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Abstract. Predicate abstraction has emerged to be a powerful technique for extracting finite-state
models from infinite-state discrete programs. This paper presents algorithms and tools for reachability
analysis of hybrid systems by combining the notion of predicate abstraction with recent techniques for
approximating the set of reachable states of linear systems using polyhedra. Given a hybrid system and
a set of predicates, we consider the finite discrete quotient whose states correspond to all possible truth
assignments to the input predicates. The tool performs an on-the-fly exploration of the abstract system. We
present the basic techniques for guided search in the abstract state-space, optimizations of these techniques,
implementation of these in our verifier, and case studies demonstrating the promise of the approach. We also
address the completeness of our abstraction-based verification strategy by showing that predicate abstraction
of hybrid systems can be used to prove bounded safety.

1 Introduction

Embedded systems are increasingly finding their way into a growing range of physical devices [24]. An
embedded system typically consists of a collection of software threads interacting concurrently with each
other and with a physical, continuous environment through sensors and actuators. They are becoming
ever more sophisticated with respect to their software requirements, as the usage and demand for such
systems evolve. Therefore, the need for a structured approach for developing embedded software is becoming
increasingly urgent.

Traditionally, control theory and related engineering disciplines have addressed the problem of designing
robust control laws to ensure optimal performance of physical processes with continuous dynamics. This
approach to system design has largely ignored the problem of implementing such control laws in software.
Therefore, issues related to concurrency and communication have not been addressed appropriately in this
setting. Computer science and software engineering on the other hand have an entirely discrete view of the
world, which abstracts from the physical characteristics of the environment to which the software is reacting.
Therefore, this approach is typically unable to guarantee safety or a suitable performance of the embedded
device as a whole. An embedded system consisting of sensors, actuators, plant, and control software, then, is
best viewed as a hybrid (mixed discrete-continuous) system. Hybrid modeling combines the two approaches
and is natural for the specification of embedded systems.

∗Preliminary versions have appeared in Hybrid Systems: Computation and Control 2002 and 2003 (see [4, 6]).
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Inspired by the success of model checking in hardware verification and protocol analysis [23, 41], there
has been increasing research on developing algorithms and tools for automated verification of hybrid models
of embedded controllers [1, 7, 8, 11, 17, 31, 37, 38, 16, 46, 50]. Model checking requires the computation of
the set of reachable states of a model, and in presence of continuous dynamics, this is typically undecidable.
The state-of-the-art computational tools for model checking of hybrid systems are of two kinds. Tools such
as Kronos [31], Uppaal [16], and HyTech [38] limit the continuous dynamics to simple abstractions such
as rectangular inclusions (e.g. ẋ ∈ [1, 2]), and compute the set of reachable states exactly and effectively by
symbolic manipulation of linear inequalities. On the other hand, emerging tools such as CheckMate [17],
d/dt [11], and level-sets method [36, 46], approximate the set of reachable states by polyhedra or ellipsoids [44]
using optimization techniques. Even though these tools have been applied to interesting real-world examples
after appropriate abstractions, scalability remains a challenge.

In the world of program analysis, predicate abstraction has emerged to be a powerful and popular
technique for extracting finite-state models from complex, potentially infinite state, discrete systems [12, 26,
30, 35, 45]. A verifier based on this scheme requires three inputs, the (concrete) system to be analyzed, the
property to be verified, and a finite set of boolean predicates over system variables to be used for abstraction.
An abstract state is a valid combination of truth values to the boolean predicates, and thus, corresponds
to a set of concrete states. There is an abstract transition from an abstract state A to an abstract state
B, if there is a concrete transition from some state corresponding to A to some state corresponding to B.
The job of the verifier is to compute the abstract transitions, and to search in the abstract graph for a
violation of the property. If the abstract system satisfies the property, then so does the concrete system. If a
violation is found in the abstract system, then the resulting counter-example can be analyzed to test if it is
a feasible execution of the concrete system. This approach, of course, does not solve the verification problem
by itself. The success crucially depends on the ability to identify the “interesting” predicates, and on the
ability of the verifier to compute abstract transitions efficiently. Nevertheless, it has led to opportunities
to bridge the gap between code and models and to combine automated search with user’s intuition about
interesting predicates. Tools such as Bandera [25], SLAM [12], and Feaver [42] have successfully applied
predicate abstraction for analysis of C or Java programs.

Inspired by these two trends, we develop algorithms for invariant verification of hybrid systems using
discrete approximations based on predicate abstractions. Consider a hybrid automaton with n continuous
variables and a set L of locations. Then the continuous state-space is L×Rn. For the sake of efficiency, we
restrict our attention where all invariants, switching guards, and discrete updates of the hybrid automaton
are specified by linear expressions, and the continuous dynamics is linear, possibly with bounded input. For
the purpose of abstraction, the user supplies initial predicates p1 . . . pk, where each predicate is a polyhedral
subset of Rn. In the abstract program, the n continuous variables are replaced by k discrete boolean variables.
As elaborated in section 2, a combination of values to these k boolean variables represents an abstract state
corresponding to a set of continuous states, and the abstract state-space is L × Bk. Our verifier performs
an on-the-fly search of the abstract system by symbolic manipulation of polyhedra. The verification tool is
integrated into the modeling and analysis toolkit Charon [2].

The core of the verifier is the computation of the transitions between abstract states that capture both
discrete and continuous dynamics of the original system, which is described in section 3. Computing discrete
successors is relatively straightforward, and involves computing weakest preconditions, and checking non-
emptiness of an intersection of polyhedral sets. To compute continuous successors of an abstract state A,
we use a strategy inspired by the techniques used in CheckMate and d/dt. The basic strategy computes
the polyhedral slices of states reachable from A at fixed times r, 2r, 3r, . . . for a suitably chosen r, and then,
takes the convex-hull of all these polyhedra to over-approximate the set of all states reachable from A.
However, while tools such as CheckMate and d/dt are designed to compute a “good” approximation of
the continuous successors of A, we are interested in testing if this set intersects with a new abstract state.
Consequently, our implementation differs in many ways. For instance, it checks for nonempty intersection
with other abstract states of each of the polyhedral slices, and omits steps involving approximations using
orthogonal polyhedra and termination tests.

Postulating the verification problem for hybrid systems as a search problem in the abstract system
has many benefits compared to the traditional approach of computing approximations of reachable sets
of hybrid systems. First, the expensive operation of computing continuous successors is applied only to
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abstract states, and not to intermediate polyhedra of unpredictable shapes and complexities. Second, we
can prematurely terminate the computation of continuous successors whenever new abstract transitions are
discovered. Finally, we can explore with different search strategies aimed at making progress in the abstract
graph. For instance, our implementation always prefers computing discrete transitions over continuous ones.
Our early experiments indicate that improvements in time and space requirements are significant compared
to a tool such as d/dt.

In section 4 we present a variety of optimizations of the abstraction and search strategy. If the original
hybrid system has m locations and we are using k predicates for abstraction, the abstract state-space has
m · 2k states. To compute the abstract successors of an abstract state A, we need to compute the discrete
and the continuous successor-set of A, and check if this set intersects with any of the abstract states. This
can be expensive as the number of abstraction predicates grows, and our heuristics are aimed at speeding
up the search in the abstract space.

The first optimization eliminates some spurious counter-examples in the abstract state-space by requiring
that a counter-example is not permitted to consist of two or more consecutive continuous transitions in the
abstract state-space. The optimization is based on the fact that you can always find an equivalent valid path
in the concrete state-space that does not contain two or more consecutive continuous transitions. A second
optimization uses the BSP (Binary space partition) technique to impose a tree structure on abstract states
so that invalid states (that is, inconsistent combinations of truth values to linear predicates) can be detected
easily. The third optimization uses qualitative analysis of vector fields to rule out reachability of certain
abstract states from a given abstract states a priori before applying the continuous reachability computation.
Another optimization implements a guided search strategy. Since initial abstraction is typically coarse, the
abstract search is likely to reach the target (i.e. bad states). During depth-first search, after computing
the abstract successors of the current state, we choose to examine the abstract state whose distance to the
target is the smallest according to an easily computable metric. We have experimented with a variety of
natural metrics that are based on the shortest path in the discrete location graph of the hybrid system as
well as the Euclidean shortest distance between the polyhedra corresponding to the abstract states. Such
a priority-based search improves the efficiency significantly in the initial iterations. The final optimization
allows a location-specific choice of predicates for abstraction. Instead of having a global pool of abstraction
predicates, each location is tagged with a relevant set of predicates, thereby reducing the size of the abstract
state-space. Again, this strategy is shown to be effective in speeding up the computation in our case studies.

We also address the completeness of our abstraction-based verification strategy for hybrid systems, which
is described in section 5. Given a hybrid system H with linear dynamics, an initial set X0, and a target
set B, the verification problem is to determine if there is an execution of H starting in X0 and ending in
B. If there is such an execution, then even simulation can potentially demonstrate this fact. On the other
hand, if the system is safe (i.e., B is unreachable), a symbolic algorithm that computes the set of reachable
states from X0 by iteratively computing the set of states reachable in one discrete or continuous step, cannot
be guaranteed to terminate after a bounded number of iterations. Consequently, for completeness, we are
interested in errors introduced by, first, approximating reachable sets in one continuous step using polyhedra,
and second, due to predicate abstraction. We show that if the original system stays at least δ distance away
from the target set for any execution involving at most n discrete switches and up to total time τ , then there
is a choice of predicates such that the search in the abstract-space proves that the target set is not reached
up to those limits. This shows that predicate abstraction can be used at least to prove bounded safety, that
is, safety for all executions with a given bound on total time and a bound on the number of discrete switches.

We demonstrate the feasibility of our approach using four case studies in section 6. The first one involves
verification of a parametric version of Fischer’s protocol for timing-based mutual exclusion. The second
and third one involves analysis of different models of cruise controller. The fourth example is a thermostat
example that is used to illustrate the concepts throughout this paper. In each of these cases, we show how
predicate abstraction can be effective in establishing safety of the system.

We conclude this paper with some final remarks. In particular, we briefly address the issue of finding
appropriate predicates to be used for the abstraction of the considered system. We discuss the notion of
counter-example guided predicate abstraction for hybrid systems as described in [3, 5].

Related Work. The state-of-the-art computational tools for model checking of hybrid systems are of
two kinds. Tools such as Kronos [31], Uppaal [16], and HyTech [38] limit the continuous dynamics to
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simple abstractions such as rectangular inclusions (e.g. ẋ ∈ [1, 2]), and compute the set of reachable states
exactly and effectively by symbolic manipulation of linear inequalities. On the other hand, emerging tools
such as CheckMate [17], d/dt [11], and level-sets method [36, 46], approximate the set of reachable states
by polyhedra or ellipsoids [44] using optimization techniques. A detailed description of the various model
checking tools for hybrid systems can be found in [49].

The tool Uppaal is an environment to model, simulate, and verify systems represented as networks
of timed automata [16]. Timed automata are hybrid systems where each continuous variable x is a clock
and thus follows the differential equation ẋ = 1 [7]. Uppaal additionally allows data variables and syn-
chronization mechanisms to model communication between concurrent timed automata. It can analyze
reachability properties and simple liveness properties. The timed automata are internally represented in a
compact form using clock difference diagrams [15]. Additional information about Uppaal can be found at
www.docs.uu.se/docs/rtmv/uppaal/. Kronos is another tool for the analysis of timed automata. More
information about Kronos can be found in [31] and online at www-verimag.imag.fr/TEMPORISE/kronos.

The tool HyTech analyzes a class of hybrid systems called linear hybrid automata [9], that is it al-
lows flows of the form Aẋ ≤ b. HyTech can analyze a set of concurrent automata and can perform
parametric analysis since it uses a symbolic model checking approach. A counter-example trace is gen-
erated if verification of a property fails. Details about HyTech can be found in [39] and online at
www-cad.eecs.berkeley.edu/~tah/HyTech/.

