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Chapter 1
Introduction
1.1 Motivation
Continuous systems have, traditionally, been the focus of system theory. Due to signi�cantadvances in digital-processor technology in the past few decades, the use of digital controllershas successfully improved the automation level in the control of physical plants. One typicalexample is a chemical batch plant where computers are used to supervise complex sequencesof chemical reactions, each of which is modeled as a continuous process. As another example,consider a digital engine controller in a car, which has to interact with the physical processesin the engine as well as with the events generated by the driver. The increasing integrationof such controllers results in highly complex systems involving both continuous and discreteevent dynamics. In addition to discontinuities introduced by the computer, most physicalprocesses admit components (e.g. valves, gears, switches) and phenomena (e.g. collision,emptying of tanks) whose most useful models are discrete. Systems that consist of a combi-nation of discrete and continuous features are called hybrid systems, and they arise in manyapplications, such as chemical process control [68], air tra�c management systems [111],robotics [6], and automobiles [18].During system design, formal veri�cation and controller synthesis are two important issues.The goal of formal veri�cation is to prove that the system performs as expected. As today'sautomated systems are growing in scale and complexity, the possibility of subtle errors ismuch greater. In particular, for safety-critical systems, any error during the operation maycause loss not only in money but also in human life, and, as a result, it is crucial to ensurethat the system is always safe (no error occurs). Whereas the goal of veri�cation is toensure a desired property of the designed system, the goal of controller synthesis is to designcontrollers so that the controlled system satis�es a desired speci�cation.This thesis is concerned with the formal veri�cation and synthesis of hybrid systems. Thebest way to understand the problematics in this �eld of research and the approach we proposeis to follow simple examples. In the sequel we discuss two hybrid system examples, the roleof which is to illustrate several characteristics of hybrid systems that make veri�cation and17



18 Introductionsynthesis di�cult and to motivate the reader to proceed to the de�nitions and the algorithmsin the next chapters. The second example is a variation of the �rst, and both are very simpleone-dimensional linear systems, which can be analyzed by hand. The discussion will beinformal and not rigourous, but the ideas underlie the motivation of our approach.
1.2 Hybrid System Examples1.2.1 Example 1Consider a thermostat that is used to control the temperature of a room. The thermostatconsists of a heater and a thermometer. Its lower and upper thresholds are set at �m and �Msuch that �m < �M . The heater is maintained on as long as the room temperature is below�M , and it is turned o� whenever the thermometer detects that the temperature reaches �M .Similarly, the heater remains o� if the temperature is above �m and is switched on wheneverthe temperature falls to �m. One can think of the room temperature and the thermostatas a dynamical system whose state is de�ned by the room temperature x, which changescontinuously, and the operation mode of the thermostat, which changes between `on' and`o�'. The evolution of the temperature is described as follows:

_x = � f1(x) = �x+ 4 if the heater is on,f2(x) = �x otherwise.
on off_x = f1(x) _x = f2(x)x = �m

x = �M

Figure 1.1: The model for the thermostat.
A visual description of the thermostat is given in form of a directed graph whose verticesrepresent two operation modes `on' and `o�' (see Figure 1.1). We associate with the edgesthe conditions for switching from one mode to another.Our veri�cation problem is to prove that the temperature always stays in the desired range,that is, m � x �M (1.1)In this simple example, for a given initial condition x(0) = � the solution of the di�erentialequations of the modes `on' and `o�' can be written as x(t) = �e�t+4(1�e�t) and x(t) = �e�t,respectively.



