
A Generic Algorithm for Learning Symbolic Automata
from Membership Queries

Oded Maler and Irini-Eleftheria Mens

VERIMAG
CNRS and University of Grenoble-Alpes, France

Abstract. We present a generic algorithmic scheme for learning languages de-
fined over large or infinite alphabets such as bounded subsets of N and R, or
Boolean vectors of high dimension. These languages are accepted by determin-
istic symbolic automata that use predicates to label transitions, forming a finite
partition of the alphabet for every state. Our learning algorithm, an adaptation of
Angluin’s L∗, combines standard automaton learning by state characterization,
with the learning of the static predicates that define the alphabet partitions. We do
not assume a helpful teacher who provides minimal counter-examples when the
conjectured automaton is incorrect. Instead we use random sampling to obtain
PAC (probably approximately correct) learnability. We have implemented the al-
gorithm for numerical and Boolean alphabets and the preliminary performance
results show that languages over large or infinite alphabets can be learned under
more realistic assumptions.
Keywords: Symbolic automata. Automata learning. Infinite alphabets.

1 Introduction

The (classical) theory of regular languages and automata [14,19,27] deals mainly with
alphabets that are small and “flat”, that is, sets without any additional structure. In
many applications, however, alphabets are large and structured. In hardware verifica-
tion, for example, behaviors are sequences of states and inputs ranging over valuations
of Boolean state variables that give rise to exponentially large alphabets, treated sym-
bolically using BDDs and other logical formalisms. As another motivation, consider
the verification of continuous and hybrid systems against specifications written in for-
malisms such as signal temporal logic (STL) [20,21]. Automata over numerical al-
phabets, admitting an order or partial-order relation, can define the semantics of such
requirements.

In recent years, symbolic automata [31] have been studied extensively as a generic
framework for recognizing regular languages over large alphabets. In such automata
the number of states and transitions is typically small and the transitions are labeled by
predicates from a corresponding theory, denoting subsets of the alphabet. The exten-
sion of classical results of automata theory to symbolic automata has become an active
area of research, including fundamental issues such as minimization [10] or effective
closure under various operations [30,32,33] as well as the adaptation of learning algo-
rithms [6,17,23]. The comparison with other related work is postponed to the conclusion
section, after the technical issues are explained in the body of the paper.

In [23] Angluin’s L∗ algorithm [1] for learning automata from queries and counter-
examples has been extended to learn languages over an alphabet Σ which is a high-
cardinality bounded subset of N or R. Such languages are represented by symbolic
automata where transitions are labeled by symbolic letters, such that the concrete se-
mantics [[a]] of a symbolic letter a is a sub-interval of Σ. Determinism is maintained
by letting the semantics at each state form a partition of Σ. The learning algorithm
uses symbolic observation tables with symbolic words in the rows to provide access
sequences s to discovered states. To determine the transitions outgoing from state s,
one needs, in principle, to ask membership queries concerning s ·a ·e for every s ∈ [[s]],
a ∈ Σ and e ∈ E where E is a set of distinguishing suffixes. To avoid a large or infinite
number of queries, the characterization of states is based on partial information: a small
set µ(a) of concrete letters, called the evidence for a, is associated with every symbol
a. This notion is lifted to symbolic words and membership queries are asked only for
the words in µ(s) · µ(a) · E.

In this framework, the learning procedure is decomposed into a vertical/temporal
component, consisting of discovering new states as in the original L∗ algorithm, and a
horizontal/spatial component where the boundaries of the alphabet partitions in every
state are learned and modified. The advantage of this decomposition is that the first part
is generic, invariant under alphabet change, while the second part has some alphabet
specific features. To take a concrete example, alphabet partitions over a totally-ordered
alphabet such as R are made using intervals with endpoints that can be shifted as new
evidence accumulates. On the other hand, for an alphabet like Bn, the partitions are
represented by decision trees which are modified by restructuring.

A major weakness of [23], partly inherited from L∗, is that in addition to member-
ship queries, it also uses equivalence queries: each time an automaton is conjectured,
an oracle EQ either confirms the conjecture or provides a counter-example which is
also minimal in the lexicographic order on Σ∗. Counter-examples of this type facili-
tate significantly the discovery of new states and the detection of the alphabet partition
boundaries but such a helpful teacher is unrealistic in most real-life situations. In this
paper we develop an algorithm that uses only membership queries. Some of those are
used to fill the observation table in order to characterize states, while others, posed for
randomly selected words, are used to test conjectures. Consequently, we have to replace
certain and exact learnability by a weaker notion, in the spirit of Valiant’s PAC (proba-
bly approximately correct) learning [29]: the algorithm converges with high probability
to a language close to the target language.

Adapting the algorithm to this more challenging and less pedagogical setting of ran-
dom sampling involves several modifications relative to [23]. First, when a new state q
is discovered, we sample the alphabet at several points rather than only at the minimal
elements. The sampled letters are used in queries to characterize the successors of q.
In order to avoid an exponential growth in the number of membership queries, we re-
fine the notion of evidence for symbolic words and ask queries only for the successors
of representative evidences. Secondly, to determine whether a given counter-example
leads to the discovery of a new state, to the introduction of a new transition or just to
a modification of the partition boundaries associated with some existing transitions, we
use an extended version of the breakpoint method of [26] which also appears in [16]

in a similar form. This method identifies an erroneous position in the counter-example,
classifies its nature and reacts accordingly.

We thus obtain an efficient algorithm for learning languages over large alphabets un-
der much more realistic assumptions concerning the information available to the learner.
We use one-dimensional numerical alphabets, partitioned into a bounded number of in-
tervals, to illustrate the principles of the algorithm. The algorithmic scheme can be
easily adapted to other domains provided that alphabet partitions are not too complex
and consist of a small number of simple blocks. We demonstrate this fact by adapting
the algorithm to Boolean alphabets partitioned into finitely many unions of sub-cubes.

The rest of the paper is organized as follows. In Sections 2 and 3 we define, re-
spectively, symbolic automata and symbolic observation tables while explaining their
role in learning. The symbolic learning algorithm is described in detail in Section 4 for
one-dimensional numerical domains, followed by its extension to Boolean alphabets
in Section 5. Section 6 provide some theoretical and empirical evaluation of the algo-
rithm performance. In Section 7 we summarize our results, compare with other work
on learning over large alphabets and suggest directions for future work.

The paper assumes some familiarity with automaton learning and the reader is in-
vited to read more detailed explanations of concrete learning algorithms in [5] and of
the framework underlying this paper in [23]. Likewise, some basic acquaintance with
decision trees is assumed that can be obtained by consulting [8].

2 Preliminaries

Let Σ be an alphabet, and let Σ∗ be the set of all finite sequences (words) over Σ. With
a language L ⊆ Σ∗ we associate a characteristic function f : Σ∗ → {+,−}, where
f(w) = + if w ∈ L and f(w) = −, otherwise. With every s ∈ Σ∗ we associate a
residual characteristic function defined as fs(w) = f(s ·w). Two sequences s and r are
Nerode equivalent [24] with respect to L, denoted by s ∼L r, if fs = fr. The relation
∼L is a right congruence satisfying s ∼L r → s · a ∼L r · a and its equivalence classes
correspond to the states of the minimal automaton that accepts L. The identification
of these classes underlies minimization procedures as well as most automaton learning
algorithms since [13].