CheckMate is a Matlab-based tool for simulation and verification of threshold-event driven hybrid
systems (TEDHS) [27]. In a TEDHS the changes in the discrete state can occur only when continuous
state variables encounter specified thresholds represented by hyperplanes. The TEDHS model specified
in Matlab is converted into a polyhedral-invariant hybrid automaton (PIHA) used for verification [18].
PIHA are automata with invariants defined by the hyperplanes defining guards for the transitions leaving
modes. The resulting PIHA is equivalent to the original TEDHS within a bounded region of the continuous
state-space. CheckMate can analyze properties expressed in ACTL [22]. The tool computes a finite-state
approximation using general polyhedral over-approximations to the sets of reachable states for the continuous
dynamics called flowpipes. The tool then performs a search in the completely constructed transition system.
Recently, there has been work in adding a counter-example guided refinement procedure to the tool [20].

The tool d/dt performs verification and control synthesis for hybrid systems. It computes the reachable
sets for models with linear continuous dynamics with uncertain, bounded input. The continuous dynamics
are of the form ẋ = Ax + Bu, u ∈ U , where U is a bounded set of inputs. Reachable sets are represented by
orthogonal polyhedra computed by performing so-called face-lifting to create efficient over-approximations
[28]. We review the reachability computations used by d/dt in more detail in section 3.2.

The goal of the orthogonal approximation step in the reachability algorithm of d/dt is to represent the
reachable set after successive iterations as a unique orthogonal polyhedron, which facilitates termination
checking and the computation of discrete successors. However, in our predicate abstraction approach, to
compute continuous successors of the abstract system we exclude the orthogonal approximation step for the
following reasons. First, we do not require to accumulate concrete continuous successors in our predicate
abstraction search. Moreover, although operations on orthogonal polyhedra can be done in any dimension,
they become expensive as the dimension grows. This simplification allows us to reduce computation cost
in the continuous phase and thus be able to perform different search strategies so that the violation of the
property can be detected as fast as possible.

Recently, there has been increased interest in applying abstraction techniques to the verification of hybrid
systems. In [50] the authors propose the use of data abstraction techniques for the analysis of hybrid systems
with polynomial continuous dynamics. For the purposes of abstraction the authors use a set of polynomials
that partitions the continuous state-space into sign-invariant zones. A prototype tool has been implemented
in the SAL environment (see www.csl.sri.com/projects/sal/) which is built over the theorem prover
PVS [47]. The abstract system is completely constructed using logical reasoning in the theory of reals.
The resulting finite abstract transition system can then be passed to a traditional discrete model checker.
For the purposes of abstraction, the differential equations are manually rewritten into difference equations
given a user-specified time step. The advantage of this approach is that it does not need to compute any
reachable sets in the continuous state-space, as it considers discrete-time systems. It thus promises to be
useful for higher-dimensional systems. Conservativeness can then be guaranteed only for the discrete-time
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system using this approach. However, this does not imply conservativeness for the original dense-time (or
continuous-time) hybrid system. Another disadvantage is that the complete abstract transition system is
constructed beforehand and cannot be searched on-the-fly. Although refinements of the discrete system are
possible by adding new polynomials, there is no automatic refinement generator.

2 Linear Hybrid Systems

In this section, we define the class of hybrid system that we consider. We define the class of linear hybrid
systems, which are hybrid systems with linear continuous dynamics with uncertain, bounded input. This
class of hybrid systems should not be confused with so-called linear hybrid automata [39].

2.1 Mathematical Model

We denote the set of all n-dimensional linear expressions l : Rn → R with Σn and the set of all n-dimensional
linear predicates π : Rn → B, where B := {0, 1}, with Ln. A linear predicate is of the form

π(x) :=
n∑

i=1

aixi + an+1 ∼ 0,

where ∼∈ {≥, >} and ∀i ∈ {1, . . . , n + 1} : ai ∈ R. Additionally, we denote the set of finite sets of n-
dimensional linear predicates by Cn, where an element of Cn represents the conjunction of its elements.
Therefore, ∅ ∈ Cn represents the predicate true.

Definition 1 (Linear Hybrid Systems) An n-dimensional linear hybrid system (LHS) is a tuple
H = (X , L,X0, I, f, T ) with the following components:

• X ⊂ Rn is a convex polyhedron representing the continuous state-space.

• L is a finite set of locations. The state-space of H is X = L × X . Each state thus has the form
(l, x), where l ∈ L is the discrete part of the state, and x ∈ X is the continuous part.

• X0 ⊆ X is the set of initial states. We assume that for all locations l ∈ L, the set {x ∈ X | (l, x) ∈ X0}
is a convex polyhedron.

• I : L → Cn assigns to each location l ∈ L a finite set of linear predicates I(l) defining the invariant
conditions that constrain the value of the continuous part of the state while the discrete location is
l. The linear hybrid system can only stay in location l as long as the continuous part of the state x
satisfies I(l), i.e. ∀π ∈ I(l) : π(x) = 1. We will write Il for the invariant set of location l, that is the
set of all points x satisfying all predicates in I(l). In other words, Il := {x ∈ X | ∀π ∈ I(l) : π(x) = 1}.

• f : L → (X × Rm → Rn) assigns to each location l ∈ L a continuous vector field f(l) on the
continuous state x ∈ X given an input u ∈ Rm. While at location l the evolution of the continuous
variable is governed by the differential equation ẋ = f(l)(x, u). We restrict our attention to hybrid
systems with linear continuous dynamics and uncertain, bounded input, that is, for every location
l ∈ L, the vector field f(l) is linear, i.e. f(l)(x, u) = Alx + Blu where Al is an n × n matrix, Bl

is an n × m matrix, and the input u ∈ U where U consists of piecewise continuous functions of the
form u : R≥0 → U such that U ⊂ Rm is a bounded convex set. We assume that the function f(l) is
globally Lipschitz in x and continuous in u. This assumption guarantees existence and uniqueness of
the solution of the differential equation.

• T ⊆ L×L×Cn× (Σn)n is a relation capturing discrete transition jumps between two discrete locations.
A transition (l, l′, g, r) ∈ T consists of an initial location l, a destination location l′, a set of guard
constraints g and a linear reset mapping r. From a state (l, x) where all predicates in g are satisfied
the linear hybrid system can jump to location l′ at which the continuous variable x is reset to a new
value r(x). We will write Gt ⊆ Il for the guard set of a transition t = (l, l′, g, r) ∈ T which is the set
of points satisfying all linear predicates of g and the invariant of the location l, that is, Gt := {x ∈
Il | ∀π ∈ g : π(x) = 1}.
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Ṫ = −T
ṫ = 1

T ≥ 5

Cool

Ṫ = 2
ṫ = 1

T ≤ 10 ∧ t ≤ 3

Heat

Ṫ = −T/2
ṫ = 1

t ≤ 1

Check
t ≥ 0.5 →

t := 0

t ≥ 2 →
t := 0

T ≥ 9

t := 0
T ≤ 6 →

Figure 1: A simple hybrid system model of a thermostat

We illustrate the definition of a linear hybrid system using a simple thermostat model given in figure
1. The thermostat model consists of three locations, that is L = {Heat, Cool, Check}. It contains two
continuous variables, namely a clock t ∈ R≥0 and a temperature T ∈ R≥0. In this particular example we can
limit the continuous state-space such that both the clock t and the temperature T are within the interval
[0, 100] without loss of accuracy of our analysis. The continuous state thus is (t, T ) ∈ [0, 100]2.1 We write
(Heat, (2, 8)) to denote the state t = 2 ∧ T = 8 while in location Heat. The continuous dynamics of the
clock t is ṫ = 1 in all locations. The thermostat is switched on in the Heat location, so that the temperature
increases by Ṫ = 2. The invariant in the Heat location is T ≤ 10 ∧ t ≤ 3, that is, the system cannot remain
in this location when the temperature exceeds ten and the clock exceeds three time-units. The control can
switch to the Cool location, which models that the thermostat is switched off, when the guard T ≥ 9 is
enabled. This means, the switch from Heat to Cool can happen non-deterministically at any time when the
temperature T is in the interval [9, 10]. The control remains in the Cool location, until the temperature is
in the interval [5, 6], when it switches back to the Heat location. This transition has a reset, which resets
the clock t := 0. The third location, Check, models a self-checking mode of the thermostat controller. The
invariant in the Check location guarantees that the control will return to the Heat location after at most
one time-unit. During this time, the temperature drops, but this happens slower than in the Cool location.
We assume that initially the thermostat is in its Heat location with t = 0 and 5 ≤ T ≤ 10. This example is
used throughout this paper to illustrate some of the concepts defined.

2.2 Transition System Semantics and Verification Problem

We define the semantics of a linear hybrid system by formalizing its underlying transition system. Assume
an admissible set U of input functions µ : R≥0 → U . We can then denote the flow of the system ẋ(t) =
Alx(t)+Blµ(t) in location l ∈ L as Φl(x, t, µ) for an input function µ ∈ U with initial condition Φl(x, 0, µ) = x.

The underlying transition system of a hybrid system H is TH = (X,→, X0). The state-space of the
transition system is the state-space of H, i.e. X = L × X . The transition relation →⊆ X × X between
states of the transition system is defined as the union of two relations →C ,→D⊆ X ×X. The relation →C

describes transitions due to continuous flows, whereas →D describes the transitions due to discrete jumps.

(l, x) →C (l, y) :⇔ ∃t ∈ R≥0, µ ∈ U : Φl(x, t, µ) = y ∧ ∀t′ ∈ [0, t] : Φl(x, t′, µ) ∈ Il.

(l, x) →D (l′, y) :⇔ ∃(l, l′, g, r) ∈ T : x ∈ Gt ∧ y = r(x) ∧ y ∈ Il′ .

Figure 2 illustrates transitions between states in the underlying transition system TH for the thermostat
model (see figure 1). From an initial state t = 0 ∧ T = 8 while in location Heat, we can perform infinitely
many different continuous transitions, two of which are shown. Transitions in the figure with a dashed arrow
denote transitions due to continuous flow, while a solid arrow implies a transition due to a discrete switch.
Figure 2 shows a discrete switch from the state t = 0.6∧ T = 9.2 in location Heat to location Cool with the

1For stylistic purposes we sometimes use (t, T ) ∈ R≥0 instead of (t, T ) ∈ [0, 100]2.
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Heat

T = 9.8
t = 0.9

Heat

T = 9.2

Cool

T = 9.2

t = 0.6

t = 0.6

Heat

T = 8.8

Heat

T = 8.4

Heat

T = 8
t = 0 t = 0.4

t = 0.2

Figure 2: Some traces of the thermostat model

same continuous state. A trace of a hybrid system is a sequence of states starting in an initial state, such
that there exists a transition in the underlying transition system between each consecutive pair of states.

We introduce now some basic reachability notation. We define the set of continuous successors of a set
of states (l, P ) where l ∈ L and P ⊆ X , denoted by PostC(l, P ), and the continuous successors of a set of
states S ⊆ X denoted by PostC(S) as:

PostC(l, P ) := {(l, y) ∈ X | ∃x ∈ P : (l, x) →C (l, y)};
PostC(S) := {(l, y) ∈ X | ∃(l, x) ∈ S : (l, x) →C (l, y)}.

Similarly, we define the set of discrete successors of (l, P ) and S, denoted by PostD(l, P ) and PostD(S)
respectively, as:

PostD(l, P ) := {(l′, y) ∈ X | ∃x ∈ P : (l, x) →D (l′, y)}.
PostD(S) := {(l′, y) ∈ X | ∃(l, x) ∈ S : (l, x) →D (l′, y)}.

For the thermostat example (see figure 1), and a set S = {(Heat, (t, T )) ∈ X | 1.5 ≤ t ≤ 2.5∧ 8.5 ≤ T ≤ 9.5},
we have

PostD(S) = {(Cool, (t, T )) ∈ X | 1.5 ≤ t ≤ 2.5∧ 9 ≤ T ≤ 9.5}∪{(Check, (t, T )) ∈ X | t = 0∧ 8.5 ≤ T ≤ 9.5},
PostC(S) = {(Heat, (t, T )) ∈ X | 1.5 ≤ t ≤ 3 ∧ 8.5 ≤ T ≤ 10 ∧ 2(t− 2.5) + 8.5 ≤ T ≤ 2(t− 1.5) + 9.5}.
Given a hybrid system H we want to verify certain safety properties. We define a property by specifying

a set of unsafe locations Lu ⊆ L and a convex set B ⊆ X of bad states. The property is said to hold for
the hybrid system H iff there is no valid trace from an initial state to some state in B while in an unsafe
location. For our thermostat example, we will define the set of bad states B as the set of states when the
temperature drops below 4.5, that is:

B = {(t, T ) ∈ (R≥0)2 |T ≤ 4.5}.
We define the set of unsafe locations Lu = {Check}, as the invariant in location Cool provides that we
cannot reach B in the Cool location. We also do not include the location Heat into Lu, as the dynamics
provide that B will not be reached while in the Heat location unless we are initially in B.

