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Abstract. The European project Crisys" aims at improving and formalizing the 
actual methods, techniques and tools used in the industries concerned with 
process control, in order to support a global system approach when developing 
Distributed Control System. This paper focuses on the main result of the Crisys 
project: the quasi-synchronous approach which is based on the synchronous 
language Lustre-Scade. The quasi-synchronous methodology provides (1) a 
complete framework consistent with usual engineering practices for both 
programming, simulating, testing a distributed system and (2) a robustness 
properties checker so as to ensure the behavior preservation during the 
distributed implementation. Both elements are based on a solid theoretical basis.  

1 Introduction 

Developing Distributed Control System is a major industrial concern since those 
systems are more and more complex and involved in many safety critical application 
field. The distribution feature of these systems is not without consequences on both 
the development process and the exploitation of the system: the global behavior of the 
system is more complex since distribution introduces new operating modes —
abnormal modes, when a computing site is down for instance— and questions about 
the synchronization of the different computing sites. Distributed Control Systems 
(DCS) are hard to design, debug, test and formally verify. These difficulties are 
closely related to a lack of global vision at design time. Moreover, the implementation 
would be eased using automatic methods of distribution which guarantee that the 
behavior of the whole system is preserved. 

To face up to these difficulties engineers have developed solutions of their own. 
Their solutions are essentially pragmatic and based on engineering rules. But a 
theoretical basis is lacking if we want formally to understand, design and verify 
Distributed Control Systems when applied to critical fields. 

The European project Crisys originates from this industrial need. The overall goal 
of the Crisys project is to improve, unify and formalize the actual methods, techniques 
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and tools used in the industries concerned with the process control, in order to support 
a global system approach when developing Distributed Control System. This paper 
focuses on the main result of the Crisys project, the quasi-synchronous approach 
which is based on the synchronous language Lustre [1] and the associated tool Scade 
[2]. This approach is dedicated to a special class of DCS: in the Control field, most of 
DCS are organized as several periodic processes, with nearly the same period, but 
without common clock, and which communicate by means of shared memory through 
serial links or field busses. This class of DCS is quite clearly an important one in the 
field and thus deserves special attention. 

The paper is organized as follows: section 2 presents an overview of the Crisys 
methodology based on the quasi-synchronous approach. Then, section 3 briefly 
describe the Lustre-Scade tool-set for designing distributed systems. In section 4, we 
focus on the robustness properties which guarantee that the centralized behavior of 
the system is preserved when distributing the system according to the chosen 
architecture. Section 4 describes the application of the Crisys methodology to an 
industrial case study. Finally, section 6 concludes with future work.  

2 Overview 

2.1 Industrial Practices  

The Lustre-Scade language is largely and successfully applied to the development of 
distributed control systems [3] [4] [5]. But so far, the engineers make use of Lustre-
Scade to design single components of a DCS. Schematically, the industrial software 
development proceeds as follows (Fig. 1):  
# The specification phase involves both the functional description  i.e. the 

behavior of the whole system independently of its architecture  and the 
distribution protocol which specifies the physical implantation of the functional 
components. So far, the solution to design robust distributed systems  i.e. 
whose functional behavior is preserved when distributing it   are pragmatic and 
based on the engineers know-how.  

# Each component is developed separately with Lustre-Scade. The global view of 
the system is no longer preserved. Moreover, there is usually a breaking in the 
tool chain between this step and the previous one.  

# Finally, pieces of code resulting from the previous step are plug into the physical 
target and connected by means of network (e.g. [6]).   

The goal of the Crisys project is to improve this development process based on 
Lustre-Scade, by formalizing the industrial practices and providing support of tools.  

2.2 The CRISYS Methodology 

The methodology defined within the Crisys project is shown on Fig. 2. 
1. From the functional specification, a Lustre-Scade model of the global system 

is developed. At this stage, this functional model can be simulated, formally 
verified and tested.  
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2. The second step consists in completing the functional model with the 
distribution protocol. Then, the resulting architecture is checked by means of 
the robustness properties analyzer. This tool aims at guaranteeing that the 
behavior of the distributed system is consistent with the behavior of the 
centralized one. The analysis is based on three robustness properties: stability, 
order-insensitivity, and confluence (§4).  

3. A distribution scheme being acceptable, it is possible to test, simulate, 
formally verify the distributed system in a realistic way by means of the 
environment emulation library. It is important to note that the same tools 
applied to the centralized model and to the distributed one allowing the 
comparison of their behavior.  

