	~	
	OM.	•
Τ.	O 1 1 1	•

Prénom:

INFO 3 - 2019-20 - Mathématiques Discrètes

Corrigé du contrôle du 13 novembre 2019

$$-\mathbf{1}$$
 - (3 points).

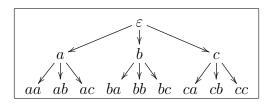
Soit $X = \{a, b, c\}$ et soit $Y = X^*$ l'ensemble des mots sur X. Remplir le tableau suivant. Dans la case de la ligne p et de la colonne i, \boxed{O} signifie que i vérifie p, \boxed{N} signifie que i ne vérifie pas p, et $\boxed{\quad}$ signifie que vous ne savez pas répondre.

	Ø	ε	$\{\varepsilon\}$	a	ab	aa	{ <i>a</i> }	ab	$ \{a,b\} $
$\in X$	N	N	N	O	N	N	N	N	N
$\in Y$	N	О	N	O	O	O	N	N	N
$\subseteq X$	0	N	N	N	N	N	О	N	О
$\subseteq Y$	0	N	O	N	N	N	О	0	0

-2-(3 points)

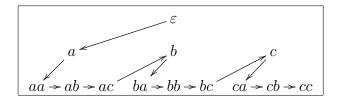
Dans cet exercice, on considère tous les mots de longueur ≤ 2 sur l'alphabet $\{a, b, c\}$.

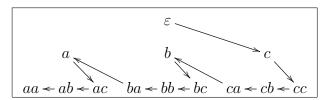
a. Dessinez une flèche $u \to v$ si et seulement si v est un successeur de u (c'est-à-dire : si et seulement si v est juste après u) pour l'ordre préfixe :



b. Dessinez une flèche $u \to v$ si et seulement si v est un successeur de u (c'est-à-dire : si et seulement si v est juste après u) pour l'ordre lexicographique.

Dans le cadre de gauche, l'ordre sur l'alphabet est a < b < c, et dans le cadre de droite on considère que c < b < a.





-3-(2 points)

Sur l'alphabet $A = \{a, b, \dots, y, z\}$ on considère le mot errer.

Combien a-t-il de préfixes? de suffixes? de facteurs?

6 préfixes et 6 suffixes (car mot de longueur 5).

12 facteurs (ce qui n'a rien à voir avec 6+6) : ε , e, r, er, rr, re, err, rre, erre, rrer, errer.

- $-4 (4 \text{ points}) \text{ Soit } X = \{a, e, i, o, u\}.$
 - **a.** Combien y a-t-il de mots de longueur 4 sur X? 5^4
 - **b.** Combien y a-t-il de mots de longueur 4 sur X contenant au moins un o? $5^4 4^4$ (tous les mots de longueur 4 sauf ceux qui n'ont aucun o)
 - **c.** Combien y a-t-il de mots de longueur $4 \operatorname{sur} X$ contenant au moins une fois le facteur ou?

 $3*5^2-1$ (trois positions pour le facteur, 5^2 choix pour les lettres restantes, on enlève le doublon ouou)

- **d.** Combien y a-t-il de parties à 4 éléments de X? $\boxed{5}$
- e. Combien y a-t-il de parties à 4 éléments de X contenant au moins un o et au moins un u? $\boxed{3}$
- **f.** Combien y a-t-il de parties à 4 éléments de X contenant au moins deux o et au moins deux u? $\boxed{0}$
- $-\mathbf{5} (3 \ points).$

Soit n un entier strictement positif. On note t(n) la taille en binaire de n, c'est-à-dire le nombre de bits dans l'écriture de n en base 2.

a. Rappeler (sans justification) comment calculer (approximativement) t(n) à partir de n.

Un nombre dont la taille est t(n) en base 2 vaut environ $n \simeq 2^{t(n)}$. Réciproquement, $t(n) \simeq \log_2 n$.

b. Supposons que $n = p \times q$ pour deux entiers strictement positifs p et q. Exprimer t(n) (approximativement) en fonction de t(p) et t(q).

 $t(p \times q) \simeq t(p) \times t(q)$ (propriété du logarithme)

c. Supposons que n = p + q pour deux entiers strictement positifs p et q. Exprimer t(n) (approximativement) en fonction de t(p) et t(q).

 $t(p+q) \simeq max(t(p),t(q))$ (le résultat est de la même taille que le plus grand des nombres)

 $-\mathbf{6} - (3 points).$

Soit $f: \mathbb{Z} \to \mathbb{N}$ la fonction définie par f(n) = |n| (valeur absolue de n).

a. Est-ce que f est une injection?

Non,
$$f(-1) = f(1) = 1$$

b. Est-ce que f est une surjection?

Oui, pour tout $n \in \mathbb{N}$, f(n) = n. Tout entier positif a au moins un antécédent : lui-même.

 \mathbf{c} . Est-ce que f est une bijection? Si oui, trouvez sa fonction réciproque.

Non car ce n'est pas une injection.

d. Est-ce que f est un homomorphisme de monoïdes de (\mathbb{Z}, \times) vers (\mathbb{N}, \times) ?

Oui car
$$f(1) = 1$$
 et pour tous $n, m \in \mathbb{N}$, $f(n \times m) = |n \times m| = |n| \times |m| = f(n) \times f(m)$.

-7-(3 points). On considère deux codes binaires alphabétiques sur l'alphabet $\{a,b\}$:

Le code f est défini par f(a) = 0, f(b) = 10.

Le code g est défini par g(a) = 0, g(b) = 01.

a. Calculer f(aab) et $f(\varepsilon)$.

$$f(aab) = 0010 \quad f(\varepsilon) = \varepsilon$$

Est-ce que f est un code préfixe?

oui, aucun symbole n'a pour code un préfixe d'un autre symbole.

Est-ce que la fonction f est injective?

Oui car c'est un code préfixe.

b. Calculer g(aab) et g(bb).

$$g(aab) = 0001 \quad g(bb) = 0101$$

Est-ce que g est un code préfixe?

Non, car
$$g(a) \sqsubseteq g(b)$$

Est-ce que la fonction g est injective?

Oui, il suffit par exemple de décoder par la droite :

- un 0 est forcément le code d'un a
- un 1 est forcément précédé d'un 0 et ensemble ils codent un \boldsymbol{b}