Definition 2 (Verification problem) Given a hybrid system H = (X , L,X0, I, f, T ), the set of reachable
states Reach ⊆ X is defined as

• Reach(0) := X0 ∩ {(l, x) ∈ X |x ∈ Il};
• Reach(i+1) := PostC(Reach(i)) ∪ PostD(Reach(i))∀i ≥ 0; and

• Reach :=
⋃∞

i=0 Reach
(i).

Given a set of unsafe locations Lu ⊆ L and a convex set B ⊆ X , we can define BX := {(l, x) ∈ X | l ∈
Lu ∧ x ∈ B}. The verification problem then is:

Reach ∩ BX
?= ∅.
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In [1], it was shown that the verification problem for general hybrid systems is undecidable. In many
practical situations though, model checking of hybrid systems can be used to verify certain properties of
systems or to discover bugs in implementations. We now prove a property of the Reach(i) sets that will be
used in later proofs.

Lemma 1 Given a hybrid system H = (X , L, X0, I, f, T ), the following holds ∀i ∈ N:

Reach(i) ⊆ Reach(i+1).

Proof: We first prove by induction, that ∀i ∈ N

Reach(i) ⊆ {(l, x) ∈ X |x ∈ Il} :

The statement is true for Reach(0) by definition. Now assume it holds for Reach(i). Then, for each state
(l, x) ∈ PostC(Reach(i)), we have (l, x) ∈ {(l, x) ∈ X |x ∈ Il} per definition of →C . Analogously, it holds
for PostD(Reach(i)), which in turn means that the statement holds for Reach(i+1).

Given the fact that →C is reflexive for states (l, x) ∈ X where x ∈ Il, we have ∀i ∈ N

Reach(i) ⊆ PostC(Reach(i)),

which proves our lemma. ut

2.3 Discrete Abstraction

We define a discrete abstraction of the hybrid system H = (X , L, X0, I, f, T ) with respect to a given k-
dimensional vector of n-dimensional linear predicates Π = (π1, π2, . . . , πk) ∈ (Ln)k. We can partition the
continuous state-space X ⊆ Rn into at most 2k states, corresponding to the 2k possible boolean truth
evaluations of Π; hence, the infinite state-space X of H is reduced to |L|2k states in the abstract system.
From now on, we will refer to the hybrid system H as the concrete system and its state-space X as the
concrete state-space.

Definition 3 (Abstract state-space) Given an n-dimensional hybrid system H = (X , L,X0, f, I, T ) and
a k-dimensional vector Π ∈ (Ln)k of n-dimensional linear predicates an abstract state is defined as a
tuple (l, b), where l ∈ L and b ∈ Bk. The abstract state-space for a k-dimensional vector of linear predicates
therefore is QΠ := L× Bk.

Figure 3 illustrates the abstraction of the continuous state-space for the thermostat example of figure 1.
We use ten predicates for the abstraction, namely:

Π = (t ≤ 0, t ≥ 0.5, t ≤ 1, t ≥ 2, t ≤ 3, T ≤ 4.5, T ≥ 5, T ≤ 6, T ≥ 9, T ≤ 10). (1)

For the sake of simplicity these predicates all involve only one continuous variable, that is they correspond to
hyperplanes parallel to some axis, though this is not necessary. The abstract continuous state-space consists
of 36 non-empty states, which means that the size of the relevant abstract state-space QΠ is 3 · 36 = 108.

For each vector b ∈ Bk for a vector of linear predicates Π we can compute the set of states of the continuous
state-space that it represents given the following definition. For example, the vector (0, 1, 0, 1, 1, 0, 1, 0, 0, 1)
represents the set {(t, T ) ∈ R2 | 2 ≤ t ≤ 3 ∧ 6 < T < 9} given the vector of predicates Π as specified in
equation (1).

Definition 4 (Concretization function) We define a concretization function CΠ : Bk → 2R
n

for a
vector of linear predicates Π = (π1, . . . , πk) ∈ (Ln)k as follows:

CΠ(b) := {x ∈ Rn | ∀i ∈ {1, . . . , k} : πi(x) = bi}.

We denote a vector b ∈ Bk as consistent with respect to a vector of linear predicates Π ∈ (Ln)k, iff
CΠ(b) 6= ∅. We say that an abstract state (l, b) ∈ QΠ is consistent with respect to a vector of linear
predicates Π, iff b is consistent with respect to Π.

8
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Figure 3: Discrete abstraction of the continuous state-space for the thermostat model: Each box or line on
the right hand side corresponds to a consistent vector b ∈ B10 for the predicates as specified in equation (1).

As mentioned before, the set of abstract states has at most size |L|2k for k linear predicates. Often
though the set of consistent abstract states is actually much smaller due to the fact that many predicates
are redundant, that is they may be parallel, or do not cross inside the relevant continuous state-space X .
Figure 3 provides such an example. The abstract state-space consists only of 108 consistent abstract states,
although there are 3 · 210 = 3072 possible abstract states.

Our implementation is based on the fact that abstract states in the continuous state-space form a convex
partition of the continuous state-space, which is formulated in the following lemma, and can be proven easily.

Lemma 2 Given a set of linear predicates Π ∈ (Ln)k and a convex polyhedron X , then for any b ∈ Bk

CΠ(b) and CΠ(b) ∩ X represent convex polyhedra.

Definition 5 (Discrete Abstraction) Given a hybrid system H = (X , L, X0, f, I, T ), its abstract system
with respect to a vector of linear predicates Π is defined as the transition system HΠ = (QΠ,

Π→, Q0) where

• the abstract transition relation Π→ ⊆ QΠ × QΠ is defined as the union of the following two relations
Π→D,

Π→C ⊆ QΠ×QΠ. The relation Π→D represents transitions in the abstract state-space due to discrete
jumps, whereas Π→C represents transitions due to continuous flows:

(l, b) Π→D(l′, b′) :⇔ ∃t = (l, l′, g, r) ∈ T, x ∈ CΠ(b) ∩ Gt, y ∈ CΠ(b′) ∩ Il′ : y = r(x);

(l, b) Π→C(l, b′) :⇔ ∃x ∈ CΠ(b), t ∈ R≥0, µ ∈ U : Φl(x, t, µ) ∈ CΠ(b′) ∧ ∀t′ ∈ [0, t] : Φl(x, t′, µ) ∈ Il;

• the set of initial states is

Q0 = {(l, b) ∈ QΠ | ∃x ∈ CΠ(b) ∩ Il : (l, x) ∈ X0}.
We can now define the successors of an abstract state (l, b) ∈ QΠ and a set of abstract states S ⊆ QΠ

by discrete jumps and by continuous flows, denoted respectively by PostD(l, b), PostD(S), PostC(l, b), and
PostC(S) as:

PostD(l, b) := {(l′, b′) ∈ QΠ | (l, b) Π→D(l′, b′)},
PostD(S) := {(l′, b′) ∈ QΠ | ∃(l, b) ∈ S : (l, b) Π→D(l′, b′)},

PostC(l, b) := {(l, b′) ∈ QΠ | (l, b) Π→C(l, b′)}, and

PostC(S) := {(l, b′) ∈ QΠ | ∃(l, b) ∈ S : (l, b) Π→C(l, b′)}.

9



For our thermostat example, consider the abstract state 1 < t < 2∧9 ≤ T ≤ 10 while in location Heat, which
is represented by the abstract state (l, b) = (Heat, (0, 1, 0, 0, 1, 0, 1, 0, 1, 1)) given Π as specified in equation
(1). Then we have:

PostD(l, b) = {(Cool, b)}, and

PostC(l, b) = {(l, b), (l, (0, 1, 0, 1, 1, 0, 1, 0, 1, 1))},
where (0, 1, 0, 1, 1, 0, 1, 0, 1, 1) represents 2 ≤ t ≤ 3 ∧ 9 ≤ T ≤ 10.

The verification problem in the abstract state-space can then be stated as described in the following
definition:

Definition 6 (Abstract verification problem) Given a hybrid system H = (X , L, X0, I, f, T ) and a vec-
tor of linear predicates Π, we can define the set of reachable abstract states ReachΠ as:

• Reach
(0)
Π := Q0;

• Reach
(i+1)
Π := PostD(Reach(i)

Π ) ∪ PostC(Reach(i)
Π )∀i ≥ 0; and

• ReachΠ :=
⋃

i≥0 Reach
(i)
Π .

Given a set of unsafe locations Lu ⊆ L and a convex set B ⊆ X , we can define BΠ := {(l, b) ∈ QΠ | l ∈
Lu ∧ CΠ(b) ∩ B 6= ∅}. The verification problem then is:

ReachΠ ∩ BΠ
?= ∅.

Lemma 3 Given a hybrid system H = (X , L, X0, I, f, T ) and a vector of linear predicates Π, the following
holds ∀i ∈ N:

Reach
(i)
Π ⊆ Reach

(i+1)
Π .

Proof: We first prove by induction that ∀i ∈ N

∀(l, b) ∈ Reach
(i)
Π : CΠ(b) ∩ Il 6= ∅ :

The statement is true for Reach
(0)
Π by definition of Q0. Now assume it is true for Reach

(i)
Π . Then, for each

state (l, b) ∈ PostC(Reach(i)
Π ), we have CΠ(b) ∩ Il 6= ∅ by definition of Π→C . Analogously, it holds for

PostD(Reach(i)
Π ), which in turn means that the statement holds for Reach(i+1)

Π .

Given the fact that Π→C is reflexive for all states (l, b) ∈ QΠ where CΠ(b) ∩ Il 6= ∅, we have ∀i ∈ N

Reach
(i)
Π ⊆ PostC(Reach(i)

Π ),

which proves our lemma. ut
We can now prove that predicate abstraction of hybrid systems computes an over-approximation of the

set of reachable states of the concrete system. This is formalized in the following lemma:

Lemma 4 Given a hybrid system H = (X , L, X0, I, f, T ) and a vector of linear predicates Π, the following
holds:

Reach ⊆ {(l, x) ∈ X | ∃(l, b) ∈ ReachΠ : x ∈ CΠ(b) ∩ Il}.

Proof: The proof of lemma 1 already guarantees that for any state (l, x) ∈ Reach : x ∈ Il. We only need to
prove the following statement, which we will prove by induction:

∀i ∈ N : Reach(i) ⊆ {(l, x) ∈ X | ∃(l, b) ∈ Reach
(i)
Π : x ∈ CΠ(b)}.

• The statement holds for i = 0 by definition of Reach(0)
Π .

10



• Assume, that the statement holds for i ∈ N. Then, given lemma 1, we only need to show that:

∀(l, x) ∈ Reach(i+1) \ Reach(i) ∃(l, b) ∈ Reach
(i+1)
Π : x ∈ CΠ(b).

We consider two cases independently. The first case covers the scenario that the state (l, x) ∈
Reach(i+1) \ Reach(i) was produced by a state (li, xi) ∈ Reach(i) through a discrete transition, that is
(li, xi) →D (l, x). The induction hypothesis guarantees that there exists a state (li, bi) ∈ Reach

(i)
Π such

that xi ∈ CΠ(bi). It is clear then, that there also exists a transition (li, bi)
Π→D(l, b) such that x ∈ CΠ(b),

which proves this case. Analogously, we can prove the other case for a transition (li, xi) →C (l, x),
which completes the proof.

ut

3 Reachability Analysis

The core of the verifier is the computation of the transitions between abstract states that capture both discrete
and continuous dynamics of the original system. Computing discrete successors is relatively straightforward,
and involves computing weakest preconditions, and checking non-emptiness of an intersection of polyhedral
sets. To compute continuous successors of an abstract state A, we use a strategy inspired by the techniques
used in CheckMate [17] and d/dt [11]. In this section we describe the computation of the abstract
transitions in more detail. Additionally, we describe a possible search strategy in the abstract state-space,
and prove soundness of the algorithm.

For the reachability analysis it is generally a good initial guess to include all guards and invariants of
a hybrid automaton H in the vector of linear predicates Π which will be used for our abstract state-space
reachability exploration. On the other hand, one may reduce the state-space of the abstract system by not
including all guards and invariants, but rather only include linear predicates that are important for the
verification of the given property. We discuss the choice of abstraction predicates in detail in [3, 5], and
assume here that Π is user-specified.