4. Finally, the code corresponding to each component is generated together with 
some communication elements provided by the communication library for 
target. 

An application of this methodology is presented in section 5.  
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Fig. 1. The industrial software development Fig. 2. The CRISYS methodology 

 
The valuable consequences of the Crisys methodology are: 
# The global view of the distributed system is preserved as long as possible during 

design. It can be simulated and tested as a whole.  
# The robustness properties analyzer based on theoretical foundations formalizes 

the pragmatic and intuitive solutions achieved by engineers to design robust 
DCS.  
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# The same framework can be used for programming, simulating, testing and 
proving properties of a distributed system. This result makes the comparison 
between the behavior of the centralized and the distributed system possible. 

The Crisys work has first focused on the use of Lustre-Scade for designing a DCS as 
a whole, i.e. for describing the Scade distributed model (§3.3). Then, the second step 
has concentrated on the robustness properties analysis (§4).  

3 Background 

3.1 The Lustre Language and the Scade Tool  

Lustre [1] is a synchronous data-flow language. Each expression or variable denotes a 
flow, i.e., a function of discrete time. The Lustre equation x=2*y+z means:  “at each 
instant t, x(t)=2*y(t)+z(t)”. Lustre provides a special operator “previous” to express 
delays: “y=pre(x)” means that at each time t≠0 we have y(t)=x(t-1), while the value of 
y at time 0 is undefined. To initialize variables, Lustre provides the “followed by” 
operator: “z=x→y” means that z(0)=x(0) and z(t)=y(t) for each time t≠0. 

A Lustre program is structured into nodes. A node contains a set of equations and 
can be elsewhere used in expressions. It may be that slow and fast processes coexist 
in a given application. A sampling (or filtering operator) when allows fast processes 
to communicate with slower ones. Conversely, a holding mechanism, current allows 
slow processes to communicate with faster ones.  

Scade1 (formerly SAGA [2]) is a software development environment based on 
Lustre, which provides a graphic editor. Its main features are the top-down design 
method, the data-flow network interpretation, and the notion of activation condition.  

An example of Scade diagram is given on Fig. 3. CONTROL is a cyclic program 
which reads sensors and controls actuators. Its inputs and outputs are sampled 
according to the boolean condition clock: intuitively, if clock is true then CONTROL 
computes its outputs, else the outputs are maintained to their previous values. Default 
values are required in case clock is false at the very first cycle.  

C O N T R O L

clock

(sensors) (actuators)

(init ial  values)

O u t

init

In

 

Fig. 3. Example of Scade diagram 
 
The Scade environment includes an automatic C code generator and a simulator. It 

is also connected to several tools (§3.2).  

                                                           
1 Scade is commercialised by the Telelogic company.  
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3.2 The Lustre-Scade Tool-Set  

Several tools have been developed to improve and facilitate the design and the 
verification of Lustre-Scade programs. For example, Lesar [7] and Lucifer2 [8] for 
formal verification, Matou for describing Mode-Automata [9], Lurette [10] for 
automatic test cases generation. Scade can be also connected to ISG2 [11] for 
performance validation.  

Let us concentrate on the automatic generation of test sequences with Lurette. The 
automatic generation of test cases follows a black box approach, since the program is 
not supposed to be fully known. It focuses on two points [10]: (1) generating relevant 
inputs, with respect to some knowledge about the environment in which the system is 
intended to run; (2) checking the correctness of the test results, according to the 
expected behavior of the system. The Lustre synchronous observers3 describing 
assumptions on the environment are used to produce realistic inputs; synchronous 
observers describing the properties that the system should satisfy (§2.3.1) are used as 
an oracle, i.e. to check the correctness of the test results. Then, the method consists in 
randomly generating inputs satisfying the assumptions on the environment [10].  

The Lurette tool takes as input both observers —one describing the assumptions 
and one describing the properties— written in Lustre-Scade, and two parameters: the 
number of test sequences and the maximum length of the sequences. An 
experimentation of Lurette is presented in section 5. 

3.3 The Quasi-Synchronous Approach 

The above language and tools accurately match the needs of single cyclic 
components. But how can they be used to design a distributed system as a whole? The 
first step of the Crisys work aimed at formalizing the description of a DCS by means 
of the Lustre-Scade language [13].  