1.2 Hybrid System Examples 19Let us now describe a scenario of the system's behavior starting from an initial state wherethe temperature x = �0 and the operation mode of the thermostat is `on'. Suppose that theinitial temperature is in the desired range, that is, m � �0 � M . The heater initially beingon, the temperature evolves as follows:x(t) = �0e�t + 4(1� e�t):Increasing monotonically over time, the temperature reaches �M after t1 time, and the heateris then shut o�. The temperature is next governed by the di�erential equation of the mode`o�' and can be written as x(t+ t1) = �Me�t+t1 :The temperature decreases monotonically over time and falls to �m, at which point theheater is turned on, and the process continues as shown in Figure 1.2. One can see thatthe trajectory of the temperature alternates between two phases corresponding to the twooperation modes of the thermostat.

on off on off t

x

t1
�M�0�m0 t2 t3Figure 1.2: A trajectory of the room temperature.

It is not hard to see that the thermostat satis�es the property (1.1) if only the thresholds�m and �M satisfy the following condition:�m � m ^ �M �M: (1.2)
Note that such a veri�cation problem can be analytically solved only when solutions to thedi�erential equations are known1. In more general cases, numerical simulations are used toobtain an approximation of the behavior of the system from a given state. For most systems,the state of the art in simulation techniques allows the approximate solution to be as closeas desired to the exact one. However, in practice the initial conditions are usually not knownexactly but only known to lie within some range. Consequently, instead of a single trajectory,one needs to consider an in�nite number of trajectories. Concerning numerical techniques,this gives rise to the special di�culty in simulating sets of trajectories.1Many di�erential equations tend to not have closed-form solutions.



20 Introduction1.2.2 Example 2Before attempting to analyze a model, we should make sure that it captures all possiblebehaviors of the physical process. The described model assumes ideal conditions, namelythe thermometer can detect exactly the moments the temperature reaches the thresholds andthe switching time between `on' and `o�' is zero. Nevertheless, in practical situations exactthreshold detection is impossible due to incertitude of sensors. Similarly, the reaction timeof the on/o� switch is usually non-zero. The e�ect of these inaccuracies is that we cannotguarantee switching exactly at the nominal values �m and �M but only in their neighborhoods.To make the model reect this uncertainty, we modify the switching conditions as follows.The thermostat switches o� the heater if the temperature satis�es �M � � � x � �M + � andswitches it on if �m� � � x � �m+ �, for some � > 0. This means that when the temperatureenters the interval [�M � �; �M + �] the thermostat can either turn the heater o� immediatelyor keep it on for some time provided that x � �M + �. We say that the behavior of thesystem is non-deterministic in the sense that from a given state the temperature can followmore than one trajectory (see Figure 1.4). The enhanced model with uncertainty is depictedin Figure 1.3.
on off_x = f1(x) _x = f2(x)

x = [�M � �; �M + �]
x = [�m � �; �m + �]Figure 1.3: The model of the thermostat with uncertainty.
x�M

�m t0

�M + ��M � e�0

Figure 1.4: Two di�erent trajectories of the temperature starting at �0.
Another source of non-determinism can come from the continuous dynamics which are of theform _x = f(x;u) where u is an under-speci�ed input. In this case, from every initial statethere might be a \tube" of possible trajectories, each of which corresponds to a di�erent inputsignal. In the example of the thermostat, a source of such uncertainty can be uctuations in