A symbolic automaton over a concrete alphabet Σ is an automaton whose transi-
tions are labeled by symbolic letters or symbols, taken from a symbolic alphabet Σ,
that denote subsets of Σ. We assume Σ to be a disjoint union of finite alphabets of the
form Σq , each associated with a state of the automaton. Concrete letters are mapped
to symbols through a mapping ψ : Σ → Σ, decomposable into state-specific map-
pings ψq : Σ → Σq . The Σ-semantics of a symbol a ∈ Σq is the inverse of ψq , that
is, [[a]] = {a ∈ Σ : ψq(a) = a}. The Σ-semantics is extended to symbolic words
of the form w = a1 · · ·a|w| ∈ Σ∗ as the concatenation of the concrete one-letter
languages associated with the respective symbolic letters or, recursively speaking, by
letting [[ε]] = {ε} and [[w · a]] = [[w]] · [[a]] for w ∈ Σ∗, a ∈ Σ.

A symbolic automaton is complete and deterministic over Σ when for each state
q the set {[[a]] : a ∈ Σq} forms a partition of Σ. For this, we always let ψq be a
total function. Moreover, by letting ψ to be surjective we avoid symbols with empty

semantics. We often omit ψ and ψq from the notation and use [[a]] when ψ, which is
always present, is clear from the context.

Definition 1 (Symbolic Automaton). A deterministic symbolic automaton is a tuple
A = (Σ,Σ, ψ,Q, δ, q0, F), where Σ is the input alphabet, Σ is a finite alphabet,
decomposable into Σ =

⊎
q∈QΣq , ψ = {ψq : q ∈ Q} is a family of total surjective

functions ψq : Σ → Σq , Q is a finite set of states, q0 is the initial state and F is the set
of accepting states, δ : Q×Σ → Q is a partial transition function decomposable into
a family of total functions δq : {q} ×Σq → Q.

The transition function is extended to words as in the concrete case. The symbolic
automaton can be viewed as an acceptor of a concrete language, that is, when at q and
reading a concrete letter a, the automaton takes the transition δ(q, ψ(a)). Hence, the
language L(A) consists of all concrete words whose run leads from q0 to a state in F .
A language L ⊆ Σ∗ is symbolic recognizable if there exists a symbolic automaton A
such that L = L(A).

3 Symbolic Observation Tables

The present algorithm relaxes the strong assumption of a helpful teacher [1,23]. Such a
teacher responds positively to an equivalence query EQ(A), where A is an automaton
conjectured by the learning algorithm, only if L(A) is indeed equivalent to the target
language; otherwise, it returns a minimal counter-example which helps the learner to lo-
calize the modification site. In the new relaxed setting, equivalence queries are approx-
imated by testing queries: a call to EQ yields membership queries for a set of randomly
selected words; when all of them agree with the hypothesis, the algorithm terminates
with a non-zero probability of misclassification; otherwise, we have a counter-example
to process. The number of such queries may depend on what we assume about the dis-
tribution over Σ∗ and what we want to prove about the algorithm, for example PAC
learnability as in [1], which is further discussed in Section 6.

Counter-examples obtained via testing queries need not be minimal neither in length
nor lexicographically and hence partition boundaries are determined with some possible
approximation error. Unlike [23], the present algorithm requires the use of multiple
evidences for each symbol. To avoid an undesirable growth in the number of queries
one of the evidences is chosen as a representative and certain queries during subsequent
stages of the learning process are restricted to words with a representative prefix.

As an underlying data-structure for identifying states based on examples we use
symbolic observation tables [23], slightly modified to accommodate for representative
and non-representative evidences. The rows of the table correspond to symbolic words
(access sequences to states) while the columns are concrete words. Readers unfamiliar
with L∗ [1] can find in [23] more detailed intuitive explanations of observation tables
and their adaptation to the symbolic setting.

Let Σ and Σ be two alphabets, let S]R be a prefix-closed subset of Σ∗ and let
ψ = {ψs}s∈S be a family of total surjective functions of the form ψs : Σ → Σs,
where

⊎
s∈SΣs = Σ. A balanced symbolic Σ-tree is a tuple (Σ,S,R, ψ), where for

T
E

ε v

S
ε − +
a1 + −
a2 + +

a1a4 − −

R
a1a3 − +
a2a5 + −

a1a4a6 + +
a1a4a7 − −

(a)

S

R

ε

a1 a2

a3 a4 a5

a6 a7

(b)

ε

a1 a2

a3

a4

a5

a6

a7

(c)

Fig. 1: (a) A symbolic observation table, (b) its balanced symbolicΣ-tree, and (c) the conjectured
automaton.

every s ∈ S and a ∈ Σs, s ·a ∈ S∪R, and for any r ∈ R and a ∈ Σ, r ·a 6∈ S∪R.
Elements ofR are called boundary elements of the tree.

The structure of a balanced tree appears in Figure 1-(b) together with its corre-
sponding automaton at Figure 1-(c). The underlying intuition is that elements of S,
also known as access sequences, correspond to a spanning tree of the transition graph
of the automaton to be learned, while elements of the boundary R correspond to back-
and cross-edges relative to this spanning tree.

Definition 2 (Symbolic Observation Table). A symbolic observation table is a tuple
T = (Σ,Σ,S,R, ψ,E,f , µ, µ̂) such that

– Σ is an alphabet,
– (Σ,S,R, ψ) is a balanced symbolic Σ-tree,
– E ⊆ Σ∗ is a set of distinguishing words,
– f : (S ∪R) · E → {−,+} is the symbolic classification function,
– µ : Σ → 2Σ − {∅} is the evidence function, where µ(a) ⊆ [[a]] for all a ∈ Σ,
– µ̂ : Σ → Σ is the representative function, where µ̂(a) ∈ µ(a) for all a ∈ Σ.

The evidence and representative functions are extended to symbolic words in S ∪R as
follows:

µ(ε) = {ε} µ̂(ε) = ε
µ(s · a) = µ̂(s) · µ(a) µ̂(s · a) = µ̂(s) · µ̂(a). (1)

The symbolic characteristic function values are based on the representative of the sym-
bolic prefix rather than the set of all evidences, i.e., to fill the (s, e) entry in the table
we let f(s, e) = f(µ̂(s) · e), where f is the characteristic function of the target lan-
guage. With every s ∈ S ∪R we associate a residual classification function defined as
fs(e) = f(s, e). The symbolic sample associated with T is the setMT = (S ∪R) ·E
and the concrete sample is MT = µ(S ∪R) · E.

Handling multiple evidences to determine partition boundaries is the major novel
feature in learning symbolic automata. Evidences of the same symbol should behave
the same and when this is not the case, that is, when two concrete letters in the evidence
of a symbol lead to different residual functions, we call this a manifestation of evidence
incompatibility. The rigorous detection and resolution of evidence incompatibility is

a major contribution of the algorithm presented in this work. The topic has also been
addressed in [17] but in an unsatisfactory manner, leaving the transition function unde-
fined outside the evidence. Evidence incompatibility can be characterized and measured
as follows.

Definition 3 (Incompatibility Instance). Let µs =
⋃
a∈Σs

µ(a) be the set of all evi-
dences for state s. A state s ∈ S has an incompatibility instance at evidence a ∈ µs
when fµ̂(s)·a 6= fµ̂(s)·µ̂(ψs(a)), and this fact is denoted INC(s, a). The evidence incom-
patibility degree associated with s is M(s) = |{a ∈ µs : INC(s, a)}|.

Definition 4 (Table Properties). A table T = (Σ,Σ,S,R, ψ, E,f , µ, µ̂) is

– Closed if ∀r ∈ R, ∃s ∈ S, fr = fs,
– Reduced if ∀s, s′ ∈ S, fs 6= fs′ , and
– Evidence compatible if M(s) = 0, ∀s ∈ S.