First let us remind ourselves the main features of the quasi-synchronous class of 
DCS: process behave periodically, they all have nearly the same period but no 
common clock and they communicate by means of shared memory. These features 
can be formalized by means of the Lustre-Scade primitives (Fig. 4): 
# Each processes has got its own clock represented by an activation condition. For 

example, on Figure3, process S1 is activated each time its clock c1 is true.   
# Shared memories are modelled through both the activation condition and delays 

(pre, ->).  
 
Finally hypothesis on clocks can be implemented through a Lustre-Scade program: 
the quasi-synchronous program generates clocks with nearly the same period (§5.3.3, 
Fig. 12) This is one of the component of the environment emulation library (Fig. 2). 

                                                           
2 Partly developed within the framework of the Crisys project.  
3 Synchronous observers are acceptors of sequences [12].  
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Fig. 4. A distributed system block diagram 

4 Towards a Robust Distribution 

Given the Lustre-Scade model of the distributed system, which additional checks 
have to be performed so as to ensure the behavior preservation during the 
implementation? Three constraints  called robustness properties  have been 
identified in order to guarantee that the behavior of the distributed system is the same 
as the centralized one. These checks are implemented through a tool  the robustness 
properties analyzer  which is one of the key element of the Crisys methodology.  
In this chapter, we present in an informal way the three robustness properties. The 
theoretical details can be found in [14] [15] [16].  

4.1 Stability 

It is likely indeed that distributed programs will have to run faster in order to produce 
behaviors comparable to those of centralized programs. But running a synchronous 
program faster on the same inputs will in general deeply modify its behavior. This is 
why we may expect it easier to distribute stable systems rather than unstable ones, 
stable systems being those that can run faster without too much changing their 
behaviors.  

In other words, a stable system will stabilize when the inputs do not change. 
Figure 5 gives an example of non-stable system: when u remains true, the output x is 
indefinitely oscillating between true and false. Let us now suppose a redundant 
system involving two sub-systems defined by the equation of Figure 3. The oscillation 
made the comparison of both results meaningless.  
 

         

 u        
x = u and (false -> not pre x) ;         
 x        
         

Fig. 5 . Example of a non stable system 
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4.2 Order Insensitivity  

Another feature of distributed systems is that their components are not computed in a 
parallel synchronous fashion but in a sequential (chaotic ordered) way. A system is 
order-insensitive if its behavior does not depend on the order computations are 
performed. Figure 6 gives an example of an order sensitive system. As regards the 
centralized behavior (Fig 6.a), the output y reaches the true value because the input u 
is true and the previous value of x is false. Let us now assume that computations of x 
and y are performed on two different processors running with different time cycles. If 
the x value is computed and sent to the other processor before y is computed (Fig. 
6.b), then y can no more reach the true value because its calculation refers to the latest 
value of x which is now true.  
 

 
   x = u or (false -> pre x) ; 
   y = u and (false -> pre not x) or (false -> pre y) 
 

u      u      

            

x      x      
            
y      y      
            

(a)Centralized behavior (b)Distributed behavior 

Fig. 6 . Example of an order sensitive system 

A stronger property called state decoupling [14] is satisfied when each component 
depends only on its internal state.  

4.3 Confluence 

Another desirable property for distribution is confluence. It means that input changes 
can be arbitrarily composed while yielding the same final state. The order the inputs 
are read does not have to imply different behaviors. An example of a non confluent 
system is given on Figure 7. The outputs x and y are obviously equal (when they are 
computed in a centralized manner). But if the inputs u and v are sampled according to 
the dotted line then x and y differ from each other. The centralized behavior is no 
longer preserved.  
 

        

x = u and not v or (false -> pre x) u       

        

y = u and not v or (false -> pre y)  v       

        

Fig. 7 . Example of a non confluent system 
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However, confluence is a very restricted property and we cannot limit ourselves to 
distributing confluent functions. We may need to strengthen this definition by 
considering local confluence [14].  

5 Case Study 

The Crisys methodology (§2.2) is now illustrated on a real case study from Schneider. 
Through this experimentation, our aim is to check the feasibility and the benefits of 
the quasi-synchronous approach based on Lustre-Scade. 

5.1 Introduction 

The Water Level Control System (WLCS) is a system controlling the water level in a 
steam generator. This system is aimed to be implemented in power plants (nuclear or 
thermal). Basically, the WLCS operates on two valves so that the water level is 
unchanged. Several sensors are present all along the steam generator to measure the 
water level, the flow, the temperature and the thermal power. 

