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La dernière fois

I Codage
I Entropie
I Algorithme de Huffman

Aujourd’hui

I Rappels sur les graphes
I Aspects algorithmiques
I Problèmes d’optimisation
I Arbre couvrant
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Algorithmique et Analyse d’Algorithmes
Graphes

Définitions, notations

Notions de base

Graphe
Un graphe est un couple G = (X , R) :

I X est l’ensemble des sommets
I R est l’ensemble des arcs : c’est une relation binaire sur X (ensemble

de couples de X ).

Arc
Un arc est un couple de sommets
(x , y).

I x est appelé origine de l’arc ;
I y est appelé extrémité.

Sur l’exemple : R = {(B, A), (A, C), (C , D), (D, E ), (D, F ), (D, I), . . .}
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Algorithmique et Analyse d’Algorithmes
Graphes

Définitions, notations

Voisinages

Successeur
On appelle successeur d’un sommet x tout
sommet y tel que (x , y) est un arc du
graphe.

Degré d’un sommet
Le degré d’un sommet x est le nombre d’arcs dont x est origine ou
extrémité :

I le demi-degré extérieur est le nombre d’arcs dont x est origine ;
I le demi-degré intérieur est le nombre d’arcs dont x est extrémité.

Degré d’un graphe
Le degré d’un graphe est le maximum des degrés de ses sommets.
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Algorithmique et Analyse d’Algorithmes
Graphes

Définitions, notations

Graphe non orienté

Graphe non orienté
Si R est symétrique
((x , y) ∈ R ⇔ (y , x) ∈ R) alors :

I le graphe est dit non orienté ;
I on appelle arête un couple de

sommets, qui correspond à deux arcs.

Dans un graphe non orienté :
I on parle de voisin plutôt que de successeur ;
I on ne compte bien sûr qu’une fois chaque arête dans le degré.

Dans toute la suite, on ne considère que des graphes non orientés, mais
la plupart des notions s’adaptent facilement.
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Algorithmique et Analyse d’Algorithmes
Graphes

Définitions, notations

Étiquettes, pondération

Dans un graphe il est possible d’étiqueter :
I les sommets
I et / ou les arêtes

au moyen d’une fonction de X (respectivement de R) dans un ensemble
d’étiquettes donné.

Si les étiquettes sont à valeur numérique (entier, réel...) elles peuvent
représenter un poids (coût, valeur...) pour les sommets ou les arêtes : on
parle alors de graphe pondéré.
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Algorithmique et Analyse d’Algorithmes
Graphes

Définitions, notations

Applications
I Réseau (routier, de communication)

I Calculer un itinéraire
I Identifier les goulots d’étranglement

I Conflits
I Chaque sommet représente un processus, une activité...
I Chaque arête représente une compétition pour une ressource
I Déterminer le nombre de ressources nécessaires, ou les activités

compatibles
I Dépendances (avec un graphe orienté)

I Chaque sommet représente une tâche
I L’origine de chaque arc doit être réalisée avant son extrémité
I Détecter une incohérence, calculer un ordre approprié

I . . .

De façon générale toute relation, orientée ou non, se traduit par un
graphe qui permet ensuite de raisonner algorithmiquement sur cette
relation.

9 / 39



Algorithmique et Analyse d’Algorithmes
Graphes

Définitions, notations

Applications
I Réseau (routier, de communication)

I Calculer un itinéraire
I Identifier les goulots d’étranglement

I Conflits
I Chaque sommet représente un processus, une activité...
I Chaque arête représente une compétition pour une ressource
I Déterminer le nombre de ressources nécessaires, ou les activités

compatibles

I Dépendances (avec un graphe orienté)
I Chaque sommet représente une tâche
I L’origine de chaque arc doit être réalisée avant son extrémité
I Détecter une incohérence, calculer un ordre approprié

I . . .

De façon générale toute relation, orientée ou non, se traduit par un
graphe qui permet ensuite de raisonner algorithmiquement sur cette
relation.