The following result [23] is the natural generalization of the derivation of an automaton
from an observation table [1] to the symbolic setting.

Theorem 1 (Automaton from Table). From a closed, reduced and evidence compat-
ible table one can construct a deterministic symbolic automaton compatible with the
concrete sample.

Proof. The proof is similar to the concrete case. Let T = (Σ,Σ,S,R, ψ,E,f , µ, µ̂)
be such a table, which is reduced and closed and thus a function g : R → S, such that
g(r) = s iff fr = fs, is well defined. The automaton derived from the table is then
AT = (Σ,Σ, ψ,Q, δ, q0, F), where Q = S, q0 = ε, F = {s ∈ S : fs(ε) = +}, and
δ : Q×Σ → Q is defined as

δ(s,a) =

{
s · a when s · a ∈ S
g(s · a) when s · a ∈ R

By construction and like the L∗ algorithm, AT classifies correctly via f the symbolic
sample and, due to evidence compatibility, this classification agrees with the character-
istic function f on the concrete sample. ut

4 The Symbolic Learning Algorithm

In this section we present the symbolic learning algorithm using a high-cardinality
bounded subset of N or R as an input alphabet. The concrete semantics of each sym-
bolic letter is a sub-interval of the alphabet. We disallow disconnected partition blocks,
for example, two subsets of even and odd numbers, respectively. Thus, if two discon-
nected intervals take the same transition, two symbolic letters will be considered. In
this setting, the endpoints of an interval associated with a symbolic letter are such that
all evidence points between them have the same residual function, while the nearest
points outside the interval have different residuals. The algorithm adapts easily to other
alphabet types as we will show in Section 5.

Algorithm 1 A sampling-based symbolic learning algorithm

1: learned = false

2: INITTABLE(T)
3: repeat
4: while T is not closed or not evidence compatible do
5: CLOSE

6: EVCOMP

7: end while
8: if EQ(AT) then . check hypothesis AT
9: learned = true

10: else . a counter-example w is provided
11: COUNTEREX(AT , w) . process counter-example
12: end if
13: until learned

Procedure 2 Initialize the table

1: procedure INITTABLE(T)
2: Σε = {a}; S = {ε};R = {a}; E = {ε} . a is a new symbol
3: INITSYMBOL(a)
4: Ask MQ(u) for all u ∈ µ(a) ∪ {ε}
5: f(ε) = f(ε); f(a) = f(µ̂(a))

6: T = (Σ,Σ,S,R, ψ, E,f , µ, µ̂)

7: end procedure

The symbolic learning algorithm (Algorithm 1) alternates between two phases. In
the first phase it attempts to make the table closed and evidence compatible so as to
construct a symbolic automaton. In the second phase, after formulating an equiva-
lence query (EQ), it processes the provided counter-example which renders the table
not closed or evidence incompatible. These phases alternate until no counter-example
is found. Note that the table, by construction, is always kept reduced. We use MQ as a
shorthand for membership queries.

Table Initialization (Procedure 2). The algorithm builds an initial observation table
T , with Σε = {a}, S = {ε}, R = {a}, E = {ε}. The newly introduced symbol a
is initialized with concrete semantics, evidence and a representative, via the procedure
INITSYMBOL which is invoked each time a new state is introduced. Then membership
queries are posed to update f and fill the table.

Symbol Initialization (Procedure 3). For a new symbolic letter a we let [[a]] = Σ
and as an evidence µ(a) we take a set of k concrete letters, denoted by sample(Σ, k).
This set can be selected randomly or be the result of a more adaptive process that may
depend on the outcome of membership queries. One element of the evidence, denoted
by select(µ(a)), is chosen as a representative and will be used to fill table entries

Procedure 3 Initialize new symbol a

1: procedure INITSYMBOL(a)
2: [[a]] = Σ

3: µ(a) = sample(Σ, k)

4: µ̂(a) = select(µ(a))

5: end procedure

for all rows in which a appears. Already at this stage, some elements of µ(a) may
behave differently from the representative and this will flag an evidence incompatibility
condition to be treated subsequently.

Table Closing (Procedure 4). A table is not closed when there exists some r ∈ R
without any equivalent element s ∈ S such that fr = fs. To render the table closed r
should be considered as a new state. To this end, r is moved fromR to S with alphabet
Σr = {a}, where a is a new symbol which is initialized. To balance the table a new
word r ·a is added toR, its evidence µ(r ·a) and representative µ̂(r ·a) are computed
following (1) and membership queries are posed to update f and fill the table.

Procedure 4 Close the table

1: procedure CLOSE

2: Given r ∈ R such that ∀s ∈ S, fr 6= fs
3: S = S ∪ {r} . declare r a new state
4: Σr = {a} . introduce a new symbol a
5: INITSYMBOL(a)
6: R = (R− {r}) ∪ {r · a} . add new boundary element
7: Ask MQ(u) for all u ∈ µ(r · a) · E
8: fr·a = fµ̂(r·a)
9: end procedure

[[aj]]

ai
I

[[aj+1]]

[[aj]]

ai
I

[[aj+1]]

(a)

[[aj]]

ai
I

[[aj+1]]

[[aj]]

ai
I

[[b]]

I
[[aj+1]]

(b)

Fig. 2: Evidence incompatibility solved either by (a) boundary modification, or by (b) introducing
a new symbol. This depends on the position of the incompatibility instance inside the partition.

Procedure 5 Make evidence compatible

1: procedure EVCOMP

2: Let s ∈ S, for which M(s) > 0, where
3: µs = {a1, . . . , ak} such that ai−1 < ai,∀i = 2, . . . , k

4: Let aj ∈ Σs, [[aj]] = [c, c′), such that ∃i : f i−1 6= f i for ai−1, ai ∈ µ(aj)
5: p = split(ai−1, ai) . new partitioning point
6: if f i = f i+1 = · · · = f i+l+1 where ai, . . . , ai+l ∈ µ(aj), ai+l+1 ∈ µ(aj+1) then
7: [[aj]] = [c, p); [[aj+1]] = [p, c′) ∪ [[aj+1]] . change right frontier
8: µ(aj+1) = (µ(aj+1) ∪ µ(aj)) ∩ [[aj+1]]

9: µ(aj) = µ(aj) ∩ [[aj]]

10: else if f i−1 = · · · = f i−l where ai−1, . . . , ai−l+1 ∈ µ(aj), ai−l ∈ µ(aj−1) then
11: [[aj−1]] = [[aj−1]] ∪ [c, p); [[aj]] = [p, c′) . change left frontier
12: µ(aj−1) = (µ(aj−1) ∪ µ(aj)) ∩ [[aj−1]]

13: µ(aj) = µ(aj) ∩ [[aj]]

14: else
15: Σs = Σs ∪ {b} . introduce a new symbol b
16: R = R ∪ {s · b}
17: if µ̂(aj) ≤ p then
18: [[aj]] = [c, p); [[b]] = [p, c′)

19: else
20: [[b]] = [c, p); [[aj]] = [p, c′)

21: end if
22: µ(b) = µ(aj) ∩ [[b]]; µ(aj) = µ(aj) ∩ [[aj]]

23: µ̂(b) = select(µ(b))

24: fs·b = fµ̂(s·b)
25: end if
26: end procedure

Fixing Evidence Incompatibility (Procedure 5). A table is not evidence compatible
when the incompatibility degree of a state in S is greater than zero. Evidence incom-
patibility appears either after the initialization of a symbol, or after a counter-example
treatment. It is resolved by consecutive calls to EVCOMP where each call reducesM(s)
until the total incompatibility degree of the observation table becomes zero.