1.3 Thesis Outline 21the outside temperature which we obviously cannot control.The model with uncertainty is harder to analyze both analytically and using simulation since,to characterize all possible behaviors, we have to deal with sets of trajectories. Furthermore,it is imposible to simulate the system with all inputs. This shows that the simulationapproach is not suitable for verifying such a system since sample solutions do not give abso-lute assurance that the system satis�es the property. Although the simple one-dimensionalthermostat example can still be analyzed analytically (since we know the solutions of thedi�erential equations and, moreover, they are monotonous), the reader can imagine that forhigh-dimensional systems with many modes and complex continuous dynamics, there is noexisting methodology to solve such veri�cation problems.
We turn now to the controller synthesis problem. Our objective is to keep the temperatureof the room in the range [m;M ]. Suppose we are given a thermostat whose structure is�xed, but we are free to set the thermostat at the appropriate thresholds �m and �M so thatthe room temperature is maintained as desired. In other words, we use the thresholds tocharacterize the feed-back function in order to achieve the desired behavior. Then, the goalis to �nd switching rules based on state observation such that the system always satis�esthe desired property. We will show, in this thesis, how the methods proposed for verifyinghybrid systems can also be used to synthesize automatically such switching rules.
To sum up, the essence of the above examples is that in order to develop a framework forveri�cation and synthesis of hybrid systems we need:� An appropriate model capable of capturing the interaction between discrete and con-tinuous dynamics and constraints on the physical system as well as on the controller.� Analysis methods which are rigourous in the sense that they can characterize all pos-sible behaviors of the system and derive feasible controls.In addition, hybrid systems in practice are often complex, which makes automatic analysisvery desirable. This motivates us to adopt the algorithmic approach to veri�cation whichconsists in building a software tool which can analyze automatically all the behaviors of agiven system and decide whether it satis�es a given property. This approach has been appliedsuccessfully to purely discrete systems (e.g. digital circuits, communication protocols) [33],but its adaptation to continuous and hybrid systems is still a serious challenge.
1.3 Thesis OutlineIn Chapter 2 we discuss hybrid automata [4], the modeling formalism we will use for hybridsystems. Various hybrid system models have been proposed; the reason we have chosen thismodel is that it can capture naturally a wide range of hybrid behaviors and, moreover, pro-vides a framework suitable for the veri�cation and synthesis problems we tackle in this thesis.



22 IntroductionThe chapter includes the theoretical background neccessary for subsequent discussions.Chapter 3 is concerned with the veri�cation problem for hybrid systems. We are interested inverifying invariance properties which state that all trajectories of the system remain insidea subset of the state space. Proving such properties can be done using reachability analysis,that is, computing all states which can be reached by any trajectory of the system. Weexamine the problematics of extending the algorithmic methodology to hybrid systems andpropose an approach which consists in �rst developing reachability techniques for purely con-tinuous systems and then adapting them for hybrid systems. We then discuss computabilityissues and present a basic reachability algorithm for continuous systems, based on numericalintegration and polyhedral approximations. This chapter serves as an introduction to thenext three chapters.In Chapter 4 we develop a technique for approximating reachable sets of linear continu-ous systems. This technique exploits the special properties of linear systems so that thecomputation is relatively fast and the approximation error does not propagate from iter-ation to iteration. This technique has some common features with the work of Chutinanand Krogh [31], which has been developed independently. We also extend this technique todeal with linear systems with uncertain input (di�erential inclusions) based on some ideasproposed by Varaiya [114].In Chapter 5 we present an alternative reachability technique which can be applied to non-linear continuous systems. The technique, which we call \face lifting", is inspired by earlierwork of Greenstreet [47]. The novelty in our approach is in the way we approximate highdimensional subsets of the state space using orthogonal polyhedra. This makes both thelinear and non-linear analysis techniques applicable, in principle, to any dimension. Ofcourse, computational complexity is a major limiting factor.The goal of Chapter 6 is to adapt the above techniques to the veri�cation of hybrid systems.Strategies and methods to increase the performance of the veri�cation algorithm and otherimportant computational issues are also investigated.Chapter 7 is devoted to the controller synthesis problem for hybrid systems. More precisely,we consider systems with several modes, each of which has di�erent dynamics. Our goalis to automatically synthesize a controller which switches the system between modes inorder to satisfy invariance properties. We present an abstract synthesis algorithm, basedon the algorithm in [15] for timed automata, and then apply the reachability techniques ofChapters 4 and 6 to derive an approximate version of the algorithm.In Chapter 8 we describe the experimental tool d/dt , in which most of the algorithms dis-cussed in the thesis have been implemented. The tool provides automatic veri�cation andswitching controller synthesis for hybrid systems with linear di�erential inclusions.Each of the above chapters ends with some examples (academic and real-life), which illustratethe applicability of our approach, as well as a discussion of related work.The concluding chapter summarizes the contributions of the thesis and suggests future re-search directions.