3.1 Computing Abstract Discrete Successors

Given an abstract state (l, b) ∈ QΠ and a particular transition (l, l′, g, r) ∈ T we want to compute all abstract
states that are reachable. A transition (l, l′, g, r) ∈ T is enabled in an abstract state (l, b) with respect to Π,
if CΠ(b) ∩ Gt 6= ∅.

We define a tri-valued logic using the symbols T := {0, 1, ∗}. 0 denotes that a particular linear predicate
is always false for a given abstract state, 1 that it is always true, whereas ∗ denotes the case that a linear
predicate is true for part of the abstract state, and false for the rest. We can define a function tΠX : Bk×Ln → T
formally as:

tΠX (b, e) =





1 : CΠ(b) ∩ X 6= ∅ ∧ ∀x ∈ CΠ(b) ∩ X : e(x) = 1;
0 : CΠ(b) ∩ X 6= ∅ ∧ ∀x ∈ CΠ(b) ∩ X : e(x) = 0;
∗ : otherwise.

As will be described shortly, we can use this tri-valued logic to reduce the size of the set of feasible abstract
successor states. For later use, we define the number of positions in a k-dimensional vector t ∈ Tk with
element ∗ as ||t||∗.

Given a particular transition (l, l′, g, r) ∈ T and a given linear predicate e : Rn → B, we need to compute
the boolean value of a linear predicate e after the reset r, which is e(r(x)). It can be seen that e◦ r : Rn → B
is another linear predicate. If we generalize this for a vector of predicates Π = (π1, . . . , πk) ∈ (Ln)k by
Π ◦ r := (π1 ◦ r, . . . , πk ◦ r), the following lemma immediately follows.

Lemma 5 Given a k-dimensional vector b ∈ Bk, a vector of n-dimensional linear predicates Π ∈ (Ln)k,
and a reset mapping r ∈ (Σn)n, we have:

x ∈ CΠ◦r(b) ⇔ r(x) ∈ CΠ(b).
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We can now compute the possible successor states of an enabled transition (l, l′, g, r) ∈ T from a consistent
abstract state (l, b) with respect to a vector of linear predicates Π = (π1, . . . , πk) as (l′, b′), where b′ ∈ Tn

and each component b′i is given by: b′i = tΠX (b, πi ◦ r). If b′i = 1, then we know that the corresponding linear
predicate πi ◦ r is true for all points x ∈ CΠ(b) ∩X . This means that all states in CΠ(b) ∩X after the reset
r will make πi true. Similarly, if b′i = 0 we know that the linear predicate will always be false. Otherwise, if
b′i = ∗, then either CΠ(b)∩X = ∅ or there exist concrete continuous states in CΠ(b)∩X that after the reset
r force πi to become true, as well as other concrete continuous states that make πi to become false. Hence,
the tri-valued vector b′ ∈ Tn represents 2||b

′||∗ many possibilities, which combined with location l′ make up
at most2 2||b

′||∗ many abstract states. We additionally define c : Tk → 2B
k

as:

c(t) := {b ∈ Bk | ∀i ∈ {1, . . . , k} : ti 6= ∗ ⇒ ti = bi}.

An abstract state (l′, e) ∈ QΠ is a discrete successor of (l, b), if e ∈ c(b′) and CΠ◦r(e) intersects with
CΠ(b) and the guard of the corresponding transition, and the reset hits the invariant of the next location l′,
which is formulated in the following theorem.

Theorem 1 Given an abstract state (l, b) ∈ QΠ with respect to a k-dimensional vector of n-dimensional
linear predicates Π, a transition (l, l′, g, r) ∈ T and the corresponding guard set Gt, we have ∀v ∈ Bk:

CΠ◦r(v) ∩ CΠ(b) ∩ Gt ∩ Prer(Il′) 6= ∅ ⇔ (l, b) Π→D(l′, v),

where Prer : 2R
n → 2R

n

with Prer(P ) = {x ∈ Rn | r(x) ∈ P}.

Proof: If CΠ◦r(v)∩CΠ(b)∩Gt∩Prer(Il′) is not empty, we can pick a point x ∈ CΠ◦r(v)∩CΠ(b)∩Gt∩Prer(Il′).
As x ∈ Gt ∩ Prer(Il′), we found a discrete transition in the concrete state-space (l, x) →D (l′, r(x)), as we
know that r(x) ∈ Il′ . Additionally, we know that x ∈ CΠ(b) and that x ∈ CΠ◦r(v). By using lemma 5 we
have r(x) ∈ CΠ(v). Hence, this corresponds to a transition in the abstract state-space (l, b) Π→D(l′,v).

If, on the other hand, we have (l, b) Π→D(l′,v) for some discrete transition (l, l′, g, r) ∈ T , we must have:
∃x ∈ CΠ(b) : x ∈ Gt ∧ r(x) ∈ CΠ(v) ∧ r(x) ∈ Il′ . Using lemma 5, this means that ∃x ∈ CΠ(b) : x ∈ Gt ∧ x ∈
CΠ◦r(v) ∧ x ∈ Prer(Il′). Hence we found that CΠ◦r(v) ∩ CΠ(b) ∩ Gt ∩ Prer(Il′) 6= ∅. ut

The computation of Prer(Il′) can be performed using lemma 5, as we can also write it as CI(l′)◦r(1, . . . , 1)
assuming I(l′) represents a vector of linear predicates rather than a set. If we assume that all the linear
predicates of the guard g ∈ Cn and the invariants I(l) and I(l′) are part of the k-dimensional vector of linear
predicates Π, then we can skip the additional check, whether CΠ◦r(v) ∩CΠ(b) intersects with the guard set
Gt and the set Prer(Il′). In addition, we can restrict the search for non-empty intersections to v ∈ c(b′)
instead of the full space Bk due to the aforementioned observations and the following lemma:

Lemma 6 Given an abstract state (l, b) ∈ QΠ with respect to a k-dimensional vector of n-dimensional linear
predicates Π = (π1, . . . , πk), assume that b′ ∈ Tk such that each component b′i is given by b′i = tΠX (b, πi ◦ r)
for a transition t = (l, l′, g, r) ∈ T . Then the following statement holds:

(l, b) Π→D(l′,v) ⇒ v ∈ c(b′).

Proof: Assume the contrary. Then, there has to be a component index 1 ≤ i ≤ k, such that tΠX (b, πi ◦r) 6= ∗
and vi 6= tΠX (b, πi ◦ r). We consider only the case that vi = 0 ∧ tΠX (b, πi ◦ r) = 1, since the other case is
analogous. The fact that tΠX (b, πi ◦ r) = 1 means that ∀x ∈ CΠ(b)∩X : πi ◦ r(x) = 1. Therefore, there is no
state in CΠ(b)∩X that makes πi ◦ r false, which implies that no state in CΠ(b)∩Gt makes πi ◦ r false. This
contradicts that vi = 0. ut

Consider the thermostat example of figure 1, and in particular the transition from the Cool to the
Heat location. Assume that we are interested in computing the discrete successors of the abstract state
(l, b) = (Cool, (0, 1, 1, 0, 1, 0, 1, 1, 0, 1)), which represents the continuous state-space 0.5 ≤ t ≤ 1 ∧ 5 ≤ T ≤ 6

2Note, that CΠ(b) ∩ X may be empty for some b, and is hence meaningless.
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given the vector of predicates Π as specified in equation (1). The guard for this transition is T ≤ 6, while
the reset is t := 0 and T := T . Therefore, we have Π ◦ r as

Π ◦ r = (0 ≤ 0, 0 ≥ 0.5, 0 ≤ 1, 0 ≥ 2, 0 ≤ 3, T ≤ 4.5, T ≥ 5, T ≤ 6, T ≥ 9, T ≤ 10).3

We can now compute b′ ∈ T10 where each component b′i is given by b′i = tΠX (b, πi ◦ r). In this example we
have

b′ = (1, 0, 1, 0, 1, 0, 1, 1, 0, 1) ∈ T10.

As ||b′||∗ = 0, there is only one possible discrete successor for (l, b), namely (Heat, (1, 0, 1, 0, 1, 0, 1, 1, 0, 1))
representing t ≤ 0 ∧ 5 ≤ T ≤ 6 in the continuous state-space. We now use theorem 1 to check whether
(l′,v) = (Heat, (1, 0, 1, 0, 1, 0, 1, 1, 0, 1)) is indeed a valid successor of (l, b). We have

CΠ◦r(v) = {(t, T ) ∈ R2 | 5 ≤ T ≤ 6},
CΠ(b) = {(t, T ) ∈ R2 | 0.5 ≤ t ≤ 1 ∧ 5 ≤ T ≤ 6},

Gt = {(t, T ) ∈ [0, 100]2 | 5 ≤ T ≤ 6}, and
Prer(Il′) = {(t, T ) ∈ [0, 100]2 |T ≤ 10}.

Therefore, we have

CΠ◦r(v) ∩ CΠ(b) ∩ Gt ∩ Prer(Il′) = {(t, T ) ∈ [0, 100]2 | 0.5 ≤ t ≤ 1 ∧ 5 ≤ T ≤ 6} 6= ∅,

which implies that indeed (l, b) Π→D(l′, v).

3.2 Computing Abstract Continuous Successors

To compute continuous successors of an abstract state A, we compute the polyhedral slices of states reachable
at fixed times r, 2r, 3r, . . . for a suitably chosen r, and then, take convex-hull of all these polyhedra to over-
approximate the set of all states reachable from A. We are only interested in testing if this set intersects with
a new abstract state. This approach has many benefits compared to the traditional approach of computing
approximations of reachable sets for hybrid systems. First, the expensive operation of computing continuous
successors is applied only to abstract states, and not to intermediate polyhedra of unpredictable shapes and
complexities. Second, we can prematurely terminate the computation of continuous successors whenever
new abstract transitions are discovered. Finally, we can explore with different search strategies aimed at
making progress in the abstract graph.

Our procedure for computing continuous successors of the abstract system HΠ is based on the following
observation. By definition, the abstract state (l, b′) is reachable from (l, b) if the following condition is
satisfied

PostC(l, CΠ(b) ∩ Il) ∩ {(l, x) |x ∈ CΠ(b′) ∩ Il} 6= ∅, (2)

where PostC is the successor operator of the concrete system H. Intuitively, the above condition means that
while staying at location l the concrete system admits at least one trajectory from a point x ∈ CΠ(b)∩Il to
a point y ∈ CΠ(b′) ∩ Il. The test of the condition (2) requires the computation of continuous successors of
the concrete system, and for this purpose we will make use of a modified version of the reachability algorithm
implemented in the verification tool d/dt [11]. For a clear understanding, let us first recap this algorithm.

The approach used by d/dt works directly on the continuous state-space of the hybrid system and uses
orthogonal polyhedra to represent reachable sets, which allows to perform all operations, such as boolean
operations and equivalence checking, required by the verification task. The computation of reachable sets
is done on a step-by-step basis, that is each iteration k computes an over-approximation of the reachable
set for the time interval [kr, (k + 1)r] where r is the time step. Suppose P is the initial convex polyhedron.
The set Pr of successors at time r of P is the convex hull of the successors at time r of its vertices. To
over-approximate the successors during the interval [0, r], the convex hull C = conv(P ∪ Pr) is computed
and then enlarged by an appropriate amount. Finally, the enlarged convex hull is over-approximated by an

3Clearly, the first five linear predicates are equivalent to true, false, true, false, true.
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orthogonal polyhedron. To deal with invariant conditions that constrain the continuous evolution at each
location, the algorithm intersects Pr with the invariant set and starts the next iteration from the resulting
polyhedron.