For a state s, an incompatibility instance at a indicates either that the partition
boundary is imprecise or that a transition (and its corresponding symbol) is missing.
In the first case, the incompatible evidence a appears next to the boundary of the inter-
val and its classification matches the classification of a neighboring symbol a′. In this
situation, modifying the boundary so that a is moved to [[a′]] resolves the incompatibil-
ity. On the the other hand, when the evidence a is in the interior of an interval, or does
not behave like a neighboring symbol, the incompatibility is resolved by adding a new
symbol and refining the existing partition. These two cases are illustrated in Figures 2-
(a) and 2-(b), respectively.

Formally, let s ∈ S be a state with positive incompatibility degree M(s) > 0, and
let µs = {a1, . . . , ak} ⊂ S be the set of evidences, ordered such that ai−1 < ai for all
i. To simplify notation, f i denotes the residual fµ̂(s)·ai when state s is understood from
the context. Moreover, let aj and aj+1 denote symbols inΣs with adjacent semantics,
that is, given any three letters a, b, c ∈ Σ, with a < b < c, then a ∈ [[aj]] ∧ c ∈ [[aj+1]]
implies b ∈ [[aj]] ∪ [[aj+1]].

Let ai−1, ai ∈ µs be two evidences from the same interval that behave differently,
f i−1 6= f i, and let aj ∈ Σs be the symbol such that ai−1, ai ∈ µ(aj) where [[aj]] =
[c, c′). Procedure p = split(ai−1, ai) returns a point p ∈ (ai−1, ai) between them. We
let split return the middle point, split(a, a′) = (a + a′)/2. One can think of more
sophisticated methods, based on binary search, that can be applied instead.

Procedure 5 fixes the incompatibility by separating ai−1 and ai and mapping them
to different symbols. The way this separation is realized, with or without introducing
a new symbol, depends on the positions of ai−1 and ai in the set of evidences and the
residual functions of their neighboring intervals.

1. Boundary modification. Suppose the incompatibility instance is at ai ∈ µ(aj) and
that all other evidences µ(aj) to the right of ai behave like minµ(aj+1). By chang-
ing the partition boundaries and moving ai from [[aj]] to [[aj+1]], the incompatibility
instance at ai is eliminated. The new boundary between these two intervals is set
to p, see Figure 2-(a). The symmetric case, where the incompatibility occurs at
ai−1 ∈ aj with all other evidences of µ(aj) on its left behaving like maxµ(aj−1),
is treated similarly.

2. Symbol introduction. When the above condition does not hold and boundary mod-
ification cannot be applied, the incompatibility is solved by refining the partition.
The semantics [[aj]] is split into two intervals [c, p) and [p, c′), a new symbol b is
introduced and the interval not containing µ̂(aj) is moved from [[aj]] to [[b]] along
with the evidences it contains, see Figure 2-(b).

Processing Counter-Examples (Procedure 6). A counter-example is a word w mis-
classified by the current hypothesis. The automaton should be modified to classify w
correctly while remaining compatible with the evidence accumulated so far. These mod-
ifications can be of two major types that we call vertical and horizontal. The first type,
which is the only possible modification in concrete learning, involves the discovery
of a new state s · a. A counter-example which demonstrates that some letter a took
a wrong transition δ(s, a) has a horizontal effect that fixes a transition or adds a new
one without creating a new state. The procedure described in the sequel reacts to the
counter-example by adding a to the evidence of s and thus modifying the table, which
should then be made closed and evidence compatible before we continue with a new
hypothesis. The same counter-example is tested again and when it is correctly classi-
fied, we proceed by posing a new equivalence query. We treat counter-examples using
a symbolic variant of the breakpoint method introduced in [26]. A similar method has
been proposed in [16].

Let AT be a symbolic automaton derived from a symbolic table T , and let w =
a1 · · · a|w| be a counter-example whose symbolic image is a1 · · ·a|w|. An i-factorization
of w is w = ui · ai · vi such that ui = a1 · · · ai−1 and vi = ai+1 · · · a|w|. For every

ε

s s′

µ̂(ai)

µ̂(ui)

vi

vi

6=

ε

s s′

new

µ̂(ai)

µ̂(ui)

vi

vi

6=

6=

s · ai is
a state

(a)

ε

s

µ̂(ui)

µ̂(ai) ai

vi vi

6=

ε

s

µ̂(ui)

µ̂(ai) ai

vi vi

6=

6=

refine [[ai]]

(b)

Fig. 3: A counter-example expands a hypothesis either (a) vertically, discovering a new state; or
(b) horizontally, modifying the alphabet partition in a state.

i-factorization of w, we let ui be the symbolic image of ui, and si = δ(ε,ui · ai) be
the symbolic state (an element of S) reached in AT after reading ui · ai.

Proposition 1 (Symbolic Breakpoint). If w is a counter-example to AT then there
exists an i-factorization of w such that either

f(µ̂(si−1) · ai · vi) 6= f(µ̂(si−1) · µ̂(ai) · vi) (2)

or
f(µ̂(si−1 · ai) · vi) 6= f(µ̂(si) · vi) (3)

Proof. Condition (2) states that ai is not well represented by µ̂(ai) while Condition (3)
implies si−1 ·ai is a new state different from si, see Figure 3. We prove the proposition
assuming that none of the above inequalities holds for any i-factorization of w. By
using alternatively the negations of (2) and (3) for all values of i, we conclude that
f(µ̂(s0) · a1 · v1) = f(µ̂(s|w|)), where µ̂(s0) · a1 · v1 is the counter-example and s|w|
is the state reached in AT after reading w. Thus w cannot be a counter-example. ut

Procedure 6 iterates over i values and checks whether one of the conditions (2) and
(3) holds for some i. We let i take values in a monotonically descending order and keep
the suffixes as short as possible. In this case, it suffices to compare f(µ̂(si−1 · ai) · vi)
and f(µ̂(si−1) · ai · vi) with the classification of the counter-example, which is kept in
a flag variable. In line 5, Condition (3) is checked and if it holds, adding vi to E will
distinguish between states si−1 ·ai and si, resulting in a table which is not closed. Oth-
erwise, if Condition (2) holds, which is checked in line 9, the letter ai is added to the
evidence of ai and new membership queries are posed. These queries will render the
table evidence incompatible and will lead to refining [[ai]]. The suffix vi is added toE in

case it is the only witness for the incompatibility. Note that checking the conditions in-
volves supplementary membership queries, based on the suffix of the counter-example
w, where the prefix ui of w is replaced by µ̂(si−1), the representative of its shortest
equivalent symbolic word in the table. Both cases will lead to a new conjectured au-
tomaton which might still not classify w correctly. In that case, the procedure should be
invoked with the same counter-example and the new hypothesis until AT classifies w
correctly.