1.3 Thesis Outline 23For the best understanding of this thesis, the reader is encouraged to follow chapter bychapter. In particular, Chapter 2 contains important de�nitions and notations which arerefered to throughout the thesis. For reference, we include a glossary of notation in Table 1.1.



24 IntroductionTable 1.1: Glossary of NotationN natural numbersR real numbersT time domain, p. 29Z integer numbers0 zero vector; empty setO(�) asymptotic notation, p. 60
Continuous Systems�(F ) reachable set from set F , p. 38�r(F ) successors of set F at time r, p. 38�[0;r](F ) successors of set F within time interval [0; r], p. 38�(F ) backward-reachable set from set F , p. 39�x trajectory starting from point x, p. 32�x; � trajectory starting from point x under input �, p. 74
Hybrid Automata�c continuous-successor operator, p. 39�d discrete-successor operator, p. 41�qq0 discrete-successor operator w.r.t transition from q to q0, p. 40 = (�; �) hybrid automaton trajectory, p. 35� one-step predecessor operator, p. 146�1q unbounded-time predecessor operator w.r.t discrete state q,p. 146Uq until operator w.r.t discrete state q, p. 146
Geometric OperationsB the unit ball at the origin, p. 59bloat(C; #) bloating convex polyhedron C by #, p. 63conv(F ) convex hull of set F



1.3 Thesis Outline 25d(x;y) distance between points x and y, p. 59grido(C) orthogonal polyhedron over-approximating convex polyhe-dron C, p. 64gridu(C) orthogonal polyhedron under-approximating convex polyhe-dron C, p. 64h(X;Y ) the Hausdor� distance between sets X and Y , p. 59�(b;d�;d+) lifting the faces of hyper-rectangle b by d� (left) and d+(right), p. 94N(X; �) �-neighborhood of set X, p. 59Ns(G; �) rectangular �-neighborhood of orthogonal polyhedron G,p. 71N�(C) neighborhood of convex polyhedron C obtained by pushingoutward its faces by �, p. 88�(X) diameter of set X, p. 59C uo G orthogonal polyhedron over-approximating intersection ofconvex polyhedron C and orthogonal polyhedron G, p. 118C uu G orthogonal polyhedron under-approximating intersection ofconvex polyhedron C and orthogonal polyhedron G, p. 120hx;yi scalar product of vectors x and y� Minkowski sumjj � jj Euclidian normbdc integer part of real number d, p. 94
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Chapter 2
Hybrid Automata
As we have seen from the informal examples in the previous chapter, in order to analyze hy-brid systems we need a model which is rich enough to describe both continuous-time dynam-ics and discrete transitions. In addition, the model should be potentially non-deterministicallowing more than one behavior from a given state. Multiple behaviors can be due touncertainties in both continuous and discrete dynamics which can arise from external distur-bances, uncontrollable events, the modeling abstraction, or imprecision in our knowledge ofthe system. Continuous dynamics are traditionally considered within the context of di�eren-tial equations, and discrete-event dynamics are often modeled and analyzed using automata.Hybrid automata [4] combine these two models and provide an e�ective formalism whichsatis�es the above requirements. In hybrid automata, the continuous behavior is capturedby di�erential equations associated with the discrete states and the discrete behavior is cap-tured by transitions between states. In this work we use hybrid automata as a modelingformalism for hybrid systems.This chapter is organized as follows. The �rst part is devoted to some basic de�nitionsof automata and continuous systems, the main components of hybrid automata. Next, wepresent the syntax, semantics for hybrid automata, and some basic reachability notions.Finally, we discuss briey some other hybrid models considered in the literature.
2.1 Notation
Automata and continuous dynamics can both be viewed as dynamical systems whose statesevolve in time. Their de�nition is therefore associated with a time set. For automata, theunderlying time set is any discrete set which is order isomorphic to (N ;�). For continuousdynamical systems, time ranges over the real numbers. We begin by introducing somenotations needed for describing the temporal behavior of the systems under consideration.Throughout this thesis we will use the time domain T = R+ .A time sequence is a strictly increasing sequence of time points t0; t1; t2; :: where tk 2 T for29