The WLCS is a typical loop system. It is made of three steps (Fig. 8): 
# the water level control loop that provides a water flow set point, 
# the water flow control loop that provides the valves position set point, 
# the valves position control loop that controls the valves. 

Fig. 8. WLCS functional view 

 
One of the main requirement is that the valves have to be controlled in a smoothly 

way in order to avoid discrepancies. During the experimentation, a particular attention 
has been taken on the switching between the automatic and the manual mode, since 
this change may imply discrepancies. 
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The WLCS has been developed with SCADE using the CRISYS methodology 
(Fig. 2). The experimentation has been conducted through different steps: 
# At first, the WLCS has been designed and simulated in the centralized way. 
# Then a distributed architecture has been proposed and analyzed. 
# Finally, the distributed system has been simulated and its behavior has been 

compared to the centralized one. 

5.2 The Centralized System: Design and Simulation 

The centralized system has been designed with the SCADE tool according to the 
functional view showed on Figure 8. Moreover, in order to simulate the system as if it 
was physically implemented, the behavior of the different sensors has been designed, 
i.e. the system is simulated in closed loop (Fig. 9). 

The automatic generation of test sequences, Lurette, has been used to simulate the 
system. 
 

 
 
 
 

sensors

WLCSinputs valves
opening

 

 

Low flow valve opening (%) 

 

Fig. 9. The closed loop system Fig. 10. Example of result  

 
An example of results is given on Figure 10. We can see that after the initialization 

phase, the valve opening stabilizes at 25 % after 2000 cycles (i.e. 500 seconds). 

5.3 The Distributed System 

Architecture analysis. The architecture of the system has been defined by the client 
for performance reasons. The system is made of two sub-systems which communicate 
with each other (Fig. 8): 
# the first sub-system involves the water level control loop and the water flow 

control loop, 
# the second sub-system involves the valves position control loop. 
In order to guarantee that the behavior of the distributed system is preserved, this 
architecture has been analyzed with the robustness properties analyzer (see §4.2). The 
result of the tool is that the WLCS is stable, order-insensitive and confluent as far as 
the proposed architecture is concerned. 
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Scade design. According to the quasi-synchronous approach (§3.3), each sub-system 
has got its own clock representing its own cycle. The WLCS is composed of two sub-
systems which have different clocks (Fig. 11): 
# the water level control loop and the water flow control loop have the same clock 

(CLK1), 
# the water position control loop has a different clock (CLK2). 

 
 

 

Fig. 11. SCADE distributed model  

Simulation. The goal of the simulation is to check the behavior of the distributed 
system in a realistic way. Clocks are generated according to the quasi-synchronous 
hypothesis (i.e. periodic real time clocks of each process are subject to drifts) by 
means of the environment emulation library. An example of the clocks used for the 
two WLCS’s sub-systems is given on Figure 12. These clocks are pessimistic since 
data can be lost. 

CLK1

CLK2
  

Fig. 12. Quasi-synchronous clocks  
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5.4 Results and Comparisons 

 

 

Fig. 13. Centralized system Fig. 14. Distributed system 

 
The behaviors of the centralized system (Fig. 13) and the distributed system (Fig. 14) 
are similar: first, the low flow valve opens up to 30% and then stabilizes around 25%. 
In manual mode, the operator increases the opening set point. When coming back to 
the automatic mode, the valve opening oscillates and then stabilizes again at 25%. 
The control is performed in a smoothly way as required for the centralized and the 
distributed systems. 

As regards the distributed case, we can note that the time response is slower due to 
the communication delays between the two sub-systems during the simulation. 

6 Conclusion and Future Work 

The experimentation shows the feasibility and the benefit of the quasi-synchronous 
methodology. An additional experimentation on a case study from the aircraft 
industry enforces this conclusion. The quasi-synchronous methodology provides: 
• a global view of the Distributed Control System which can be designed and 

simulated within the same environment, in consistency with the usual 
engineering practices;  

• an automatic robustness analyser which aims at guaranteeing that the behaviour 
will be preserved when distributing the system according to the target 
architecture.  

These two points are key elements to reduce the industrial development costs.  
The next steps of the work are twofold: 

• some tools need to be improved so that they can easily be integrated in the 
industrial development process;  

• the experimentation on the Schneider case study will be continued untill the final 
implementation of the generated code.  

Low flow valve opening (%) 

manual mode manual mode 

Low flow valve opening (%) 
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