Procedure 6 Counter-example treatment

1: procedure COUNTEREX(AT , w)
2: flag = f(µ̂(δ(ε,w))) . flag = f(w) when iterating on 1, . . . , |w|
3: for i = |w|, . . . , 1 do
4: For an i-factorization w = ui · ai · vi
5: if f(µ̂(si−1 · ai) · vi) 6= flag then . check (3)
6: E = E ∪ {vi} . add a new distinguishing word
7: Ask MQ(u) for all u ∈ µ(S ∪R) · vi
8: break
9: else if f(µ̂(si−1) · ai · vi) 6= flag then . check (2)

10: µ(ai) = µ(ai) ∪ {ai} . add new evidence
11: Ask MQ(u) for all u ∈ µ̂(si−1) · ai · E
12: if M(si) = 0 then
13: E = E ∪ {vi} . add distinguishing word
14: Ask MQ(u) for all u ∈ µ(S ∪R) · vi
15: end if
16: break
17: end if
18: end for
19: end procedure

Example 1. We demonstrate the working of the algorithm in learning a target language
L over the alphabet Σ = [0, 100) ⊆ R. The observation tables, semantic functions and
hypotheses used in this example are shown in Figures 4 and 5.

The table is initialized with S = {ε} andE = {ε}. To determine the alphabet parti-
tion at the initial state ε, the learner asks membership queries for the randomly selected
one-letter words {13, 42, 68, 78, 92}. All words in this set except 13 are rejected. Con-
sequently, there are at least two distinct intervals that we take split(13, 42) = 27 as their
boundary. Each interval is represented by a symbolic letter resulting inΣε = {a1,a2},
µ(a1) = {13}, µ̂(a1) = 13, µ(a2) = {42, 68, 78, 92}, and µ̂(a2) = 68. The rep-
resentatives are randomly chosen from the set of evidences. The semantics, ψ maps
all letters smaller than 27 to a1, and maps the rest to a2, that is, [[a1]] = [0, 27) and
[[a2]] = [27, 100). The table boundary updates to R = {a1,a2} and the observation
table is T0, shown in Figure 4.

Table T0 is not closed and in order to fix this, the learner moves a1 to the set of
states S. To find the possible partitions of Σ at this new state a1, the learner randomly
chooses a sample {2, 18, 26, 46, 54} of letters and asks membership queries concerning
the words in {13 · 2, 13 · 18, 13 · 26, 13 · 46, 13 · 54}. Note that the prefix used here is
the representative of a1. The teacher classifies all words as rejected. The new table is
T1 with Σa1

= {a3}, µ(a3) = {2, 18, 26, 46, 54}, µ̂(a3) = 18, and [[a3]] = [0, 100).
The new table is closed and the first hypothesis A1 is conjectured.

The hypothesis is tested on a set of words, randomly chosen from some distribution,
typically unknown to the learner. After some successful tests, a word 35·52·11 is found,
which is accepted by A1 but is outside the target language. The learner takes this word
as a counter-example and analyzes it using the symbolic breakpoint method. At iteration
i = 2 of Procedure 6, condition (3) is violated, in particular MQ(µ̂(ε · a2) · 11) =
MQ(68 · 11) 6= flag = +. Thus, the suffix 11 is added as a distinguishing word to
E. The observation table T2 obtained after adding the new suffix is, as expected, not
closed. The table is made closed by letting a2 be a new state, resulting in table T3,
where Σa2

= {a4,a5}, µ(a4) = {17, 27}, µ̂(a4) = 17, [[a4]] = [0, 45), µ(a5) =
{64, 72, 94}, µ̂(a5) = 72 and [[a5]] = [45, 100). The corresponding new conjecture is
A3.

Automaton A3 is tested and a counter-example 12 · 73 · 4 is provided. The break-
point method discovers that condition (2) is violated, because letter 73 is not part of
the semantics of a3. This letter is added as a new evidence to µ(a3). The evidence
inconsistency is solved by splitting the existing partition into two subintervals. A new
symbol a6 is added to Σa1

, such that µ(a6) = {73} and [[a6]] = [63, 100). The new
observation table and hypothesis automaton are T4 and A4, respectively.

The next counter-example 52 · 47, also adds a new evidence, this time to symbol
a5. The classification of the new evidence matches the classification of a4, which is a
neighboring symbol. The boundary between [[a4]] and [[a5]] is moved from 45 to 55, thus
resolving the evidence incompatibility. The new hypothesis A5 is successfully tested
without discovering any other counter-example and the algorithm terminates while re-
turning A5 as an answer. ut

T0

ε
ε −
a1 +
a2 −

T1

ε
ε −
a1 +
a2 −

a1a3 −

T2

ε 11
ε − +
a1 + −
a2 − −

a1a3 − +

T3

ε 11
ε − +
a1 + −
a2 − −

a1a3 − +
a2a4 − −
a2a5 + −

T4−5

ε 11
ε − +
a1 + −
a2 − −

a1a3 − +
a1a6 + −
a2a4 − −
a2a5 + −

Fig. 4: Observation Tables used in Example 1.

A1 A3

0 27 100

13 42 68 78 92

2 18 26 46 54
Σa1

Σε

ψ1

a1 a2

a3

0 27 45 100

13 42 68 78 92

2 18 26 46 54

17 27 64 72 94
Σa2

Σa1

Σε

ψ3

a1 a2

a3

a4 a5

ε a1

a2

a1

a3

ε a1

a2

a1

a4

a5
a3

a2

A4 A5

0 27 45 63 100

13 42 68 78 92

2 18 26 46 54 73

17 27 64 72 94
Σa2

Σa1

Σε

ψ4

a1 a2

a3

a4 a5

a6

0 27 55 63 100

13 42 68 78 92

2 18 26 46 54 73

17 27 47 64 72 94
Σa2

Σa1

Σε

ψ5

a1 a2

a3

a4 a5

a6

ε a1

a2

a1

a4

a5

a6

a3

a2

ε a1

a2

a1

a4

a5

a6

a3

a2

Fig. 5: Symbolic automata and semantics function learned in Example 1.

5 Adaptation to Boolean Alphabets

We demonstrate the versatility of the algorithm by adapting it to languages over the
alphabet Σ = Bn of Boolean vectors accessed by variables {x1, . . . , xn}. All compo-
nents of the algorithm remain the same except the construction of alphabet partitions
and their modification due to evidence incompatibility. These should be adapted to the
particular nature of the Boolean hyper-cube. The concrete semantics of the symbolic
letters in a state q will be defined by a function ψq : Bn → Σq . Let µs be the set of
all evidences for state s. At any given moment, the raw data for inducing the alphabet
partition at s is the sample {(ai, f i) : ai ∈ µs} where for every ai, f i = fµ̂(s)·ai is
the residual associated with ai. Let Fs denote the set of all observed distinct residuals
associated with the one-letter successors of s. On our way to construct ψq , we first de-
rive another function ψs : Bn → Fs associated with any s ∈ S. The function ψs is
compatible with the sample if it agrees with it on the elements of µs.

We represent both ψs and ψq by isomorphic decision trees [8] whose leaf nodes
are labeled by elements of Fs and Σq , respectively. By abuse of notation, we use ψ
for the functions and for their associated decision trees. We first build ψs as a decision

Procedure 7 Make evidence compatible (Boolean alphabets)

1: procedure EVCOMP

2: Let s ∈ S be a state for which M(s) > 0

3: UPDATE(ψs) . build a tree consistent with sample
4: for all h ∈ Fs do . for all existing residuals
5: if ∃a ∈ Σs s.t. h = fµ̂(s)·µ̂(a) then
6: . h is already associated with an existing symbol a
7: µ(a) = {ai ∈ µs : f i = h} . update evidence
8: [[a]] =

⋃
{[[t]] : t ∈ leaves(ψs) and label(t) = h} . update semantics

9: else . h does not match any pre-existing residual
10: Σs = Σs ∪ {b} . introduce a new symbol
11: R = R ∪ {s · b} . and a new candidate state
12: µ(b) = {ai ∈ µs : f i = h} . define evidence
13: µ̂(b) = select(µ(b)) . select representative
14: [[b]] =

⋃
{[[t]] : t ∈ leaves(ψs) and label(t) = h} . update semantics

15: end if
16: end for
17: end procedure

tree where all evidences mapped to the same leaf node agree on their residual function.
Hence, learning alphabet partitions is an instance of learning decision trees using algo-
rithms such as CART [8], ID3 [25], or ID5 [28] that construct a tree compatible with a
labeled sample.