9 / 39



Algorithmique et Analyse d’Algorithmes
Graphes

Définitions, notations

Applications
I Réseau (routier, de communication)

I Calculer un itinéraire
I Identifier les goulots d’étranglement

I Conflits
I Chaque sommet représente un processus, une activité...
I Chaque arête représente une compétition pour une ressource
I Déterminer le nombre de ressources nécessaires, ou les activités

compatibles
I Dépendances (avec un graphe orienté)

I Chaque sommet représente une tâche
I L’origine de chaque arc doit être réalisée avant son extrémité
I Détecter une incohérence, calculer un ordre approprié

I . . .

De façon générale toute relation, orientée ou non, se traduit par un
graphe qui permet ensuite de raisonner algorithmiquement sur cette
relation.

9 / 39



Algorithmique et Analyse d’Algorithmes
Graphes

Définitions, notations

Applications
I Réseau (routier, de communication)

I Calculer un itinéraire
I Identifier les goulots d’étranglement

I Conflits
I Chaque sommet représente un processus, une activité...
I Chaque arête représente une compétition pour une ressource
I Déterminer le nombre de ressources nécessaires, ou les activités

compatibles
I Dépendances (avec un graphe orienté)

I Chaque sommet représente une tâche
I L’origine de chaque arc doit être réalisée avant son extrémité
I Détecter une incohérence, calculer un ordre approprié

I . . .

De façon générale toute relation, orientée ou non, se traduit par un
graphe qui permet ensuite de raisonner algorithmiquement sur cette
relation.

9 / 39



Algorithmique et Analyse d’Algorithmes
Graphes

Manipulation algorithmique

Plan

Graphes
Définitions, notations
Manipulation algorithmique
Complexité des algorithmes de graphes

Problèmes d’optimisation
Arbres dans les graphes
Le problème de l’arbre couvrant
Algorithmes de calcul d’un arbre couvrant

Un problème sur un graphe orienté : tri topologique

10 / 39



Algorithmique et Analyse d’Algorithmes
Graphes

Manipulation algorithmique

Type abstrait
Nom Graphe, Sommet

Utilise Etiquette, bool, int, ensemble
Opérations

GrapheVide : () → Graphe
AjouterSommet : Etiquette × Graphe → Graphe

AjouterArete : Sommet × Sommet × Graphe
→ Graphe

nbSommets : Graphe → int
ensSommets : Graphe → ensemble(Sommet)
existeArete : Sommet × Sommet × Graphe → bool
ensVoisins : Sommet × Graphe

→ ensemble(Sommet)

+ suppressions, étiquettes des arêtes...
Préconditions Pas de difficulté particulière

Axiomes AjouterArete(x ,y ,G) rend à la fois x voisin de y et
inversement.
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Algorithmique et Analyse d’Algorithmes
Graphes

Manipulation algorithmique

Parcours de graphe

Principes communs
On choisit un sommet (origine) par lequel commencer le parcours.
On traite chaque sommet une seule fois (attention aux cycles !).

Parcours en profondeur
On suit un chemin aussi « loin » que possible.
Si nécessaire on revient en arrière pour explorer d’autres chemins.

Parcours en largeur
On procède par « cercles concentriques » autour d’un sommet x : on
traite tous ses voisins, puis les sommets situés à une distance 2, etc.

Remarque
Parfois on ne parvient pas à visiter tout à partir de l’origine choisie.
Dans ce cas il faut « relancer » à partir d’une autre origine.
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Algorithmique et Analyse d’Algorithmes
Graphes

Manipulation algorithmique

Notion de marquage
Les structures linéaires possèdent un ordre de parcours naturel (induit par
la structure).

Dans les arbres on dispose d’une liberté supplémentaire (profondeur ou
largeur d’abord...) mais on dispose de deux orientations « naturelles » :

I depuis la racine vers les feuilles
I de la gauche vers la droite

Dans un graphe c’est plus complexe :
I pas de « point d’entrée » (ou de sortie) unique
I possibilité de revenir à un endroit déjà visité

Marquage
Dans un algorithme qui parcourt un graphe, il est fréquent de marquer les
sommets déjà traités afin d’assurer la terminaison de l’algorithme.