It is worth emphasizing that the goal of the orthogonal approximation step in the reachability algorithm
of d/dt is to represent the reachable set after successive iterations as a unique orthogonal polyhedron,
which facilitates termination checking and the computation of discrete successors. However, in our predicate
abstraction approach, to compute continuous successors of the abstract system we will exclude the orthogonal
approximation step for the following reasons. First, checking condition (2) does not require accumulating
concrete continuous successors. Moreover, although operations on orthogonal polyhedra can be done in
any dimension, they become expensive as the dimension grows. This simplification allows us to reduce
computation cost in the continuous phase and thus be able to perform different search strategies so that
the violation of the property can be detected as fast as possible. In the sequel, for simplicity, we will
use an informal notation ApproxPostΠ

C(l, P, [0, r]) to denote the above described computation of an over-
approximation of concrete continuous successors of (l, P ) during the time interval [0, r] and the outcome of
ApproxPostΠ

C is indeed the enlarged convex hull mentioned earlier. The algorithm for over-approximating
continuous successors of the abstract system is given below. It terminates if the reachable set of the current
iteration is included in that of the preceding iteration. This termination condition is easy to check but
obviously not sufficient, and hence in some cases the algorithm is not guaranteed to terminate. An illustration
of Algorithm 1 is shown in figure 4.

Algorithm 1 Over-Approximating the Abstract Continuous-Successors of (l, b)
Rc ← ∅;{stores reachable abstract states}
P 0 ← CΠ(b) ∩ X ;
k ← 0 ;
repeat

P k+1 ← ApproxPostΠ
C(l, P k, [0, r]) ∩ X ;

for all (l, b′) ∈ QΠ \Rc do
if P k+1 ∩ CΠ(b′) 6= ∅ then

Rc := Rc ∪ (l, b′) ;
end if

end for
k ← k + 1 ;

until P k+1 ⊆ P k

return Rc ;

In each iteration k, to avoid testing all unvisited abstract states (l, b′), we will use a similar idea to
the one described in the computation of discrete successors. We can determine the tri-valued result of the
intersection of the time slice P k with the half-space corresponding to each predicate in Π, allowing us to
eliminate the abstract states which do not intersect with P k.

The algorithm terminates if the reachable set of the current iteration is included in that of the preceding
iteration, or after some prespecified maximal number Kmax of iterations. The value of Kmax is determined
by a high-level procedure which handles search order.

We give a brief illustration of the computation of continuous successors for the thermostat example
of figure 1. Assume the current abstract state is (l, b) = (Cool, (0, 1, 1, 0, 1, 0, 1, 0, 1, 1)) which represents
0.5 ≤ t ≤ 1 ∧ 9 ≤ T ≤ 10 in the continuous state-space. The flow in the Cool location is specified by the
differential equations ṫ = 1 and Ṫ = −T . Assume that P (0) represents the set P (0) = {(t, T ) ∈ R2 | 0.5 ≤
t ≤ 1 ∧ 9 ≤ T ≤ 10}. Then we can compute the image of P (0) after ∆t time-units as

P (∆t) = {(t, T ) ∈ R2 | 0.5 + ∆t ≤ t ≤ 1 + ∆t ∧ 9 · e−∆t ≤ T ≤ 10 · e−∆t}.

For a sample time step ∆t = 0.3, we thus have

P (0.3) = {(t, T ) ∈ R2 | 0.8 ≤ t ≤ 1.3 ∧ 9 · e−0.3 ≤ T ≤ 10 · e−0.3},
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P ′ = CΠ(b′)

P 1

P 2

P 0 = CΠ(b)

Figure 4: Illustration of the computation of continuous successors. After two iterations the new abstract
state (l, b′) is reachable from (l, b).

where 9 · e−0.3 ≈ 6.667 and 10 · e−0.3 ≈ 7.408. We thus proved that (l, b) Π→C(l, (0, 1, 1, 0, 1, 0, 1, 0, 0, 1)) and
(l, b) Π→C(l, (0, 1, 0, 0, 1, 0, 1, 0, 0, 1)), which represent 0.5 ≤ t ≤ 1 ∧ 6 < T < 9 and 1 < t < 2 ∧ 6 < T < 9
respectively in the continuous state-space. Note that we did not illustrate the computation of convex hulls
for the computation of successor states due to continuous flow. For the two aforementioned abstract states
it is enough though to compute the slice after 0.3 time-units to determine that they are indeed successors of
(l, b).

3.3 Searching the Abstract State-Space

We implemented an on-the-fly search of the abstract state-space. The search in the abstract state-space can
be performed in a variety of ways. Our goal is to make the discovery of counter-examples in the abstract
state-space given a reachability property as fast as possible. In the case that the safety property holds we
need to search the entire reachable abstract sub-space.

We perform a DFS, which usually does not find a shortest counter-example possible. On the other hand,
it only stores the current trace of abstract states from an initial abstract state on a stack. In case we find an
abstract state that violates the property, the stack contents represent the counter-example. This is generally
much more memory efficient than BFS.

We give a priority to computing discrete successors rather than continuous successors. This decision is
based on the fact that computing a discrete successor is generally much faster than computing a continuous
one. During the computation of continuous successors we abort or interrupt the computation when a new
abstract state is found. Not running the fix-point computation of continuous successors to completion may
result in a substantial speed-up when discovering a counter-example, if one exists. We store already visited
abstract states in a hash table. The algorithm is given as Algorithm 2.

Using the aforementioned approach we can prove the following theorem which states the soundness of
Algorithm 2.

Theorem 2 If Algorithm 2 terminates and reports that the abstract system is safe, then the corresponding
concrete system is also safe.

Proof: We need to show that
ReachΠ ∩ BΠ = ∅ ⇒ Reach ∩ BX = ∅.

Lemma 4 shows the over-approximation of Reach by ReachΠ. It is also clear, that BX is over-approximated
by BΠ. Hence, if ReachΠ ∩ BΠ is empty, so is Reach ∩ BX . ut

Also, in order to force termination of the continuous search routine, we can limit the number of iterations
k to some value Kmax. We can thus bound the computation of PostC(l, b) for an abstract state (l, b).
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Algorithm 2 Abstract State-Space Reachability Analysis via DFS

1: hashTable ← new HashTable () ; {stores already visited states}
2: while Q0\hashTable 6= ∅ do
3: stack ← new Stack () ; {stores current search path}
4: pick (l, b) ∈ Q0\hashTable ;
5: push (l, b) onto stack ; add (l, b) to hashTable ;
6: repeat
7: if stack.top().violatesProperty() then
8: return stack ; {stack represents trace to violation of property}
9: end if

10: if PostD(stack.top())\hashTable 6= ∅ then {check discrete successors}
11: pick (l, b) ∈ PostD(stack.top())\hashTable ;
12: push (l, b) onto stack ; add (l, b) to hashTable ;
13: else if PostC(stack.top())\hashTable 6= ∅ then {check continuous successors}
14: pick (l, b) ∈ PostC(stack.top())\hashTable ;
15: push (l, b) onto stack ; add (l, b) to hashTable ;
16: else
17: stack.pop() ; {this state is not on any path to a property violation}
18: end if
19: until stack.isEmpty() ;
20: end while
21: return “Property is guaranteed!” ;

4 Optimizations

If the original hybrid system has m locations and we are using k predicates for abstraction, the abstract
state-space has m · 2k abstract states. To compute the abstract successors of an abstract state A, we need
to compute its discrete and continuous successors of A, and check if this set intersects with each of the
other abstract states. This can be expensive as the number of abstraction predicates grows. We present
optimizations in this section that are aimed at speeding up the search in the abstract state-space.

4.1 Search Constraints

We include an optimization technique in the search strategy. Consider a real counter-example in the concrete
hybrid system. There exists an equivalent counter-example that has the additional constraint that there are
no two consecutive transitions due to continuous flow in the equivalent counter-example. This is due to the
additivity of flows of hybrid systems, namely

(l, x) →C (l, x′) ∧ (l, x′) →C (l, x′′) ⇒ (l, x) →C (l, x′′).

We are therefore searching only for counter-examples in the abstract system that do not have two consecutive
transitions due to continuous flow. By enforcing this additional constraint we eliminate some spurious
counter-examples that could have been found otherwise in the abstract transition system. The spurious
counter-examples that are eliminated are due to the fact that (l, b) Π→C(l, b′) and (l, b′) Π→C(l, b′′) does not
imply that (l, b) Π→C(l, b′′). Therefore, we are in fact not following every possible path according to the
relation Π→ as it is presented in Algorithm 2, but only a part of it without compromising the conservativeness
of our approach. We illustrate this optimization technique in figure 5. If the abstract state t can only be
reached by transitions due to continuous flow, we will not explore its continuous successors by the same
continuous dynamics. Therefore, in the example illustrated in figure 5, the abstract state u will not be
regarded as reachable. On the other hand, v will be reached by continuous flow from s. For an example of
the use of this search constraint, we refer the reader to section 4.4.1.
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Figure 6: BSP-based construction of the abstract state-space

4.2 Binary Space Partition Tree

We now describe another optimization concerning the construction of the abstract state-space. Since the
predicates decompose the continuous state-space into polyhedral regions, instead of computing a polyhedron
for each abstract state independently, we can use the Binary Space Partition (BSP) technique to incrementally
construct the abstract state-space.

The polyhedra resulting from partitioning the continuous state-space X by one predicate after another
are stored in a BSP tree as follows. First, the root of the tree is associated with the whole set X . We
choose a predicate πi from Π to partition X into 2 convex polyhedral subsets and create two child nodes:
a left node is used to store the intersection of X with the half-space H(πi) (which contains all points in X
satisfying πi) and a right node to store the intersection with the half-space H(πi). We proceed to recursively
partition the non-empty polyhedra at the new nodes. Once all the predicates in Π have been considered, the
non-empty polyhedra at the leaves of the tree correspond to the closure of the concretizations of all possible
consistent abstract states. This construction is illustrated by figure 6 where the continuous state-space X is a
rectangle in two dimensions and the vector of initial predicates Π = (π1, π2, π3). The predicate π1 partitions
X into 2 polygons P1 and P1̄. Next, splitting P1 and P1̄ by the predicate π2 gives P12, P12̄ and P1̄2, P1̄2̄.
Then, only the interior of the polygon P1̄2̄ intersects with the hyperplane of the predicate π3 while all other
polygons in the current decomposition lie entirely inside H(π3); therefore, only P1̄2̄ is split. This BSP tree
provides simultaneously a geometric representation of the state-space and a search structure. Note that the
amount of splitting depends on the order of predicates. As we shall see in the next section, this order is
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determined by the search strategy, more precisely, the tree is built on-the-fly, based on the decision which
abstract state to explore next. This BSP construction allows fast detection of combinations of predicates
that give inconsistent abstract states and thus saves a significant amount of polyhedral computations. As
an example, the model of a vehicle coordination system discussed in section 6 has 17 initial predicates, and
using this technique we found 785 consistent abstract states while the number of possible abstract states is
217.

4.3 Vector Field Analysis

In order to construct the discrete abstraction of a hybrid system, we need to compute the continuous
successors of an abstract state, and check if this set intersects with each of the other abstract states. In
this section we present a method, based on a qualitative analysis of the vector fields, that avoids the test
for feasibility of some transitions. This allows to obtain a first rough over-approximation of the transition
relation which is then refined using reachability computations.

Geometrically speaking, the X -bounded concretizations CΠ(b) ∩ X for all b ∈ Bk form a convex decom-
position of the concrete state-space X . Therefore, for any two non-empty abstract states (l, b) and (l, b′),
the closures of their concretizations cl(CΠ(b) ∩ X ) and cl(CΠ(b′) ∩ X ) are either disjoint or have only one
common facet. We now focus on the latter case and denote by F the common facet. We assume that F is
a (n− 1)-dimensional polyhedron. Let nF be the normal of F which points from CΠ(b′) ∩X to CΠ(b) ∩X .
If for all points on the face F the projection of fl on nF is non-negative, that is,

∀x ∈ F 〈fl(x),nF 〉 ≥ 0, (3)

then there exists a trajectory by continuous dynamics fl from CΠ(b′) ∩ X to CΠ(b) ∩ X . Moreover, any
trajectory from CΠ(b) ∩ X to CΠ(b′) ∩ X by fl, if one exists, must cross another polyhedron CΠ(b′′) ∩ X
(see figure 7). In the context of predicate abstraction, this means that the transition from (l, b) to (l, b′) is
feasible. Furthermore, we need not consider the transition by fl from (l, b) to (l, b′) because this transition, if
possible, can be deduced from transitions via some other intermediate states4. Note that when the dynamics
fl is affine, in order for the condition (3) to hold, it suffices that 〈fl(x), nF 〉 is non-negative at all vertices of
F .