These algorithms work roughly as follows. They start with a tree consisting of a
single root node, with which all sample points are associated. A node is said to be pure
if all its sample points have the same label. For each impure node, two descendants are
created and the sample is split among them based on the value of some selected variable
xi. The variable is chosen according to some purity measure, such as information gain,
that characterizes the quality of the split based on each variable. The selection is greedy
and the algorithm terminates when the tree becomes sample compatible and sends each
sample point to a pure leaf node.

Evidence incompatibility in a state s appears when the decision tree ψs is not com-
patible with the sample. This may happen in three occasions during the execution of the
algorithm, the first being symbol initialization. Recall that when a new state s is intro-
duced, we create a new symbol a and collect evidences for it, which may have different
residuals while being associated with the same single root node. The second occasion
occurs when new evidence is added to a symbol, making a leaf node in the tree impure.
Finally, when some new suffix is added to E, the set Fs of distinct residuals (rows in
the table) may increase and the labels of existing evidences may change.

The simplest way to fix a decision tree is to split impure leaf nodes until purification.
However, this may lead to very deep trees and it is preferable to reconstruct the tree each
time the sample is updated in a way that leads to incompatibility. In the simple (second)
case where a new evidence is added, we can use an incremental algorithm such as ID5

[28], which restructures only parts of the tree that need to be modified, leaving the rest
of the tree intact. This algorithm produces the same tree as a non-incremental algorithm
would, while performing less computation. In the third case, we build the tree from
scratch and this is also what we do after initialization where the incremental and non-
incremental algorithms coincide.

Once a tree ψs is made compatible with the sample, the semantics of the symbolic
alphabet, expressed via ψs, is updated. This is nothing but mapping the leaves of ψs to
Σq . Had we wanted to follow the “convex” partition approach that we used for numeri-
cal alphabets, we should have associated a fresh symbol with each leaf node of the tree,
thus letting [[a]] be a cube/term for every a ∈ Σq . We prefer, however, to associate the
same symbol with multiple leaf nodes that share the same label, allowing the semantics
of a symbol to be a finite union of cubes. This way |Σs| = |Fs| and there is at most
one symbol that labels a transition between any pair of states.

Each time ψs is restructured, we modify ψq as follows. First, with each symbol a
that already exists, we re-associate the leaves that agree with the labels of its represen-
tative (note that the representative of an existing symbol never changes). Then, in the
case where the set Fs of distinct residuals has increased, we introduce a new symbolic
letter for each new residual and select its representative. The whole process is described
in Procedure 7. We use [[t]] to denote all evidences associated with a leaf node t and
label(t) to denote its residual.

T0 T1 T2 T3 T4 T5−6 T7

ε
ε −
a0 −

ε
ε −
a0 −
a1 +

ε
ε −
a1 +
a0 −

a1a2 −
a1a3 +

ε 0000
ε − −
a1 + −
a0 − −

a1a2 − +
a1a3 + −

ε 0000
ε − −
a1 + −

a1a2 − +
a0 − −

a1a3 + −
a1a2a4 − −
a1a2a6 + −

ε 0000
ε − −
a1 + −

a1a2 − +
a0 − −
a5 − +

a1a3 + −
a1a2a4 − −
a1a2a6 + −

ε 0000 1110
ε − − +
a1 + − +

a1a2 − + −
a0 − − −
a5 − + −

a0a7 − − +
a0a8 − + −
a1a3 + − +

a1a2a4 − − −
a1a2a6 + − +

Fig. 6: Observation tables generated during the execution of the algorithm on Example 2.

Example 2. We show how the algorithm learns a target language over Σ = B4. All
tables encountered during the execution of the algorithm are shown in Figure 6 and the
decision trees appear in Figure 7 in the form of Karnaugh maps. The learner starts by
initializing the observation table. Like any new state, initial state ε admits one outgo-
ing transition that represents all concrete letters, that is Σε = {a0} and [[a0]] = Σ.
A set of concrete letters is sampled and is used as the evidence for the new symbol,
µ(a0) = {(0000), (0010), (1011), (1000), (1101)}, while µ̂(a0) = (0000) is chosen
as a representative. At this point, the observation table is T0 and the decision tree is ψ0

ε ,
consisting of a single node.

ψ0
ε ψ2

ε ψ3
ε ψ4

ε ψ5
ε

00

01

11

10

00 01 11 10

a0

00

01

11

10

00 01 11 10

a0

a1

00

01

11

10

00 01 11 10

a0

a1

00

01

11

10

00 01 11 10

a0

a1 a5

00

01

11

10

00 01 11 10

a0

a1

a5

ψa1 ψa1a2 ψa0

00

01

11

10

00 01 11 10

a2

a3

00

01

11

10

00 01 11 10

a4

a4a6
00

01

11

10

00 01 11 10

a7

a8

Fig. 7: Semantics functions used in Example 2. We show the evolution of ψε over time, while for
the other states we show only the final partition. We use symbols such as { , , } to indicate
different residuals.

A2 A5 A7

Hypotheses

q0 q1

a0

a1 a3

a2

q0 q1

q2

a0

a3a1

a5
a2

a6

a4

q0 q1

q2q3

a3a1

a5

a0
a2

a6

a4

a7

a8

Fig. 8: Intermediate and final conjectured automata for Example 2.

The observation table is not evidence compatible because evidence (1101) ∈ µ(a0)
behaves differently, and thus the partition needs refinement. The tree induction algo-
rithm CART, which is used throughout this example, finds that Σ is best split into two
blocks based on the values of variable x2. That is, all letters for which x2 = 0 are
mapped to a0 while the others are mapped to a new symbol a1, added to Σε (see ψ2

ε).
The resulting observation table T1 is made closed by letting a1 be a state. The evidence
for the new state/symbol is sampled and, after resolving evidence incompatibility for it,
we obtain the table T2 with ψ = {ψ2

ε, ψa1
}.

The first conjectured automaton A2, shown in Figure 8, is tested. A counter-example
w = (1010) · (0000) is found and the learner applies the breakpoint method which adds
the distinguishing word (0000) to E. The table is filled in by posing MQ’s, resulting in
T3 which is neither closed nor evidence compatible.

The table is made closed with a1a2 becoming a state. The outgoing transitions
are defined as before, resulting in table T4 and ψa1a2

. The added suffix (0000) causes
an evidence incompatibility at ε by changing the residual functions of the evidence,

see ψ3
ε. The decision tree is reconstructed from scratch to become compatible with the

updated sample. Then the symbols are rearranged so as to match the residuals of their
representatives and a new symbol a5 is added. The partition is updated to the evidence
compatible ψ4

ε and the corresponding observation table is T5.
The new hypothesis A5 is tested for equivalence, providing the counter-example

(1111). The breakpoint method adds (1111) to µ(a5) as a new evidence, causing once
more an incompatibility at the initial state, which is fixed by updating the tree ψε into
ψ5
ε. Since this incompatibility is due to a new evidence, the tree is updated using an

incremental algorithm. Observe that this last counter-example only fixes the partition
by rearranging the sub-cubes of B4 without adding any new transition.

