UC Berkeley, Feb 2010

Relational Interfaces

Stavros Tripakis
UC Berkeley

Joint work with Ben Lickly,
Tom Henzinger and Edward Lee

Component-Based Design

e How can we build large, complex systems
from smaller, simpler systems?

— We call the latter components

 Raises many interesting questions:

— What kind of components do we need?
e What are the right building blocks?

— Which components to use and how to
connect them?

— What is a component? How to reason
about components?

Interface theories [e.g., Alfaro, Henzinger, et al.]

* Interface = component abstraction

e Interface composition: AeB=C

e |Interface refinement: A’ <A
e Theorems:

(1) If A" <A and A satisfies P then A’ satisfies P.
(2) If <A and B’ <B,then A’ ¢ B’ < A B,

Substitutability

* Incremental design

e Top-down design / / A >
//
/
/ \
/ \
/ \
/ © \

L
/
L

y A

(1) If A” < A and A satisfies P then A’ satisfies P.
(2) IfA"<A and B’ <B,then A’ e B’ < A e B,

Synthesis of abstractions

e Bottom-up design

If A and B are interfaces then we can compute an
interface for their composition: A e B.

Tons of related work ...

Floyd, Hoare, Dijkstra, Wirth, ..., 1960s, 1970s, ...: pre/post-conditions, stepwise
refinement, ...

Abrial, 1980s, 1990s: the Z notation, the B method
Back, 1980s, ...: refinement calculus
Liskov, 1980s: Modular program construction using abstractions

Meyer, 1980s: Eiffel, contracts (pre/post-conditions), subcontracting
(inheritance)

Lynch, 1980s: I/O automata

Dill, 1980s: Trace theory for automatic hierarchical verification of speed-
independent circuits

Misra/Chandy, Jones, Barringer/Kuiper/Pnueli, Stark, ..., many others, 1980s,
1990s, 2000s, ...: compositional verification, assume-guarantee, ...

Broy, 1990s, ...: FOCUS
Software engineering: software reuse, modularization, Parnas, many others, ...
Type theory: covariance/contravariance

Non-relational Interfaces
e.g., [Doyen et al., EMSOFT’08]

e Separate predicates over inputs and outputs

Assumption x12>0 Guarantee
; Divid y=20
about inputs x2 >0 viae over outputs

e Cannot express input-output relations:

y = x1/x2

Relational Interfaces
[this work]

* Predicates over both inputs and outputs

x1=0
" i_. >0
x2>0::[Divide Y

e Can express input-output relations:

X, 20A Yy =

X
X

X, 20>y =

2
X2

deterministic (function)

non-deterministic (relation)

Plan of talk

Relational interfaces

— Stateless, stateful
Environments and pluggability

Refinement

— Refinement and pluggability
Composition

— Connection, feedback

— Preservation of refinement by composition

Plan of talk

Relational interfaces

— Stateless, stateful
Environments and pluggability

Refinement

— Refinement and pluggability
Composition

— Connection, feedback

— Preservation of refinement by composition

Stateless Relational Interfaces

| = (X ,Y ,¢)

Set of input variables Set of output variables

X/:[| :Y/
?

l

Contract

Contracts

 Semantically: relations between input and
output assignments: ¢ < A(X)xA(Y)=A(X UY)

—>0
Set of all assignments — [— Set of all assignments
over variablesin X | ¢ ¢ N over variables in Y
@
A(X) A(Y)

e Syntactically: predicates or something similar

X
X2

12

Assumptions and Guarantees

* Input assumptions: set of legal input
assignments

in(¢) = 3Y :plc A(X)

 Output guarantees: set of possible output
assignments

out (4) = IX : dlc A(Y)

13

Assumptions and Guarantees

* Input assumptions: set of legal input

assighments
IN(¢g) =3Y ¢

In(x, ;»tO/\y:ﬁ)zx2 #0
X2

. X
in(x, #0 — y=—%) =true
X2

Stateful Relational Interfaces

| = (X ,Y,¢&)

ETAX UY) > C(X UY)
/ N

Set of all possible Set of all possible
states over X U Y contractsover XU Y

state = history=al a2 ... ak

Stateless = special case of stateful
= same contract at all states

15

Example of stateful interface:
unit delay

X)

ta |

» Y

x: 0 1 2 3 4 5 ...
y:vOO 1 2 3 4 ...