On the other hand, if the dynamics fl is stable, we can use the standard Lyapunov technique for linear
dynamics to rule out some abstract states that cannot be reached from (l, b) as follows. Let P be the solution
of the Lyapunov equation of the dynamics fl and E be the smallest ellipsoid of the form E = {x |xT Px ≤ α}
that contains the polyhedron CΠ(b)∩X . We know that E is invariant in the sense that all trajectories from
points inside E remain in E . Consequently, all the abstract states (l, b′) such that CΠ(b′)∩X ∩E = ∅ cannot
be reached from (l, b) by continuous dynamics fl.

4.4 Guided Search

The predicate abstraction implementation performs an on-the-fly depth-first search. Since an abstract state
has many successors, the performance of the search depends on which successor is examined next to continue

4It should be noted though that this technique of eliminating computations cannot be used in conjunction with the search
strategy as described in section 4.1.
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the search at every step. If there exists a counter-example to a safety property in the concrete system, then
we want to identify a corresponding abstract counter-example, which must exist, as fast as and as direct as
possible.

We present three guided search strategies that we have implemented in our tool. In each case, we define
a priority function ρ : QΠ → R that tells us how “close” each abstract state is to the set of bad states BΠ.
As we are trying to minimize the time it takes to discover a counter-example, we will prefer states that are
“closer” to the set of bad states. We change lines 10–18 of algorithm 2 which handle the search strategy in
the algorithm. Instead, we compute all possible successor states and then pick an abstract state (l, b) such
that ρ(l, b) is smallest. Algorithm 3 shows the code that needs to be substituted for lines 10–18 in algorithm
2.

Algorithm 3 Guided Search Strategy Replacement Code

map ← new Map ( real × abstractStates) ; {stores and sorts pairs of priorities and abstract states}
for all (l, b) ∈ PostD(stack.top())\hashTable do {discrete successors}

add (ρ(l, b), (l, b)) to map ;
end for
for all (l, b) ∈ PostC(stack.top())\hashTable do {continuous successors}

add (ρ(l, b), (l, b)) to map ;
end for
if map.isNotEmpty() then {at least one successor exists}

pick (l, b) ∈ map with smallest priority ;
push (l, b) onto stack ; add (l, b) to hashTable ;

else
stack.pop() ; {this state is not on any path to a property violation}

end if

Given a hybrid system H = (X , L,X0, I, f, T ), we can define a graph GH = (V, E) such that V = L and

(l, l′) ∈ E :⇔ ∃(l, l′, g, r) ∈ T.

Given the set of unsafe locations Lu ⊆ L, we define a priority function ρD : L → N on locations as:

ρD(l) =





0 : l ∈ Lu,
length of shortest path from l to Lu in GH : l /∈ Lu ∧ such a path exists,

∞ : otherwise.

It is clear that ∀l ∈ L : ρD(l) 6= ∞ ⇒ 0 ≤ ρD(l) ≤ |L| − 1. Also notice that we do not need to consider
any location l ∈ L with ρD(l) = ∞ during the reachability analysis, as there is no way to reach the set of
bad states once we are in location l. Hence, eliminating those locations and all adjacent transitions does
not impact the reachability result. We use ρD in all three guided search strategies that we introduce in the
following.

For the thermostat example of figure 1, we defined Lu = {Check}. Thus, we have ρD(Check) = 0,
ρD(Heat) = 1, and ρD(Cool) = 2.

4.4.1 Mask Priority

The mask priority guided search strategy is based on the boolean vector representation of the continuous
part of an abstract state. We define a mask m ∈ Tk that represents a compact description of the continuous
part of all abstract states that intersect with the set of bad states B. Given a predicate π, H(π) denotes the
half-space defined by π and H(π) denotes the complement of H(π). Then we define m = (m1, . . . , mk) as:

mi =





1 : B ⊆ H(πi),
0 : B ⊆ H(πi),
∗ : otherwise.
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We then define a comparator function δ : B× T→ B as

δ(b, t) =





1 : t = 1 ∧ b = 0,
1 : t = 0 ∧ b = 1,
0 : otherwise,

and a priority function ρ1 : Bk → N as

ρ1(b) =
k∑

i=1

δ(bi, mi).

Clearly, ∀b ∈ Bk : 0 ≤ ρ1(b) ≤ k. The value ρ1(b) represents the number of positions in the vector
representation b that contradict the corresponding position in the mask m.

One way of combining ρ1 with ρD to form a priority function ρM : QΠ → N over abstract states is in the
following manner:

ρM (l, b) =
{ ∞ : ρD(l) = ∞,

(k + 1)ρD(l) + ρ1(b) : otherwise.

The multiplication of ρD(l) by k +1 guarantees that abstract states with a smaller distance to Lu in GH are
always preferred compared to abstract states where the location is “further away” from the unsafe locations.

We will now go back to the thermostat example as described in figure 1. Figure 8 illustrates our guided
search including the search constraint optimization (see section 4.1) using the predicates as defined in equa-
tion (1). All 35 reachable abstract states are safe, which, following theorem 2, means that the concrete
hybrid system is also safe.

Figure 8 represents the graph of reachable abstract states. We included a running number for each
abstract state, which corresponds to the chronological ordering of the reachable states found during the
search of the abstract state-space. Dashed arrows correspond to transitions between abstract states that
are taken due to continuous flow of time, whereas solid arrows represent transitions due to discrete jumps
between locations. We are not trying to compute all possible arrows in this graph, instead we are trying
to compute all reachable abstract states. Therefore, we only include arrows that represent the first time a
new abstract state is found. However, there are two solid arrows (representing a transition due to a discrete
jump) in the graph that are included although the destination abstract state has been reached before. These
are the transitions between the abstract states with chronological number 15 and 10, and the transition from
12 to 22. These transitions are important, as they lead the search to a previously visited abstract search that
had so far only been visited by an abstract transition due to continuous flow. Due to the aforementioned
search constraint optimization, we have not explored the continuous successors of these two abstract states.
As they have been reached by an abstract transition due to a discrete jump now, we have to compute the
continuous successors of these abstract states.

In addition, for the stability of the computation, we thickened the bounded continuous interval for the
timer t to [−ε, 100] instead of [0, 100] for a small ε > 0. This is due to the fact that the predicate t ≤ 0,
if true, would produce a lower-dimensional polyhedron, which tends to be numerically unstable. Therefore,
the predicate t ≤ 0 if true stands for −ε ≤ t ≤ 0 instead of t = 0. Thus the tool finds the transition from
the abstract state with chronological number 5 to the abstract state 10 in figure 8.

As mentioned, we also included a running number for each abstract state representing the chronological
order of choosing the state during the search using a mask priority guided search. It can be seen that tran-
sitions are preferred that reach abstract states with location Check and those transitions due to continuous
flow that reach abstract states that are closer in the continuous state-space to the bad states. Therefore,
abstract states where the temperature is in a lower interval are chosen first before other abstract states with
the same location are considered. Consider for example the abstract state with chronological number 1. As
ρD(Heat) = 1 and ρD(Cool) = 2, we know that the mask priority of the abstract state with chronological
number 2 is lower than that of 34. Thus the transition in the abstract state-space due to continuous flow is
chosen before the transition due to a discrete switch.

4.4.2 Euclidean Distance Priority

The Euclidean distance priority guided search strategy differs from the mask priority one because it does not
rely on the boolean vector representation enforced by the chosen predicates for the abstraction. Instead, it
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Figure 8: The graph of reachable abstract states for the thermostat model
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measures the Euclidean distance from the continuous part of the abstract state to the set of bad states. To
do so, we define the distance between two non-empty convex polyhedral sets P ⊆ X and Q ⊆ X as follows:
d(P, Q) = inf{d(p−q) | p ∈ P ∧q ∈ Q} where d(·) denotes the Euclidean distance. Then the priority function
ρ2 : Bk → R can be computed as ρ2(b) = d(CΠ(b) ∩ X ,B). As X is bounded, we can compute the limit for
any two non-empty convex subsets of X , and we denote that value with dX . We can then combine ρ2 with
ρD to form the priority function ρE : QΠ → R as

ρE(l, b) =
{ ∞ : ρD(l) = ∞,

(dX + 1)ρD(l) + ρ2(b) : otherwise.

4.4.3 Reset Distance Priority

The Euclidean distance priority does not consider the effects of resets of the continuous variable x enforced
by switches in the concrete system. The reset distance priority guided search strategy favors abstract states
in any location which are close to the set of bad states in an unsafe location after appropriate resets are taken
into consideration. Appropriate resets are those that lead the current abstract state on a shortest path to an
unsafe location. Assume we generalize the reset function r to r : 2R

n → 2R
n

as r(X) =
⋃

x∈X{r(x)}. We then
define the reset distance priority function ρR : QΠ → R by ρR(l, b) = ρ3(l, CΠ(b) ∩ X ) and ρ3 : L× 2X → R
as:

ρ3(l, X) =

{
d(X,B) : ρD(l) = 0,

min (l,l′,g,r)∈T

ρD(l′)=ρD(l)−1

ρ3(l′, r(X) ∩ X ) : otherwise.

The reset distance represents the smallest Euclidean distance of the current abstract state to the bad set in
a shortest path to an unsafe location, if no more transitions due to continuous flow occur.

4.5 Generalized Predicate Abstraction

We present a formal framework of abstractions of predicate abstraction — generalized predicate abstraction
— which allows clustering of abstract states. We will use a location-specific predicate abstractor: The
main idea of the location-specific predicate abstraction routine is the fact that certain predicates are only
important in certain locations. Consider for example guards and invariants. A specific predicate representing
an invariant may be important in one location of the linear hybrid system, but may not be relevant in the
other locations. Considering this predicate only in the location it is really needed, may reduce the number of
reachable abstract states considerably. This is similar to optimizations in predicate-abstraction based tools
for model checking of C programs, such as Cartesian predicate abstraction [13] and lazy abstraction [40].

For a hybrid system H and a given set of predicates Π, we will define an abstraction of the abstract
state-space QΠ.

Definition 7 The generalized predicate abstract state-space is defined as

Q̂Π := L× Tk,

such that
(l, t) Π→G(l′, t′) :⇔ ∃b ∈ c(t), b′ ∈ c(t′) : (l, b) Π→(l′, b′).

The set of initial abstract states is

Q̂0 := {(l, t) ∈ Q̂Π | ∃b ∈ c(t) : (l, b) ∈ Q0}.

The above definition allows a concrete state (l, x) ∈ X , as well as an abstract state (l, b) ∈ QΠ, to be
represented by many states in Q̂Π. Therefore, we restrict our attention to a subset of Q̂Π.

Definition 8 A subset of abstract states Q ⊆ Q̂Π is called location-specific, iff

1. ∀l ∈ L, b ∈ Bk∃t ∈ Tk : b ∈ c(t) ∧ (l, t) ∈ Q, and

2. ∀(l, t1), (l, t2) ∈ Q : t1 6= t2 ⇒ c(t1) ∩ c(t2) = ∅.
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The set of transitions for a location-specific Q is the restriction of Π→G to Q, and the set of initial states is
the restriction of Q̂0 to Q.

The search in the generalized abstract state-space needs only slight modifications. The computation of
the continuous successor set of an generalized abstract state does not need any alteration, as transitions due
to continuous flow do not change the location of the states and, therefore, the set of predicates remains the
same. On the other hand, we need to modify the computation of the discrete successor-set. The weakest
precondition computation for a particular discrete switch needs to accommodate for the fact that the set
of predicates in the locations before and after the switch are not necessarily the same anymore. For an
example of the use of generalized predicate abstraction in out tool we refer the reader to section 6.1.2.
The following theorem stating the soundness of this approach is based on the soundness of the predicate
abstraction algorithm [4].

Theorem 3 If the generalized predicate abstraction routine terminates and reports that the system is safe,
then the corresponding concrete system is also safe.

