis with a sam-
ple can be verified. Finally, since ω-regular sets are closed under Boolean
operations, the symmetric difference between the “real” set and any false
ω-regular conjecture is by itself a non-empty ω-regular set and, as such, it
contains an ultimately-periodic sequence. Such a sequence will eventually be
presented and refute any false conjecture.

Claim 5 If two n-state B ∩ B-automata A1 and A2 are distinguishable
(LA1

6= LA2
) then they are distinguishable by an ultimately-periodic ω-word

α such that the size4 of α is at most n2.

Proof: Every n-state B ∩ B-automaton A such that LA 6= ∅ accepts an
ω-word uvω such that |u|+ |v| ≤ n (let u be the shortest word leading to an
accepting MSCC and let v be the word inducing the shortest cycle in this
MSCC). The automaton accepting the symmetric difference of LA1

and LA2

is constructed by a cartesian product, and since it has n2 states it accepts
an ω-word of size n2.

4.2 “Unobservable” States

In order to apply the state-characterization method to infinitary languages
we need some version of the Myhill-Nerode theorem. First we define the
following equivalence on Σω relative to an ω-regular set U :

α ∼ α′ iff α ∈ U ⇐⇒ α′ ∈ U (5)

The infinitary analogue of the syntactic right-congruence (4) is the following:

w ≈ w′ iff ∀α ∈ Σω : wα ∼ w′α (6)

4The size of an ultimately-periodic word α is defined as the minimum of |u| + |v| over
all u, v ∈ Σ∗ such that α = uvω.
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It follows from claim 1 and from the fact that the set {α : uα ∈ U} is
also ω-regular, that the above formulation of ≈ in terms of arbitrary infinite
continuations is equivalent to a formulation using ultimately-periodic words:

w ≈ w′ iff ∀u ∈ Σ∗, v ∈ Σ+ : wuvω ∼ w′uvω (7)

Unlike the finitary case not every ω-regular set U can be accepted by an
automaton whose states are representable by the congruence classes of this
relation. Let us look, for example, at the right-congruence associated with the
set U = (0+1)∗1ω. Clearly, it consists of exactly one equivalence class because
all the finite prefixes “accept” the same infinite suffixes, namely those that
eventually consist only of 1’s. The automaton associated with this relation is
the trivial one-state automaton but this automaton can accept nothing but
Σω or the empty set. So every automaton for this set must have at least
two states which are not necessarily distinguishable by ≈. Moreover, for
some ω-regular sets there exists no unique canonical ω-automaton which is a
homomorphic image of every automaton accepting those sets. Three 2-state
mutually non-homomorphic and irreducible automata for U = (0+1)∗1ω are
depicted in figure 5.

The existence of such “non-observable states” implies that we should
devise an algorithm for detecting the necessity of additional “hidden” states
in any sample-compatible automaton and for deciding how to split some of
the observed states into two or more copies. Since there is no unique minimal
automaton accepting a given ω-language, the choice of this algorithm will
dictate to which of the several irreducible non-isomorphic automata will the
synthesis algorithm converge. There is no guarantee that this automaton
will not be exponentially larger than some other automaton accepting the
same set, and no other solution better than exhaustive search is currently
known. The largest sub-class of the ω-regular sets which is known to “behave
properly” in this sense is the class B∩B according to the following result of
[Staiger (1983)]:

Theorem 6 (Staiger) Every B∩B ω-regular set is accepted by an automa-
ton isomorphic to its syntactic right-congruence.

As a corollary, the states of the minimal automaton for B ∩ B sets can be
identified by unique entries in the observation table (see definition below).
By restricting our algorithm to this non-trivial class we defer the removal
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Figure 5: Three “minimal” automata for U = (0 + 1)∗1ω

of the main obstacle preventing the application of learning algorithms to
ω-regular languages.

5 The Algorithm Lω

Here we describe an algorithm for synthesizing B∩B-automata from queries
and counter-examples. The algorithm is an extension of the L∗ algorithm of
[Angluin (1987)].

5.1 Definitions and Setting

We redefine Angluin’s observation tables in a manner suitable for identifying
the syntactic right-congruence associated with ω-regular sets.
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Definition 6 (ω-observation tables) Let S be a finite prefix-closed subset
of Σ∗, let E be a finite suffix-closed set of ultimately-periodic words over Σ,
and let S ′ = S ∪ SΣ. An ω-observation table for an ω-regular set U is a
triple (S,E, T ) where T : S ′ × E → {0, 1} is defined by: T (s, α) = 1 iff
sα ∈ U . For each s ∈ S ′, we denote by fs : E → {0, 1} the function given by
fs(α) = T (s, α).