C’est une forme d’étiquetage, qui peut s’ajouter à celui déjà présent s’il y
en a un.
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Algorithmique et Analyse d’Algorithmes
Graphes

Manipulation algorithmique

Algorithme de parcours générique
PARCOURS_GRAPHE( Graphe g , Sommet origine )
L = ListeVide()
Marquer( origine )
Insérer( origine, L )
while ¬ EstVide(L)

x = Premier(L)
L = ExtrairePremier(L)
Traiter( x , g )
foreach y ∈ ensVoisins(x , g) do

if y non marqué
Marquer( y )
Insérer( y , L )

Si L est une pile
Parcours en profondeur

Si L est une file
Parcours en largeur

Variante possible : marquer les nœuds à leur sortie de L (moins efficace).
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Algorithmique et Analyse d’Algorithmes
Graphes

Complexité des algorithmes de graphes

Mesure de complexité

Rappel
La complexité d’un algorithme s’exprime en fonction de la taille de la
donnée.

La taille d’un graphe dépend de deux paramètres :
I le nombre de sommets V ,
I le nombre d’arêtes E ,

qui ne sont pas liés linéairement : en général 0 ≤ E ≤ V 2.

On précisera donc toujours la complexité d’un algorithme en fonction de
E et/ou de V .

Parcours de graphe
L’algorithme de parcours générique vu plus haut est en O(E + V ).
( ce qui revient à écrire O(max(E , V )) )
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Algorithmique et Analyse d’Algorithmes
Graphes

Complexité des algorithmes de graphes

Incidence de la représentation concrète
Selon la représentation choisie, la complexité des opérations élémentaires
peut varier :

I Déterminer si deux sommets sont voisins peut être en temps :
I constant
I ou proportionnel à V
I ou même proportionnel à E .

I Parcourir la liste des voisins d’un sommet peut être en temps
proportionnel :

I à son degré
I ou à V .

L’empreinte en mémoire d’une structure de graphe peut elle-même varier
entre E + V et V 2.

Il est donc parfois délicat de quantifier la complexité d’un algorithme de
graphe en se basant uniquement sur le type abstrait : on énonce ce qui
est possible sous réserve d’une représentation adéquate.
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Problèmes d’optimisation

Définition
Un problème d’optimisation a les caractéristiques suivantes :

I Une solution est un sous-ensemble d’une des données du problème.
I Il existe en général plusieurs solutions admissibles.
I À chaque solution (admissible) est associée une valeur (en général

un coût ou un gain).
Le problème d’optimisation consiste non seulement à trouver une solution
admissible, mais à trouver une solution de valeur minimale (pour un
coût) ou maximale (pour un gain).

Cette définition est notamment compatible avec celle d’algorithme
glouton (ce qui ne veut pas dire qu’il existe un algorithme glouton pour
tout problème d’optimisation).

Dans le contexte des graphes, un problème d’optimisation consistera
souvent à déterminer un ensemble optimal de sommets et/ou d’arcs.
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Exemples

I Réseau
I Itinéraire le plus court, le plus rapide

(ensemble d’arcs de poids total minimal formant un chemin)

I Tolérance aux pannes
(ensemble de sommets de cardinal minimal brisant la connexité du
graphe)

I Conflits
I Maximiser le nombre d’activités simultanées

(ensemble de sommets de valeur maximale sans arête interne)
I Minimiser le nombre de ressources nécessaires

(coloration des sommets compatible avec les arêtes utilisant un
minimum de couleurs)

I . . .
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Problèmes d’optimisation

Arbres dans les graphes

Chaînes, connexité

Chaîne
Dans un graphe non orienté, une chaîne est une suite de sommets
(x0, x1, . . . xk) telle que pour tout 0 < i ≤ k, (xi−1, xi) est une arête.
Les sommets x0 et xk sont les extrémités de la chaîne.

Longueur d’une chaîne
La longueur d’une chaîne est le nombre
d’arêtes qui composent cette chaîne,
c’est-à-dire le nombre de sommets moins un
(4 dans cet exemple).