Proof: The soundness of the generalized predicate abstraction algorithm follows from the soundness of the
predicate abstraction algorithm. Similarly to the proof of theorem 2, we can show that if the set of reachable
states and the set of bad states in the location-specific abstract system do not intersect, then the reachable
states in the predicate abstract state-space do not intersect with the bad states. Following theorem 2 this
assures us that the concrete system is also safe. ut

5 Bounded Completeness

Given a linear hybrid system H, an initial set X0, and a bad set BX , the verification problem is to determine
if there is an execution of H starting in X0 and ending in BX . If there is such an execution, then even
simulation can potentially demonstrate this fact. On the other hand, if the system is safe (i.e., BX is
unreachable), a complete verification strategy should be able to demonstrate this. However, a symbolic
algorithm that computes the set of reachable states from X0 by iteratively computing the set of states
reachable in one discrete or continuous step, cannot be guaranteed to terminate after a bounded number of
iterations. Consequently, for completeness, we will focus on errors introduced by approximating reachable
sets in one continuous step using polyhedra, as well as due to predicate abstraction. We will show that
predicate abstraction is complete for establishing bounded safety; that is, unreachability of bad states for
a specified number of discrete switches and time duration. For this purpose, we define a distance function
d : X ×X → R≥0 on X as

d((l, x), (l′, x′)) =
{

d(x, x′) : l = l′,
∞ : else;

and generalize this to a distance function d : 2X × 2X → R≥0 by

d(S, S′) = min
(l,x)∈S,(l′,x′)∈S′

d((l, x), (l′, x′)).

5.1 Completeness for Continuous Systems

We can present a completeness result if we focus on purely continuous systems first. We will use two additional
assumptions for this result. We will only consider systems that exhibit a separation of the reachable state-
space and the bad states. In addition we will use the knowledge of the optimization of the search strategy
which prohibits multiple successive continuous successors as described in section 4.1.

We assume a purely continuous system such that we can specify the initial convex region X0 := {x ∈
X |(l0, x) ∈ X0} and the set of bad states BX respectively using the conjunction of a finite set of pred-
icates. In addition, assume a separation of the set Reach of states reachable from X0, and BX , that is
d(Reach,BX) ≥ ε. Following [29], we know that we can find a small enough time-step that will ensure that
the over-approximation error due to the computation of convex hulls will not result in an overlap of the
over-approximation of Reach with BX . Figure 9 illustrates this idea. Starting from an initial polyhedron
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Figure 9: Proving completeness for purely continuous systems

P 0 representing X0, we compute an over-approximation of the reachable set Reach using subsequent convex
hulls P 1, P 2, . . ., as it was described in section 3.2.

Additionally, we assume that the set of predicates used for predicate abstraction entails all the predicates
corresponding to the linear constraints needed to specify the polyhedral sets X0 and BX . Given the opti-
mization of our search strategy it is clear that any abstract refinement of BX will not be declared reachable
by the search.

5.2 (n, τ, δ)-Safety

We also prove that our predicate abstraction model checker is complete to establish safety up to a fixed
number of discrete switches and time duration. Note that the recent research on bounded model checking
[19] can be viewed as establishing safety of discrete systems up to a fixed number of transitions. Let us first
define this notion of bounded safety for hybrid systems formally.

Definition 9 For a hybrid system H = (X , L, X0, I, f, T ) we define the set of states Reach(n,τ) that are
reachable using at most n discrete switches and a combined flow of at most τ time-units from the initial
states X0 as

• Reach(0,0) := X0,

• Reach(i+1,t) := PostD(Reach(i,t)) ∪ Reach(i,t) ∀i ≥ 0, and

• Reach(i,t+∆t) :=
{

(l, y) ∈ X | ∃(l, x) ∈ Reach(i,t), 0 ≤ t′ ≤ ∆t, µ ∈ U :
Φl(x, t′, µ) = y ∧ ∀0 ≤ t′′ ≤ t′ : Φl(x, t′′, µ) ∈ Il

}
∀∆t > 0.

A hybrid system H = (X , L, X0, I, f, T ) is called (n, τ, δ)-safe for the bad set BX , iff the set of states
Reach(n,τ) has a distance of at least δ to the set of bad states BX :

d(Reach(n,τ),BX) > δ.

The proof shows that if the original system stays at least δ distance away from the target set for the first
n discrete switches and up to total time τ , then there is a choice of predicates such that the search in
the abstract space proves that the target set is not reached up to those limits. This shows that predicate
abstraction can be used at least to prove bounded safety, that is, safety for all execution with a given bound
on total time and a bound on discrete switches.

Theorem 4 (Bounded Completeness) The predicate abstraction algorithm is complete for the class of
(n, τ, δ)-safe hybrid systems.

Proof: We will first compute the maximal approximation error for the over-approximation of the reachable
state set using our polyhedral over-approximation strategy. We will only consider over-approximation errors
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and not numerical errors. Following [29], we know that the error of the over-approximation of the reachable
set by continuous flow in terms of the Hausdorff distance is bounded by

2M ||A||r + O(r2),

with r being the slicing time step, M being an upper bound on ||x|| and A being the linear matrix of the
dynamics. If e assume that Amax is the matrix of the continuous dynamics in the hybrid system H that
has the maximal norm, we define m := 2M ||Amax||.

As we do not consider numerical errors, we can assume that we do not add any error during discrete
transitions. Additionally to the aforementioned over-approximation error during continuous flow, an error ε
evolves under the continuous dynamics f , in the worst case, as:

ε(t) = eLf tε

for t ∈ R≥0, where Lf is a Lipschitz constant of the dynamics f .
We will now consider the approximation error after k instances of continuous flow. After the first instance

of continuous flow, the approximation error ε1 can be bounded by:

ε1 ≤ mr + O(r2).

Be L the largest Lipschitz constant for all dynamics in the hybrid system H. After the second instance
of continuous flow, the approximation error ε2 can be bounded by:

ε2 ≤ eLτ ε1 + mr + O(r2),
≤ eLτmr + mr + eLτO(r2).

Similarly, we can show that the approximation error εk after k instances of continuous flow can be bounded
by:

εk ≤
k∑

i=0

eiLτmr + ekLτO(r2).

We only need to consider paths in the abstract state-space of n transitions. Given our optimization
technique of eliminating consecutive continuous transitions, we can have at most n+1 instances of continuous
flow. We can then choose a time step slicing size r, such that εn+1 < δ.

The last thing we need to show is that we can find a finite set of predicates such that a (n, τ, δ)-safe
hybrid system can be proven correct using the predicate abstraction model checker. The set of predicates
will include the finite many predicates describing the initial region and the bad set. We will also include all
guards and invariants specified in the hybrid system.

We have shown above that we can over-approximate the set of reachable states using polyhedra. If
we were to include all predicates that correspond to faces of these polyhedra, we can use this finite set of
predicates to define our abstract state-space. This set will provide the predicate abstraction model checker
with predicates to prove the (n, τ, δ)-safe hybrid system safe. ut

6 Implementation and Experimentation

We have presented foundations for automated verification of safety properties of hybrid systems by combin-
ing the ideas of predicate abstraction and polyhedral approximation of reachable sets of linear continuous
dynamics. Our current prototype implementation of the predicate abstraction model checking and the
counter-example analysis tool are both implemented in C++ using library functions of the hybrid systems
reachability tool d/dt [11]. We implemented a translation procedure from Charon [2] source code to the
predicate abstraction input language which is based on the d/dt input language. A detailed overview of a
hybrid systems verification case study starting from Charon source code is given in [43]. Our tool uses the
polyhedral libraries CDD [32] and QHull [14].

In addition to the thermostat example of figure 1, we demonstrate the feasibility of our approach using
three other case studies in this section. The first one involves verification of a parametric version of Fischer’s
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turn := 1

ẋ = 1
Idle
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x ≥ δ∧ turn = 1

x ≤ ∆
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y ≥ δ
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y ≥ δ∧ turn = 2

y ≤ ∆

ẏ = 1

turn := 2

ẏ = 1
turn = 0 → y := 0turn := 0 turn := 0

turn := 0 turn := 0

Figure 10: The two processes for the mutual exclusion example. We omit the constraints ẋ = 0 and ẏ = 0
in the respective Idle and Check locations.

protocol for timing-based mutual exclusion. The second and third one involves analysis of different models
of cruise controller. In each of these cases, we show how predicate abstraction can be effective in establishing
safety of the system.

6.1 Mutual Exclusion with Time-Based Synchronization

We will first look at an example of mutual exclusion which uses time-based synchronization in a multi-
process system. The state machines for the two processes are shown in figure 10. The variable turn is used
to establish right of access in the model. The system starts with turn = 0 and both agents are in their
respective Idle locations. Once process i ∈ {1, 2} moves to its respective Request location, it will take at
most ∆ time-units to assign i to turn, establishing its wish to access the shared resource, and switch to its
Check location. The process is required to stay in its Check location for at least δ time-units before it can
test the value of turn. If turn still holds the value i it will access the shared resource, otherwise it does not
access the resource this time and moves back to its Idle location. We use this example to illustrate the use
of various techniques presented in earlier sections.

The possible execution traces depend on the two positive parameters ∆ and δ. If the parameters are
such that ∆ ≥ δ is true, we can find a counter-example that proves the two processes may access the shared
resource at the same time. The trace of abstract states that represents a valid counter-example in the original
system is given in figure 11.

On the other hand, if δ > ∆, then the system preserves mutual exclusive use of the shared resource. In
this case, a process that is already in its Check location will be sure that if the other process moved to its
Request location afterwards, that it would have also advanced to its Check location. That switch would
have caused a change in the value of the shared variable turn. Hence, the first process to enter its Check
location will not be able to access the shared resource.

6.1.1 Guided Search using Mask Priority

We present a flattened version of the two-process protocol in table 1. We will use the flat model in the
following two sections to illustrate the mask priority guided search strategy and the generalized predicate
abstraction approach.

For the mask priority guided search strategy we need to define ρM which in turn is defined by ρD and
ρ1. The function ρD for the flattened version of the two-process Fischer’s protocol is given in table 1.

We consider Fischer’s two-process protocol example for the case that ∆ ≥ δ. As the set of bad states
corresponds to any continuous state in location 22 (see table 1), with both processes in their respective
Access state, we have ρM (l, b) = ρD(l). Starting in the abstract state “l = 0, 0 ≤ x < δ ≤ ∆, 0 ≤ y < δ”
with priority 6, the guided search tries to find a path that leads to a state with priority 0 by reducing the
priority as much as possible at each step. In this example, this means that the search will try to reduce
the priority of the next abstract state by exactly one at each step. In the case that this is not possible, a
continuous transition will be considered as this does not affect the priority. It can easily be seen that the
counter-example in figure 11 can be found directly before discovering any other abstract state.
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Access, Access, turn = 2, x < δ, y < δ

Access, Check, turn = 2, x < δ, δ ≤ y ≤ ∆

Access, Check, turn = 2, x < δ, y < δ

Access, Request, turn = 1, x < δ, δ ≤ y ≤ ∆

Check, Request, turn = 1, δ ≤ x ≤ ∆, δ ≤ y ≤ ∆

Check, Request, turn = 1, x < δ, y < δ

Request, Idle, turn = 0, x < δ, y < δ

Idle, Idle, turn = 0, x < δ, y < δ

Request, Request, turn = 0, x < δ, y < δ

Figure 11: A counter-example for the mutual exclusion problem for the parameter setting ∆ ≥ δ. The
predicates that were used to find this counter-example are the predicates given by the guards and invariants
of the composed hybrid system. These are: x ≥ δ, y ≥ δ, x ≤ ∆ and y ≤ ∆. The states do not show the
constantly true linear predicates over the parameters ∆ ≥ δ, ∆ > 0 and δ > 0.

l 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

P1 I R C A I R C A I R C A C I R C I C C A C R A
P2 I I I I R R R R C C C C C A A A C I A C R C A
turn 0 0 1 1 0 0 1 1 2 2 2 2 1 2 2 2 0 0 1 1 0 0 —
ρD(l) 6 5 8 7 5 4 3 2 8 3 9 1 9 7 2 8 7 7 1 8 6 6 0

Table 1: The two-process Fischer’s protocol of figure 10 as a flat model: The locations l are numbered from 0
to 22. P1 specifies in which local location the first process is: I represents the Idle location, R the Request
location, C the Check location, and A the Access location. P2 specifies the location of the second process,
whereas turn specifies the value of the turn variable in the composed system. Location 0 is the initial
location. Location 22 violates the mutual exclusion property regardless of the value of the turn variable.
The last row states the value of the priority function ρD(l) for the locations as defined in section 4.4.
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l Π l Π l Π
0 — 8 y ≥ δ 16 y ≥ δ
1 x ≤ ∆ 9 x ≤ ∆, y ≥ δ, x ≥ y 17 x ≥ δ
2 x ≥ δ 10 x ≥ δ, y ≥ δ, x ≥ y 18 x ≥ δ
3 — 11 y ≥ δ 19 y ≥ δ
4 y ≤ ∆ 12 x ≥ δ, y ≥ δ, x ≤ y 20 x ≥ δ, y ≤ ∆
5 x ≤ ∆, y ≤ ∆ 13 — 21 x ≤ ∆, y ≥ δ
6 x ≥ δ, y ≤ ∆, x ≤ y 14 x ≤ ∆ 22 —
7 y ≤ ∆ 15 x ≥ δ

Table 2: Location-specific predicates for the 2-process Fischer’s protocol example. The predicates 0 ≤ ∆, 0 ≤
δ, 0 ≤ x, 0 ≤ y, ∆ < δ are omitted in all locations l ∈ L.