Whenever an ultimately-periodic word α is classified as a member or a
non-member of U , its classification is written in all entries (s, β) such that
α = sβ. The notions of a closed table and its associated transition graph,
which are identical to the same5 notions for the finitary case presented by
[Angluin (1987)], are defined as follows:

Definition 7 (Closed tables) An observation table is closed if for every
s′ ∈ SΣ there exists some s ∈ S such that fs = fs′. With every closed
observation table we can associate a transition graph (Σ, Q, δ, q0) with Q =
{fs : s ∈ S}, q0 = fλ and δ(fs, σ) = ft for some t ∈ S satisfying ft = fsσ.

We can extend the fs-notation to every u 6∈ S by identifying fu with
δ(fλ, u) = ft for some t ∈ S. This notation is justified by the easily-
verified fact that for every u ∈ Σ∗, α ∈ Σω such that uα is in the sample,
ft(α) = fλ(uα).

Finally the sources of information are the oracles MEMBER(u, v) and
EQUIV (A), the former returning the membership of uvω in U and the latter
either confirming the correctness of a conjectured ω-automaton A, or return-
ing an ultimately-periodic counter-example otherwise. A counter-example is
an ultimately periodic word which is either in U − LA or in LA − U .

When we deal with automata over finite words, after we discover the un-
derlying transition structure of the automaton it is straightforward to iden-
tify the accepting states. This is done according to their behavior on λ, i.e.,
fs ∈ F iff fs(λ) = 1. In the infinitary case this is not as simple. A cycle
in the transition graph need not be exercised infinitely often by a word in
the sample, although each of its constituting transitions have been exercised
at least once. Thus, the notion of a representative sample as defined by

5In fact, Angluin uses an additional notion of a consistent table, but this can be elimi-
nated by a slight modification of L∗: instead of adding the prefixes of a counter-example
to S, add their suffixes to E. This way the table is always consistent.
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[Angluin (1981)] should be refined to cover infinite behavior. Moreover, if we
restrict ourselves to certain sub-classes of automata, it might be impossible
to augment the transition graph with appropriate acceptance conditions that
yield a compatible automaton. We will give an example of this phenomenon
in the sequel.

Our algorithm solves this problem for B ∩ B-automata in two stages.
During the first stage it determines the transition graph in a manner similar
to the finitary case. The second stage consists of an attempt to identify the
accepting states. If the process succeeds we can construct a minimal com-
patible B∩B-automaton as our current conjecture. Otherwise the algorithm
tells us how to extend E in order to discover hidden states, whose addition
leads to a consistent identification of the accepting states.

5.2 From Transition Graphs to Automata

After determining the transition graph, we should mark the various states
as accepting or as rejecting. In B∩B-automata no “good” and “bad” SCCs
intersect. Thus, if the current graph can support such an automaton the
states must be non-ambiguously identifiable as good or bad according to the
cycles they participate in. In case this cannot be done we discover a conflict
which is defined as:

Definition 8 (Conflict) For an ω-observation table, a conflict is a triple
(s, u, v) of words, such that fsu = fsv = fs, but fs(u

ω) 6= fs(v
ω). (See

figure 6).

The following algorithm attempts to mark each state as accepting or rejecting
and detects a conflict if this is impossible:

Procedure 2 (Mark or Detect) Input: a complete ω-observation table.
Output: either a consistent marking of the states as accepting or rejecting or
a conflict.

1. Mark all the states in S as “indefinite”.

2. For every ω-word α in the sample, i.e., α = sβ for some s ∈ S and
β ∈ E, compute Inf(α) and mark every q ∈ Inf(α) according to
whether α is a positive or a negative example.
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Figure 6: A conflict (s, u, v).

3. Compute the set S of MSCCs of the graph. If no two states that belong
to the same MSCC are marked by conflicting signs, mark the remaining
unmarked states according to their marked neighbors in the MSCC and
stop.6

4. Otherwise take two strongly-connected states fs and ft such that sxω is
a positive example and tyω is a negative example for some x, y ∈ Σ+.
Find two words z, w such that fsz = ft and ftw = fs (such words
must exist because fs and ft are strongly-connected) and ask for the
membership of s(zw)ω in U . If the answer is negative there exists a
conflict (s, x, zw), otherwise a conflict (t, y, wz) is detected.7

Conflict detection is illustrated in figure 7. Sometimes fs = ft and the conflict
is detected already in steps 2-3 of the procedure (as in figure 6 and in the
example presnted in section 6).