Graphe connexe
Un graphe est connexe si et seulement si, pour tout couple de sommets x
et y , il existe une chaîne entre x et y .
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Problèmes d’optimisation

Arbres dans les graphes

Cycle

Cycle
Un cycle est une chaîne :

I dont les extrémités sont identiques ;
I de longueur k supérieure ou égale à 3 ;
I telle que pour tout 0 ≤ i < k − 1, xi est distinct de xi+2.
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Problèmes d’optimisation

Arbres dans les graphes

Arborescence

Arbre
Un arbre est un graphe non orienté, connexe et sans cycle.

Attention, la notion est un peu différente des arbres définis plus tôt :
I Aucune contrainte d’arité
I Pas de notion de racine

Propriétés évidentes

I Entre deux sommets donnés d’un arbre, il existe toujours exactement
une chaîne (élémentaire).

I Un arbre à n sommets comporte n − 1 arêtes.
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Le problème de l’arbre couvrant

Sous-graphe

Sous-graphe
Si G = (X , R), un sous-graphe de G est un graphe H = (Y , Q) avec
Y ⊆ X et Q ⊆ R. Les extrémités de toutes les arêtes de Q font
évidemment partie de Y .

Un sous-graphe de G est dit couvrant s’il contient tous les sommets de G .
Attention, un sous-graphe couvrant n’est pas forcément connexe.
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Problèmes d’optimisation

Le problème de l’arbre couvrant

Arbre couvrant
Tout graphe connexe admet un arbre couvrant.

Si A est un sous-graphe couvrant d’un graphe G ayant V sommets, les
caractérisations suivantes sont équivalentes :

I A est un arbre couvrant de G
I A est sans cycle et possède V − 1 arêtes
I A est connexe et possède V − 1 arêtes
I on ne peut pas ajouter une arête à A sans créer un cycle
I on ne peut pas retirer une arête à A sans briser sa connexité

Caractérisations particulièrement utiles pour l’écriture d’algorithmes :
I le nombre d’arêtes est un bon critère d’arrêt ;
I l’absence de cycle (resp. la connexité) est un invariant à maintenir.
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Le problème de l’arbre couvrant

Dans un graphe pondéré

Rappel
Un graphe aux arêtes pondérées est un graphe muni d’une fonction de
poids f : R → Z (ou R).

Le poids d’un sous-graphe est la somme des poids de ses arêtes.
On recherche alors un arbre couvrant de poids minimal (en anglais
Minimum Spanning Tree).
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Le problème de l’arbre couvrant

Application

Problème proposé (et résolu) en 1926 par Otakar Borůvka pour la
construction de réseaux électriques efficaces.

I Les sommets de G représentent des lieux à connecter : villes,
ordinateurs, composants électroniques, etc.

I Les arêtes de G représentent les liens (routes, câbles, tuyaux...)
potentiels entre ces lieux, avec les coûts effectifs de création (ou
d’activation) de ces liens.

I L’arbre couvrant minimal est le réseau le moins coûteux ne laissant
aucun lieu isolé.

Attention : on minimise le coût global du réseau, pas les longueurs des
chemins dans l’arbre.
Il existe des variantes du problème contraignant la forme de l’arbre
obtenu : degré borné pour chaque sommet ; diamètre borné ; etc.
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Algorithmes de calcul d’un arbre couvrant

Algorithmes de détermination d’un arbre couvrant
Deux idées duales :

A := (X , ∅) (le graphe vide)

tant que nbAretes(A) < V − 1
faire

Choisir une arête de G qui ne
crée pas de cycle.

Ajouter cette arête à A.

A := (X , R) (le graphe G)

tant que nbAretes(A) > V − 1
faire

Choisir une arête de A qui n’est
pas indispensable à la connexité.

Retirer cette arête à A.

Par construction le graphe A obtenu est un arbre couvrant (pour peu que
G soit connexe).

Critère de choix

I ne pas créer de cycle : assez facile
I vérifier la connexité : moins facile (algorithme Reverse-Delete)
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Algorithmes de calcul d’un arbre couvrant

Choisir une arête
Toute arête qui ne crée pas de cycle convient.
Pour que l’arbre soit minimal, il faut aussi tenir compte des poids.
Là encore, deux politiques :

Connexité d’abord : Algorithme de Prim
On choisit l’arête de poids minimal parmi celles incidentes à A.
En cours d’algorithme A est un arbre.
Il suffit qu’une extrémité de l’arête choisie soit hors de A.