Consider however our previous search algorithm: the algorithm always prefers discrete transitions over
continuous ones. This algorithm takes the discrete transition from the abstract state “l = 6, x < δ, y < δ”
to the abstract state “l = 10, x < δ, y < δ” which leads the search away from a shortest path to a counter-
example. In fact, the search will find more than ten other abstract states first.

6.1.2 Generalized Predicate Abstraction

We also consider the verification of Fischer’s protocol to illustrate the advantage of the location-specific
predicate abstraction routine. The verification using the regular predicate abstraction technique finds 54
reachable abstract states (see [4]), whereas, if we use the location-specific predicates as described in table 2,
we only reach 24 abstract states. The graph of reachable abstract states for this example using the predicates
as specified in table 2 is presented in figure 12. This table could have been obtained by starting off with
the effective guards and invariants for each location. Subsequent refinement of the table can be performed
by the counter-example analysis procedure (see [3, 5]), where we add new predicates only in the respective
location.

6.2 Vehicle Coordination

We have successfully applied our predicate abstraction technique to verify a longitudinal controller for the
leader car of a platoon moving in an Intelligent Vehicle Highway System (IVHS). Let us briefly describe this
system. Details on the design can be found in [34]. In the leader mode all the vehicles inside a platoon
follow the leader. We consider a platoon i and its preceding platoon (i−1). Let vi and ai denote respectively
the velocity and acceleration of platoon i, and di is its distance to platoon (i − 1). The most important
task of a controller for the leader car of each platoon i is to maintain the distance di equal to a safety
distance Di = λaai + λvvi + λp (in the nominal operation λa = 0s2, λv = 1s, and λp = 10m). Other tasks
the controller should perform are to track an optimal velocity and trajectories for certain maneuvers. The
dynamics of the system are as follows: 




ḋi = vi−1 − vi,

v̇i−1 = ai−1,

v̇i = ai,

ȧi = u;

(4)

where u is the control. Without going into details, the controller for the leader car of platoon i proposed
in [34] consists of 4 control laws u which are used in different regions of the state space. These regions are
defined based on the values of the relative velocity ve

i = 100(vi−1 − vi)/vi and the error between the actual
and the safe inter-platoon distances ei = di−Di. When the system changes from one region to another, the
control law should change accordingly. The property we want to verify is that a collision between platoons
never happens, that is, di > 0m. Here, we focus only on two regions which are critical from a safety point of
view: “track optimal velocity” (ve

i ≤ −10 and ei ≥ −1m− ε) and “track velocity of previous car” (ve
i ≤ −10

and ei ≤ −1m). We include a thickening parameter ε > 0m into the model to add non-determinism to

28



x ≤ ∆, y ≥ δ

y < δx ≤ ∆, y ≤ ∆
5

x ≤ ∆
1

y ≤ ∆
4

0

2
x < δ

8

10
x ≥ δ, y < δ

12

x ≥ δ
17

15
x ≥ δ

10

y ≥ δ
16

y ≥ δ
19

x < δ, y ≥ δ
12

3 1310 12

102 9 8
x ≥ δ y ≥ δ

20
x ≥ δ, y ≤ ∆

21

x < δ, y < δ, x ≥ y

x < δ, y ≤ ∆, x ≤ y

x ≥ δ, y ≥ δ, x ≥ y

x ≤ ∆, y < δ, x ≥ y

x < δ, y < δ, x ≤ y

x ≥ δ, y ≥ δ, x ≤ y

Figure 12: Reachable abstract transition graph for Fischer’s protocol using the location-specific predicate
abstraction routine: We only reach 24 abstract states using the predicates as specified in table 2, whereas
the original predicate abstraction routine discovers 54 reachable states. The transitions shown correspond
to a BFS-search of the abstract state space. For clarity, we only draw the transitions that correspond to the
first occurrence of an abstract state. Note that the predicates 0 ≤ ∆, 0 ≤ δ, 0 ≤ x, 0 ≤ y, ∆ < δ are supposed
to be true in all locations.
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it. The two regions under consideration overlap allowing the controller to either use the “track optimal
velocity” controller or the “track velocity of previous car” controller in this ε-thick region. Besides adding
some non-determinism to the model, it also provides improved numerical stability to the simulation and
reachability computation, as it is numerically hard to determine the exact time at which a switch occurs.

The respective control laws u1 and u2 are as follows:

u1 = 0.125di + 0.75vi−1 − (0.75 + 0.125λv)vi − 1.5ai − 0.125λp, (5)
u2 = di + 3vi−1 − (3 + λv)vi − 3ai − λp. (6)

Note that these regions correspond to situations where the platoon in front moves considerably slower and,
moreover, the second region is particularly safety critical because the inter-platoon distance is smaller than
desired.

We model this system by a linear hybrid system with 4 continuous variables (di, vi−1, vi, ai) and two
locations corresponding to the two regions. The continuous dynamics of each location is linear given by (4)
as specified above, with u specified by (5) and (6). To prove that the controller of the leader car of platoon
i can guarantee that no collision happens regardless of the behavior of platoon (i − 1), ai−1 is treated as
uncertain input with values in the interval [amin, amax] where amin and amax are the maximal deceleration
and acceleration. The invariants of the locations are defined by the constraints on ei and ve

i and the bounds
on the velocity and acceleration. The bad set is specified as di ≤ 0. To construct the discrete abstract system,
in addition to the predicates of the invariants and guards we use four predicates di ≤ 0, di ≥ 2, di ≥ 10 and
di ≥ 20 which allow to separate safe and unsafe states, and the total number of initial predicates is 11. For
the initial set specified as 20 ≤ di ≤ 100 ∧ −1 ≤ ai ≤ 1 ∧ 15 ≤ vi−1 ≤ 18 ∧ 20 ≤ vi ≤ 25, the tool found 14
reachable abstract states and reported that the system is safe. For individual continuous modes this property
has been proven in [48] using optimal control techniques.

6.3 Coordinated Adaptive Cruise Control

We have also successfully applied our predicate abstraction technique to verify a model of the Coordinated
Adaptive Cruise Control mode of a vehicle-to-vehicle coordination system. This case study is provided by
the PATH project. Let us first briefly describe the model (see [33] for a detailed description). The goal
of this mode is to maintain the car at some desired speed vd while avoiding collision with a car in front.
Let x and v denote the position and velocity of the car. Let xl, vl and al denote respectively the position,
velocity and acceleration of the car in front. Since we want to prove that no collision happens regardless
of the behavior of the car in front, this car is treated as disturbance, more precisely, the derivative of its
acceleration is modeled as uncertain input ranging in interval [dalmin, dalmax]. The dynamics of the system
is described by the following differential equations: ẋ = v, v̇ = u, ẋl = vl, v̇l = al, ȧl ∈ [dalmin, dalmax],
where u is the input that controls the acceleration of the car. In this mode, the controller consists of several
modes. The control law to maintain the desired speed is as follows:

u1 =





0.4εv : acmin ≤ 0.4 εv ≤ acmax,
acmin : 0.4 εv < acmin,
acmax : 0.4 εv > acmax,

where εv = v − vd is the error between the actual and the desired speed; acmin and acmax are the maximal
comfort deceleration and acceleration.

In addition, in order for the car to follow its preceding car safely, another control law is designed as follows.
A safety distance between cars is defined as D = max{Gc vl, Dd } where Gc is the time gap parameter; Dd

is the desired sensor range given by Dd = 0.5 v2
l (−1/amin + 1/almin) + 0.02 vl ; amin and almin are the

maximal decelerations of the cars. Then, the control law allowing to maintain the safety distance with the
car in front is given by ufollow = al+(vl−v)+0.25 (xl−x−5−D). Since the acceleration of the car is limited
by its maximal breaking capacity, the control law to avoid collision is indeed u2 = max{ amin, ufollow }. The
combined switching control law is given by u = min{u1, u2}. This means that the controller uses the control
law u1 to maintain the desired speed if the car in front is far and travels fast enough, otherwise it will switch
to u2.
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The closed-loop system can be modeled as a linear hybrid system with 5 continuous variables (x, v, xl,
vl, al) and 8 locations corresponding to the above described switching control law. The invariants of the
locations and the transition guards are specified by the operation regions and switching conditions of the
controller together with the bounds on the speed and acceleration. In order to prove that the controller can
guarantee that no collision between the cars can happen, we specify a bad set as xl−x ≤ 0. To define initial
predicates, in addition to the constraints of the invariants and guards, we use the predicate of the bad set
allowing to distinguish safe and unsafe states and another predicate on the difference between the speed and
acceleration of the cars. The total number of the initial predicates used to construct the discrete abstraction
is 17. For an initial set specified as xl − x ≥ 100 ∧ v ≥ 5, the tool found 55 reachable abstract states and
reported that the system is safe. For this model, in a preprocessing step using the Binary Space Partition
technique, the tool found that the chosen set of initial predicates partitions the continuous state space into
785 polyhedral regions, and this enables to reduce significantly the computation time.

7 Conclusions

In this paper we presented algorithms and tools for reachability analysis of hybrid systems by combining
the notion of predicate abstraction with recent techniques for approximating the set of reachable states of
linear systems using polyhedra. A verifier based on this scheme requires three inputs, the (concrete) system
to be analyzed, the property to be verified, and a finite set of boolean predicates over system variables to
be used for abstraction. An abstract state is a valid combination of truth values to the boolean predicates,
and thus, corresponds to a set of concrete states. There is an abstract transition from an abstract state A
to an abstract state B, if there is a concrete transition from some state corresponding to A to some state
corresponding to B. The job of the verifier is to compute the abstract transitions, and to search in the
abstract graph for a violation of the property. If the abstract system satisfies the property, then so does the
concrete system. If a violation is found in the abstract system, then the resulting counter-example can be
analyzed to test if it is a feasible execution of the concrete system.

The success of our scheme crucially depends on the choice of the predicates used for abstraction. We
identify such predicates automatically by analyzing spurious counter-examples generated by the search in
the abstract state-space. Counter-example guided refinement of abstractions has been used in multiple
contexts before, for instance, to identify the relevant timing constraints in verification of timed automata
[10], to identify the relevant boolean predicates in verification of C programs [12], and to identify the
relevant variables in symbolic model checking [21]. In [3, 5] we present the basic techniques for analyzing
counter-examples and techniques for discovering new predicates that will rule out spurious counter-examples.
Counter-example guided refinement of abstractions for hybrid systems is being independently explored by
the hybrid systems group at CMU [20].

The abstract counter-example consists of a sequence of abstract states leading from an initial state to
a state violating the property. The analysis problem, then, is to check if the corresponding sequence of
modes and discrete switches can be traversed in the concrete system. We perform a forward search from the
initial abstract state following the given counter-example in the abstract state-space. The analysis relies on
techniques for polyhedral approximations of the reachable sets under continuous dynamics. To speed up the
feasibility analysis, we have also implemented a local test that checks for feasibility of pair-wise transitions,
and this proves to be effective in many cases. If the counter-example is found to be infeasible, then we wish
to identify one or more new predicates that would rule out this sequence in the refined abstract space. This
reduces to the problem of finding one or more predicates that separate two sets of polyhedra. We present a
greedy strategy for identifying the separating predicates. After discovering new predicates, we then include
these predicates to the set of predicates used before, and rerun the search in the refined abstract state-space
defined by the enriched predicate set. A more detailed presentation of our counter-example guided predicate
abstraction approach can be found in [3, 5].
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[3] R. Alur, T. Dang, and F. Ivančić. Reachability analysis of hybrid systems using counter-example guided
predicate abstraction. Technical Report MS-CIS-02-34, University of Pennsylvania, November 2002.
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