Claim 7 The marking procedure always terminates after polynomially many
(in the size of the table) steps.

6MSCCs such that none of their states is visited infinitely-often by the sample can be
marked arbitrarily.

7Recall that s(zw)ω = sz(wz)ω = t(wz)ω.
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Proof: The two main computational tasks in this procedure are the compu-
tation of Inf(uvω) for every ω-word in the sample, and finding MSCCs in a
graph. The former can be done by looking at all states visited by the word
uvn (whose size is |u| + n|v|) and the latter is known to be polynomial.

s

y

t

x

s

−

+

z

?

w

Figure 7: Conflict detection.

5.3 Conflict Resolution

A conflict (s, u, v) means that, according to our state characterization, both
u and v induce a cycle from fs to itself but the marks computed for these
cycles contradict each other. Thus, in the table corresponding to the “real”
automaton at least one of {fsu, fsv} must be distinct from fs and there should
be a word establishing this distinction. The procedure conflict(s, u, v) finds
such a distinguishing experiment using a certain property of B∩B automata
that we prove.

Definition 9 For finite words u, v ∈ Σ+ and n > 0, let ∆n
u,v be the set of

words of the form xuω or xvω, where x is a prefix of (unvn)n or a prefix of
(vnun)n.
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Claim 8 Let A = (Σ, Q, δ, q0, F ) be an n-state B ∩ B-automaton accepting
U such that suω ∈ U and svω 6∈ U . Obviously, one of {δ(q0, su), δ(q0, sv)}
must be distinct from δ(q0, s). Let t ∈ {su, sv} be a finite word such that
δ(q0, t) 6= δ(q0, s). Then there exists a word α ∈ ∆n

u,v distinguishing between
t and s, i.e., such that tα 6∼ sα.

Proof: Suppose, without loss of generality, that t = sv, i.e., δ(q0, sv) 6=
δ(q0, s). The sequence svn clearly leads to the rejecting SCC visited infinitely
often by svω – otherwise we had more than n states (see figure 8). There are
two possibilities concerning svnuω:

1. svnuω is rejected, in which case we are done because there exists some
k, 0 ≤ k < n such that svkuω ∈ U and svk+1uω 6∈ U and thus α = vkuω

distinguishes between s and sv.

2. svnuω is accepted, so svnun leads to a new accepting SCC, and so on.
As the number of SCCs is bounded by n, the number of alternations is
bounded as well (see figure 9) and there is some distinguishing α, such
that α = vnun . . . unvkuω or α = vnun . . . vnukvω.

Inf(svω)

s

v

. . .. . .vv

svjsvisv2svs

Figure 8: svn leads to Inf(svω).

Procedure 3 (Conflict Resolution) Input: a conflict (s, u, v). Output:
an ω-word xα such that x ∈ {u, v} and sα 6∼ sxα.
For every α ∈ ∆n

u,v (enumerated in increasing-size order) ask membership
queries about sα, svα and suα until either sα 6∼ svα or sα 6∼ suα.
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Figure 9: Alternating SCCs.

Claim 9 The conflict resolution procedure always terminates after polyno-
mially many steps and queries.

Proof: Termination is guaranteed by claim 8. The length of the elements in
∆n

u,v is O(n2) and |∆n
u,v| = O(n2).

5.4 The Algorithm

The complete algorithm is described below:

Algorithm 4 (Lω) Input: the oracles MEMBER and EQUIV for a B∩B
ω-regular set U . Output: the minimal B ∩ B-automaton accepting U .

S := {λ}; E := {σω : σ ∈ Σ}; Confirmed:=False
while ¬Confirmed do

while the table is not closed do
add the new state sσ to S

and extend the table accordingly.
end
construct the transition graph
call the marking algorithm (procedure 2)
if the marking fails then

call the conflict resolution procedure (procedure 3)
add the outcome and its suffixes to E.

else
let the current conjecture be the marked automaton
call the EQUIV oracle
if the answer is positive then

Confirmed:=True
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else
add the counter-example and its suffixes to E.

end

5.5 Properties of Lω

Theorem 10 The algorithm Lω always terminates after polynomially many
(in the number of states, and the size of counter-examples) membership
queries, equivalence queries and computation steps. It always produces the
(unique) minimal B ∩ B-automaton compatible with the sample.

Proof: The proof is along the same lines as the corresponding proof for L∗

given by [Angluin (1987)]. In fact L∗ can be viewed as a degenerate case
of Lω where the marking procedure is trivial and always succeeds and thus
procedure 3 is never called.