A counter-example to the next hypothesis A6 is w = (1000) · (1000) · (0000) ·
(0000) · (1110), which adds the new suffix (1110) to E. The prefix a0 is now identified
as a state and after refining ψa0

to become evidence compatible, the observation table
T7 is obtained. The new and last hypothesis A7 is tested on 855 words with no counter-
example. We can conclude (see next section) with 95% confidence that A7 is correct
with a maximum error of 1%. ut

6 Theoretical and Empirical Results

We assume a probability distribution D defined over Σ∗ which is expressed via a den-
sity function when Σ is a sub-interval of R. For any L ⊆ Σ∗ let PrD(L) be the prob-
ability of L, obtained by summing up the probabilities of its elements or by integrating
densities in the real-valued case. Let L be a target language and let A be a conjectured
automaton accepting the language LA. The quality of A is defined by the probabil-
ity of error, that is, the probability of the symmetric difference between L and LA:
d(L,LA) = PrD(L⊕ LA).

Definition 5 (PAC Learning [29]). A learning algorithm learns a language L in a
probably-approximately correct (PAC) manner with probability parameters ε (accu-
racy) and δ (confidence) if its output A satisfies Pr(d(L,LA) ≤ ε) ≥ 1− δ.

Given that our algorithm implements equivalence checks by comparing membership in
L and in LA for words randomly selected according to D, the following result from [1]
applies in a straightforward way to the symbolic case.

Proposition 2. The symbolic learning algorithm PAC-learns a language L if the i-th
equivalence query tests ri = 1

ε (ln
1
δ + (i + 1) ln 2) random words without finding a

counter-example.

A class of functions or sets is efficiently PAC learnable if there is an algorithm that
PAC learns it in time (and number of queries) polynomial in 1/ε, 1/δ, and in the size
parameters of the learned object. For a target language L ⊂ Σ∗, the size is based on the
minimal symbolic automaton A recognizing L which is assumed to have n states and
at most m outgoing transitions from every state.

Concerning the size of the observation table and the sample used to learn L, the set
of prefixes S is monotonically increasing and reaches the size of at most n elements.

Since the table, by construction, is always kept reduced, the elements in S represent
exactly the states of the automaton. The size of the boundary is always smaller than the
total number of transitions in the automaton, that is,mn−n+1. The number of suffixes
in E, that play a distinguishing role for the states of the automaton, range between
log2 n and n. The size of the table ranges between (n+m) log2 n and n(mn+1). The
size of the symbolic sample follows the size of prefixes and boundary which is at most
O(mn2), while the concrete sample depends on the number of evidences used in the
table and its size is

∑
s∈S |µs| · |E|.

A counter-example improves a hypothesis either by expanding the automaton, dis-
covering a new state or transition, or by modifying the boundaries of already existing
transitions. At most n− 1 counter-examples discover new states and at most n(m− 1)
introduce new transitions, resulting in at mostO(mn) equivalence queries and counter-
examples of this kind. The number of counter-examples that only change the boundaries
in a partition is bounded in a probabilistic setting of approximate learning. The prob-
ability of finding a non-expansive counter-example ultimately decreases converging to
zero. Hence, there exists a hypothesis i for which after ri tests no counter-example is
returned. From this we can conclude that our algorithm terminates, resulting in a sym-
bolic automaton which is a PAC representation of the target language L.

Proposition 3. The symbolic learning algorithm terminates with probability 1 return-
ing a symbolic automaton that is a PAC acceptor of the target language L.

Algorithm 1 and all procedures that appear in the present paper have been implemented
in Python. In particular, methods sample(Σ, k) in Procedure 3 returns a sample of size
k chosen uniformly from Σ. Likewise, method select(·) uses a uniform distribution
over the set of evidences to choose one representative. The split method, used in Pro-
cedure 5, returns the middle point of the interval. For the case of Boolean alphabets the
UPDATE method in Procedure 7 uses the CART algorithm [8] with information gain as
the purity measure.

For theoretical results, it is sufficient that the same distribution is assumed for the
random queries and the error estimation. For the implementation of random queries and
for the empirical evaluation we have to be more concrete. The distribution D that we
use is a composition of two distributions: a log-normal distribution, used to select the
length of the word, and a uniform distribution over the alphabet, used to choose a letter
at each position in the word. The log-normal distribution is chosen so that shorter words
are preferred over longer ones.

Once an automaton A has been learned by our algorithm, its quality can be eval-
uated as follows. When we have an explicit description of the automaton for the tar-
get language L, we can build its product with A to accept the symmetric difference
L′ = L⊕LA. Then for any given k, using techniques similar to the volume computation
applied by [2] to timed automata, we can compute the relative volume |L′ ∩Σk|/|Σ|k
which gives the probability of error over words of length k. Since the probability be-
comes negligible beyond some k, this is sufficient to obtain a good approximation of the
error. Note that we can use volume because we assume a uniform distribution over Σ.
Other distributions can be handled by more complex integration. It is worth mentioning
the result of [11] concerning the influence of noise on automata which states that for

certain types of automata, even a very small difference in the transition probabilities be-
tween a pair of automata may lead to a divergence in their long run behavior as k →∞.
The use of a log-normal distributions protects our evaluation from this effect. An alter-
native way to evaluate the quality of the approximation, which can be applied also when
the target language is represented as a black box, is just to draw words according to D
and compare their classification by the target and learned languages.

We have compared our algorithm with three non-symbolic algorithms due to [1],
[22] and [26] using the same oracle for membership and equivalence queries. All algo-
rithms were tested on the same target languages defined over a numerical input alphabet
Σ, intersected with N to allow the concrete enumerative algorithms to run as well. We
evaluated the behavior of the algorithm in two ways. The first was to keep the structure
of the automaton fixed while increasing the size of the alphabet. The second kept the
alphabet size fixed and varied the number of states in the (randomly generated) target
automaton. Naturally, the symbolic algorithm admits the most modest growth in the
total number of membership queries including queries used for testing, in both evalua-
tion scenarios. Not surprisingly, it generates more hypotheses and testing queries, and
obtains more counter-examples. Similar results were observed in a case study where
the target languages were sets of valid passwords. Here too, the symbolic algorithm
required less MQ’s on average than any other method in all types of passwords, and the
difference increases as the passwords rules become more complicated and the automata
require more states and transitions. It is remarkable, however, that the symbolic algo-
rithm managed to discover more states in general. More experimental results will be
reported elsewhere.

7 Conclusions and Future Work

We presented an algorithmic scheme for learning languages over large alphabets. The
algorithm targets languages acceptable by symbolic automata with a modest number
of states and transitions, guarded by simple constraints on the alphabet, which can be
arbitrarily large. The new algorithm replaces the helpful teacher of the L∗ algorithm by
random testing and is thus applicable to more realistic settings. The price of this modi-
fication is in the probabilistic relaxation of the correctness criterion and in a more gen-
eral procedure for handling counter-examples and refining the alphabet partitions. This
generality pays off as attested by the easy adaptation of the algorithm to the Boolean
domain.

Concerning related work, ideas similar to ours have been suggested and explored
in a series of papers [4,16,17] that also adapt automaton learning to large alphabets.
While some design decisions are similar, for example, to use distinct symbolic alpha-
bets at every state [17], our approach is more rigorous in the way it treats evidence
incompatibility and the modification of partition boundaries. We do not consider each
modification as a partition refinement, but rather try first just to modify the boundaries
without adding a new symbol. As a result, we have the following property whenever we
conclude the treatment of evidence incompatibility: the mapping of concrete letters to
symbols is always sample-compatible and is well-defined for the whole alphabet, which
does not seem to be the case for the scheme presented in [4], which has the potential of

generating new symbols indefinitely, or the case in [16,17], which results in a partially-
defined hypothesis. Recently, new results presented in [12] in the context of learning
symbolic automata give a more general justification for a learning scheme like ours by
proving that learnability is closed under product and disjoint union.