unit-delay

o = {xH{Y}h S)

jy(é‘) = (Y = V)
ud (S°a) = (y — a(X))

Infinite-state interface

initial state last step

Example of finite-state interface:
1-place buffer

data_in 1-0| }—— data_out
write el — full
buffer

Note: this says almost nothing about implementation

Note: this says nothing about data

—(empty A full)
N\
—(write A read)

AN

empty — —read
VAN

full - —write

— Write —iread

G Lrie S

write
—_—>
<—

read
empty full

17

Well-formed and well-formable
interfaces

e Well-formed:
— Every reachable state has a satisfiable contract
e Well-formable:

— Can be made well-formed by restricting the inputs

— Amounts to finding a winning strategy in a game
[Alfaro-Henzinger ‘01, Dill ‘89, Back ‘90]

e For stateless interfaces,
well-formed = well-formable = satisfiable

Plan of talk

Relational interfaces

— Stateless, stateful
Environments and pluggability

Refinement

— Refinement and pluggability
Composition

— Connection, feedback

— Preservation of refinement by composition

Environments and Pluggability

Environment

~
Interf
nterface
_J

Environments

E = (X 1Y’¢x’¢v)
S

predicate on X
(possible inputs)

predicate on 'Y
Environment (desirable OUtpUtS)

\
: | Interface
_J

}
>
X Y

Think precondition/postcondition

21

Pluggability

= (X,Y,9)
E = (X Y ’¢x ’¢Y)
e Interface |l is pluggable to environment E if:

VX g, = In(9)
VXY 19y NP — @,

Plan of talk

Relational interfaces

— Stateless, stateful
Environments and pluggability

Refinement

— Refinement and pluggability
Composition

— Connection, feedback

— Preservation of refinement by composition

Refinement

A\

I'=(X,Y,¢') < 1=(X,Y,¢)
ff

VX :in(¢g) > In(g")
VX,Y :in(@g)Aod'> ¢

Refinement examples

VX :in(¢g) > In(g')
VX,Y iin(@p)Ad'—> ¢

more deterministic _ _ _
X = < X=VVvX+1=
outputs y y y
X X
morelegal 1y 0 y="1 < X, Z0AYy="2
Inputs X2 X2

or both X=Y < X>0A(X=yVvX+l=Yy)

Refinement properties

o Reflexive, transitive, antisymmetric: partial order
* Top element: false false — in(¢")

false A ¢'— false

e No bottom element In(¢) — true

— true is not bottom: in(¢) A true # ¢
— constant outputs are minimal elements
e Least upper bound defined

e Greatest lower bound: sometimes defined
— C.f. shared refinement

Main results (1)

 Refinement characterizes pluggability:

— |” < | iff for all environments E, pluggable(l,E) implies
pluggable(l’,E)

— Note that this is iff

— If we used an alternative notion of refinement (c.f.,
Mevyer’s subcontracting):

VX :iIn(g) > In(g")
VX,Y 19"'> ¢

— then if direction would not hold
— neither would the last two examples

27

Plan of talk

Relational interfaces

— Stateless, stateful
Environments and pluggability

Refinement

— Refinement and pluggability
Composition

— Connection, feedback

— Preservation of refinement by composition

Composition: in a nutshell

e Composition by connection

e Composition by feedback

— Arbitrary feedback not allowed:

e It “breaks” the theory (refinement not preserved by
feedback)

— Restricted to Moore interfaces
e Current outputs independent from some current inputs

— Reasonable in most cases in practice
e C.f., synchronous models like Simulink, Lustre, ...

Composition by connection

O =P NP, A (Yy=2Z)AD

O =\Vy,2:9,A(Yy=12)—> In(¢,)

This is not composition of relations
(c.f., “demonic” vs. “angelic” non-determinism)

30

Composition by connection

p, 4,

This is not composition of relations
(c.f., “demonic” vs. “angelic” non-determinism)

31

Example of connection

composite >y

interface | —, 7
_ J

XSYSX+IAZ20AYy=ZA[X=20

Composition by connection

e Associative:

B9E - -BET

(SO
e Parallel composition xX1—» 91 [T v2
— Special case = empty connection § b
_ X2 — P2 > y2
— Commutative §)