One obvious invariance of the algorithm is that |S| ≤ n where n is the
number of states in the minimal automaton for U – we add states only when
they are dicovered. Thus if the program terminates the current conjecture is
indeed the minimal automaton for U .

We will now show that the main loop can repeat only O(n2) times. Each
time the loop repeates it is due to one of the following two reasons:

1. The marking fails – in this case a conflict has been detected, and after
adding the outcome of procedure 3 to E, a new state is discovered in
the next iteration of the main loop. Hence this can happen at most
n − 1 times.

2. The marking succeeds but the EQUIV oracle presents a counter-
example which is added to the table. In the next iteration, there are
three possibilities: 1) the table is not closed anymore and a new state is
added, 2) the table is closed but the marking fails and thus a new state
must be discovered in the next iteration, and 3) the table is closed and
the marking succeeds. This can happen only if the counter-example
β had Inf(β) belonging to a MSCC which was not visited infinitely
often by any of the previous examples. For a given transition graph of
size m, the number of times this might happen is bounded by the num-
ber of MSCCs which is at most m. Since at all stages the size of the
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transition graph is not greater then n we can conclude that the num-
ber of counter-examples that can be presented between two consecutive
discoveries of new states is at most n.

Hence the algorithm terminates after O(n2) iterations of the main loop.
As for complexity, we will first show that the size of the table (and the

total number of queries) is always kept polynomial. The number of rows is
O(n). The set of columns is extended at most n2 times in one of the following
two occasions: 1) when a conflict is detected and resolved, and 2) when a
counter-example is presented. In both cases we add an utlimately-periodic
ω-word β to E together with its suffixes8 and both their number and size are
O(|β|). In the first case β is an element of ∆n

u,v, and thus |β| = O(n2) and in
the second case if we assume that counter-examples are of minimal length,
it follows from claim 5 that |β| = O(n2).

This fact and together with claim 7 implies that each call to the marking
procedure takes polynomially many steps and the proof is concluded.

Corollary 11 (Main result) The class of B ∩ B ω-regular sets is polyno-
mially learnable from queries and counter-examples.

6 An Example Run of Lω

Let U = (01)∗(10)ω. The initial observation table is completely negative
because no 1-period word is accepted. Thus the first conjecture is the empty
language accepted by the trivial 1-state automaton, for which +(10)ω is a
counter-example. Adding (10)ω, with its “co-suffix” (01)ω to E leads to the
table and transition graph of figure 10.

All the states in this graph belong to the same maximal SCC and they
cannot be marked consistently. The state fλ accepts (10)ω and rejects (01)ω

while fλ = f01 = f10. So we call conflict(λ, 01, 10) which returns the ex-
periment 01(10)ω By adding 1(10)ω and 01(10)ω to E we discover the states
f00 = f11 and f10. The final table and its corresponding transition graph are
depicted in figure 11. There are three maximal strongly-connected compo-
nents in this graph and each of them can be marked consistently.

8Since the suffix relation over Σω is not an order relation, being suffix-closed for E ⊆ Σω

means not only that membership of σuvω in E implies membership of uvω but also that
membership of vω implies the membership of tω for every t which is a rotation of v.
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7 Conclusion

We have shown that the state-characterization approach to automaton syn-
thesis can be applied to a “well-behaving” sub-class of the ω-regular sets.
Concerning the rest of the ω-regular sets, where a unique minimal automaton
does not exist, [Arnold (1985)] introduced an alternative canonical object.
Unfortunately this object is a two-sided congruence (semigroup) whose size
for a given language can be considerably larger than the size of an accepting
automaton. Thus, although Arnold’s congruence can be learned using two
3-dimensional observation tables, this option is not very attractive. Some
investigations of a “one-sided” analogue of Arnold’s congruence were made
by [Le Saec (1990)], and recently [Maler and Staiger (1993)] defined a much
smaller canonical object, but its usefulness for efficient learning has not been
investigated yet.
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0ω 1ω (01)ω (10)ω

λ – – – +
0 – – – –
1 – – + –
00 – – – –
01 – – – +
10 – – – +
11 – – – –

+−

0
1

01
1

0

10

λ

Figure 10: A closed table and its associated transition-graph with no com-

patible B ∩ B acceptance condition.
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0ω 1ω (01)ω (10)ω 1(10)ω 01(10)ω

λ – – – + – +
0 – – – – + –
1 – – + – – –
00 – – – – – –
10 – – – + – –
01 – – – + – +
11 – – – – – –
000 – – – – – –
001 – – – – – –
100 – – – – – –
101 – – + – – –

0

10000, 1

0

0

11

1

10

10

λ

Figure 11: The final table and its corresponding automaton.
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