Our work on abstract automata should not be confused with work dealing with
register automata, another extension of automata to infinite alphabets [18,3,15]. These
are automata augmented with additional variables that can store some input letters and
newly-read letters. Newly-read letters can be compared with the registers but typically
not with constants in the domain. Such automata can express, for example, the require-
ment that the password at login is the same as the password at sign-up. In the most recent
work on learning register automata [9], a strong tree oracle is used. Given a concrete
prefix and a symbolic prefix, the teacher returns a special type of a register automaton
that has a tree structure. This fills in the entries of the observation table and provides the
information about the registers and guards in the automaton. This algorithm is efficient
only in the presence of shortest counter-examples and, in addition, when applied on a
theory of inequalities and extended to use constants, these constants should be known
in advance.

We believe that our comprehensive framework for learning languages over large
alphabets is unique in employing all the following features:

1. It is based on a clean and general definition of the relation between the concrete
and symbolic alphabets;

2. It can work without a helpful teacher and replace its counter-examples by random
sampling, resulting in counter-examples which are not assumed to be minimal (nei-
ther in length nor in lexicographic order);

3. It employs an adaptation of the breakpoint method to analyze in an efficient way
the information provided by counter-examples;

4. It treats the modification of alphabet partitions in a rigorous way which guarantees
that no superfluous symbols are introduced;

5. It is modular, separating the general aspects from those that are alphabet specific,
thus providing for a relatively easy adaptation to new alphabets.

A natural future extension of the algorithm is to consider alphabets which are subsets
of Nn and Rn. Preliminary work in this direction has been reported in [23] but used
a very restricted type of monotone partitions in order to keep the notion of a minimal
counter-example meaningful. Now that we are not restricted to such counter-examples
we can use more general partitions, represented by regression trees, a generalization of
decision trees to numerical domains.

We are currently conducting more experiments to assess the scalability of our al-
gorithms, mostly in the Boolean domain. These are mostly synthetic examples which
are intended to confirm the sensitivity of the algorithm to the complexity of the par-
titions (the number of blocks and the number of variables that are involved on their
definition, rather on the total number of variables which determines the alphabet size.
Once the scalability issue is resolved, it remains to find a convincing class of real-world
applications that benefits from such algorithms. In the numerical domain we are rather
convinced in the existence of mechanisms, say, in cellular information processing in

Biology [7] where discrete transitions are taken based on threshold crossings of con-
tinuous variables without remembering their values. Likewise, in the Boolean domain,
we have to find applications in the specification of large complex systems with many
components (digital circuit, distributed multi-agent systems). Hopefully such specifica-
tions could be expressible by symbolic automata where the complexity can be confined
to the alphabet partitions and need not proliferate into states and cause explosion.

References

1. Dana Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75(2):87–106, 1987.

2. Eugene Asarin, Nicolas Basset, and Aldric Degorre. Entropy of regular timed languages.
Information and Computation, 241:142 – 176, 2015.

3. Michael Benedikt, Clemens Ley, and Gabriele Puppis. What you must remember when
processing data words. In AMW, volume 619 of CEUR Workshop Proceedings, 2010.

4. Therese Berg, Bengt Jonsson, and Harald Raffelt. Regular inference for state machines with
parameters. In FASE, volume 3922 of LNCS, pages 107–121. Springer, 2006.

5. Therese Berg and Harald Raffelt. Model checking. In Model-Based Testing of Reactive
Systems, volume 3472 of LNCS, pages 557–603. Springer, 2004.

6. Matko Botinčan and Domagoj Babić. Sigma*: Symbolic learning of Input-Output specifica-
tions. In POPL, pages 443–456. ACM, 2013.

7. Dennis Bray. Wetware: a computer in every living cell. Yale University Press, 2009.
8. Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classification and

regression trees. CRC press, 1984.
9. Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Steffen. Active learning for extended

finite state machines. Formal Aspects of Computing, 28(2):233–263, 2016.
10. Loris D’Antoni and Margus Veanes. Minimization of symbolic automata. In POPL, pages

541–554. ACM, 2014.
11. Bernard Delyon and Oded Maler. On the effects of noise and speed on computations. Theo-

retical Computer Science, 129(2):279–291, 1994.
12. Samuel Drews and Loris DAntoni. Learning symbolic automata. In TACAS, pages 173–189.

Springer, 2017.
13. E. Mark Gold. System identification via state characterization. Automatica, 8(5):621–636,

1972.
14. John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory,

Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2006.

15. Falk Howar, Bernhard Steffen, Bengt Jonsson, and Sofia Cassel. Inferring canonical register
automata. In VMCAI, volume 7148 of LNCS, pages 251–266. Springer, 2012.

16. Falk Howar, Bernhard Steffen, and Maik Merten. Automata learning with automated al-
phabet abstraction refinement. In VMCAI, volume 6538 of LNCS, pages 263–277. Springer,
2011.

17. Malte Isberner, Falk Howar, and Bernhard Steffen. Inferring automata with state-local alpha-
bet abstractions. In NASA Formal Methods, volume 7871 of LNCS, pages 124–138. Springer,
2013.

18. Michael Kaminski and Nissim Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329–363, 1994.

19. Harry R Lewis and Christos H Papadimitriou. Elements of the Theory of Computation.
Prentice Hall PTR, 1997.

20. Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals. In
FORMATS/FTRTFT, pages 152–166, 2004.

21. Oded Maler, Dejan Nickovic, and Amir Pnueli. Checking temporal properties of discrete,
timed and continuous behaviors. In Pillars of computer science, pages 475–505. Springer,
2008.

22. Oded Maler and Amir Pnueli. On the learnability of infinitary regular sets. Information and
Computation, 118(2):316–326, 1995.

23. Irini-Eleftheria Mens and Oded Maler. Learning regular languages over large ordered alpha-
bets. Logical Methods in Computer Science (LMCS), 11(3), 2015.

24. Anil Nerode. Linear automaton transformations. Proceedings of the American Mathematical
Society, 9(4):541–544, 1958.

25. J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.
26. Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using homing se-

quences. Information and Computation, 103(2):299–347, 1993.
27. Michael Sipser. Introduction to the Theory of Computation. PWS, Boston, 1997.
28. Paul E Utgoff. Incremental induction of decision trees. Machine learning, 4(2):161–186,

1989.
29. Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–

1142, 1984.
30. Gertjan Van Noord and Dale Gerdemann. Finite state transducers with predicates and iden-

tities. Grammars, 4(3):263–286, 2001.
31. Margus Veanes. Applications of symbolic finite automata. In International Conference on

Implementation and Application of Automata, pages 16–23. Springer, 2013.
32. Margus Veanes, Nikolaj Bjørner, and Leonardo De Moura. Symbolic automata constraint

solving. In LPAR, pages 640–654. Springer, 2010.
33. Margus Veanes, Pieter Hooimeijer, Benjamin Livshits, David Molnar, and Nikolaj Björner.

Symbolic finite state transducers: algorithms and applications. In POPL, pages 137–150.
ACM, 2012.

	A Generic Algorithm for Learning Symbolic Automata from Membership Queries