Composition by feedback

~ commutative
—>y
:’.[o1 [
J

Interface must be Moore with respect to input x:
i.e., contract do not depend on x
(the Unit Delay is Moore)

9 =g, A (X=1Y)

Main results (2)

* Refinement preserved by composition:
— If A" < Aand B’ <B then 6(A’,B’) < 6(A,B)

* O is a composition by connection
— If A’ < A then k(A’) < k(A)
e K is a composition by feedback

e Both A and A’ must be Moore

 Refinement does not necessarily preserve Mooreness
— E.g., (y = 2x) refines (y mod 2 = 0)

35

Difficulties with arbitrary feedback

Lk - Lok

VI \q\

—>[false]—>
X y

e Refinement would not be preserved by
feedback ...

"

Additional topics

see [EMSOFT’09] for details

* Hiding: removes output variables
— Existential quantification for stateless interfaces
— A bit trickier for stateful interfaces

e Shared refinement [Doyen et al 2008, Benveniste
et al]

— An interface that refines multiple others
— Not always possible

* |nput-complete interfaces

37

Input-complete interfaces

e All inputs are legal at all states:

In(¢) = true
y;z&0—>z:i vs. y;z&O/\z:i
y y
Input-complete Non-input-complete

e Input-complete = receptive

Input-complete interfaces:
theory becomes much simpler!
Input-complete => well-formed

Input-completion: P'= ¢ v —In(p)

— Input-complete version refines original

Connection, feedback, hiding preserve input-

completeness
P ion is simplified: p=grh Ny=2)rD
— Connection is simplitieq: ®:=Vy, 2.4 A(y=2)— in(4,) = true

Refinement = implication
Shared refinement = conjunction

so why do we need non-input-complete interfaces?

Why non-input-complete interfaces?

* Expressiveness:

— Termination: some algorithms guarantee termination only
if inputs satisfy some constraints => non-input-complete

e Could model as input-complete with extra output in {T,?}, but need
to handle this output during composition => comes to the same
thing

e Flexibility in design:
— Check local compatibility of interfaces: is their composition
well-formed?
e Catch errors earlier
— Composition of input-complete is input-complete, which is
always well-formed

Conclusions

 Novel theory of relational interfaces

— Generalizes previous attempts
— Semantical, declarative, denotational, symbolic
— Reasonable restrictions on feedback loops

 Main results:
— Characterization of refinement by pluggability
— Preservation of refinement by composition

On-going work

 Extend the theory

— More flexibility in feedback:
e Capture I/O dependencies in interfaces
e Atheory of fixed points for relations?

e Applications:
— Case studies from the HW domain (circuits)

 Implementation in Ptolemy Il
— Only stateless interfaces for now

42

Director checks Interfaces

InterfaceCheckerDirector

Divide

muItipIyDX

divideDL

Poutput

_interfaceExpr:
divide =0
&& output == multiply / divide

Can infer composite interfaces

(and (=xin) (and (= zy) (and (>=z0) (==
(*ww)z))(or(/=x1)(=y1)) (forall (

. y::int z::int) (=> (and (or (/=x1)(=y 1))
COMPOSIteACIOr | ;)\ (exists (wint) (and (>= 2 0) (== (*
w w) z)))))) (= y outl) (= w out2) (=z
outl))

InterfaceCheckerDirector

RightActor

LeftActor

lin out2

_interfaceExpr: _interfaceExpr:
x!l=1|ly=1 z>=0
&& WA2 =7

Throws exception when composition
impossible

out2

Dismiss

in Inverse outl
1/z

_interfaceExpr: _interfaceExpr:
y>=-100 z!=0
&& y < 100

On-going work

 Extend the theory
— More flexibility in feedback:

e Capture I/O dependencies in interfaces
e Atheory of fixed points for relations?

e Applications:
— Case studies from the HW domain (circuits)

 Implementation in Ptolemy Il
— Only stateless interfaces for now

Limitations on feedback

e Consider the parallel composition of two interfaces:

N
xll—-b b1 > vi :
— |
|
X2 —-b& ¢2) P—yz— -
_ J
N 9,

 Need a way to capture |/O dependency information

Limitations on feedback

_

_

_

l

_

_

l

| 2 = I
_ © ©
_

_

l

L

-

-
x1

2

2l 2]—;

Thank you

e Questions?