Minimalité d’abord : Algorithme de Kruskal
On choisit l’arête de poids minimal dans tout le graphe.
En cours d’algorithme A est une forêt.
Il faut mémoriser si deux sommets sont dans des composantes
connexes distinctes : utilisation de Union-Find.

Algorithmes gloutons
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Chemins

Chemin
Un chemin est une suite de sommets (x0, x1, . . . xk) telle que

pour tout 0 < i ≤ k, (xi−1, xi) est un arc du graphe.
x0 est l’origine du chemin, et xk est son extrémité.

Accessible
Un sommet y est dit accessible à partir d’un sommet x s’il existe un
chemin d’origine x et d’extrémité y .
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Circuits

Circuit
Un circuit est un chemin de longueur non
nulle dont l’origine est identique à
l’extrémité.
En général, par commodité, on considère
que tous les circuits de la forme
(xi , xi+1, . . . xk−1, x0, x1, . . . xi) constituent
le même circuit.

Boucle
On appelle boucle tout arc dont l’origine est identique à l’extrémité.
Une boucle est un cas particulier de circuit, de longueur 1.
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Le problème du tri topologique

Définition
Un tri topologique d’un graphe orienté
G = (X , R) est un ordre total des
sommets de G tel que

pour tout arc (x , y) ∈ R alors x apparaît
avant y .

Corollaire : il existe un tri topologique si et seulement si le graphe ne
comporte pas de circuit.

Non unicité du tri topologique
Il existe en général plusieurs ordres corrects.
Dans l’algorithme qui suit, selon la structure choisie pour l’ensemble E
on obtient un ordre différent.
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Algorithme de tri topologique
TRI_TOPOLOGIQUE ( Graphe g )
Données : Un graphe g
Résultat : Une file F contenant un tri topologique des sommets de g

ou une valeur spéciale ⊥ si c’est impossible

E := EnsembleVide()
foreach x ∈ ensSommets(g) do

if estVide(ensPredecesseurs(x))
Insérer( x , E )

F := FileVide()
while ¬ estVide(E)

x := ExtraireElement( E )
F := Enfiler( x , F )
foreach y ∈ ensSuccesseurs(x) do

supprimerArc( x , y , g )
if estVide(ensPredecesseurs(y))

Insérer( y , E )

if nbArcs(g) = 0
return F

else // g comporte un
circuit

return ⊥ 37 / 39
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Analyse de l’algorithme de tri tpopologique
À propos des prédécesseurs :

I dans certaines représentations les ensembles de prédécesseurs
peuvent être immédiatement disponibles ;

I il est aussi possible de précalculer le demi-degré intérieur de chaque
sommet (a priori en O(E + V )), puis de le maintenir à jour lors des
suppressions d’arcs.

Aspect glouton
On reconnaît les caractéristiques d’un algorithme glouton :

I la réponse au problème est une séquence ordonnée
I choix définitifs (on ne fait qu’enfiler dans F )
I sommet à enfiler choisi sur un critère local (son demi-degré intérieur)

Dans le pire des cas :
I chaque sommet est visité : O(V )
I chaque arc sortant de chaque sommet est supprimé : O(E )

d’où une complexité en O(E + V ).
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En résumé

Aujourd’hui

I Les graphes et la structure de données correspondante constituent
un bon support à beaucoup d’algorithmes

I Plusieurs parcours d’un graphe sont possibles, avec des précautions
supplémentaires à cause des cycles possibles

I La complexité d’un algorithme de graphes s’exprime en fonction du
nombre de sommets et du nombre d’arcs.

I Les graphes se prêtent à de nombreux algorithmes d’optimisation,
parfois réalisables sur le principe glouton mais parfois très complexes.

La prochaine fois

I Recherche d’une sous-chaîne dans un texte
I Algorithme de Knuth-Morris-Pratt
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