30 Hybrid Automataevery k 2 N .De�nition 1 (Temporal Behavior)A temporal behavior over a topological space S is a partial function � : T ! S whose domainof de�nition is an interval [0; r) for some r 2 T [ f1g.We call r the metric length of �, denote it by j�j, and say that � is in�nite if r =1.De�nition 2 (Piecewise-Continuous Behavior)A behavior � is piecewise-continuous if it admits a time sequence J (�) = 0; t1; t2; : : : suchthat for every k 2 N , � is continuous on the interval Ik = [tk; tk+1).Note that there may be many time sequences I0; I1; : : : on which a behavior � is piecewise-continuous. We denote by I(�) such time interval sequence with the smallest number ofintervals. This number is called the logical length of �, denoted by j�jl.A piecewise-constant behavior is a special case of piecewise-continuous behaviors where � isconstant on every interval Ik. The untimed abstraction of a piecewise-constant behavior � isthe sequence �� = s0; s1; : : : such that for every k, sk = �(tk).Figure 2.1 shows an example of piecewise-continuous and piecewise-constant behaviors.
�

t0 = 0
q3

q2q1
t1 t2 t3

q4
t4

�I0 I1 I3 I4
Figure 2.1: A piecewise-continuous behavior � and a piecewise-constant behavior � of logicallength 4 with �� = q1; q2; q3; q4.
2.2 Automata
We de�ne a �nite automaton without input and output as follows.De�nition 3 (Automaton)An automaton is M = (Q; �) where



2.3 Continuous Dynamical Systems 31� Q is a �nite set of states.� � : Q! 2Q is the transition function.The transition relation describes how the system may evolve. Notice that the behavior ofthe system is potentially non-deterministic since for a given state q 2 Q, �(q) represents aset of possible next states rather than a unique state.De�nition 4 (Behavior of automata)Given an initial state q 2 Q, a behavior of M is a sequence � : N ! Q such that �(0) = qand for every k > 0, �(k + 1) 2 �(�(k)).
q1 q2 q3

Figure 2.2: A 3-state automaton.
It is important to note that in studying the behavior of automata, only the ordering infor-mation between the transitions is considered and there is no attempt to embed the behaviorsinto real metric time. Consider the automaton of Figure 2.2 where Q = fq1; q2; q3g and theinitial state is q1. The automaton admits a behavior � = q1; q2; q1; q2; q3; q2. This descriptionof the behavior does not say anything about the time elapsed while the automaton is at eachstate. In other words, the behavior � could be the untimed abstraction of in�nitely manypiecewise-constant behaviors of the form � : T ! Q (see Figure 2.3). The behavior of hybridautomata, as we shall soon see, is, however, grounded in the real time axis.

q1 q2 q1
q3q2 q2 �1 q1 q1q2 q3q2 q2 �2

t tFigure 2.3: Two piecewise-constant behaviors �1 and �2 which can be associated with thesequence � = q1; q2; q1; q2; q3; q2 of the automaton of Figure 2.2.
2.3 Continuous Dynamical SystemsDe�nition 5 (Continuous Dynamical System)A continuous dynamical system is C = (X ; f) where



32 Hybrid Automata� X = R n is the state space.� f : X ! R n is a continuous vector �eld.The behavior of the system is governed by the di�erential equation:_x = f(x) (2.1)where x 2 X is the state of the system.The behavior of a continuous dynamical system is characterized by the solutions to theinitial-value problems of its di�erential equation.De�nition 6 (Trajectory of Continuous Dynamical Systems)A trajectory of C starting from x 2 X is a continuous behavior �x : T ! X such that �x isthe solution of (2.1) with initial condition x(0) = x.We assume that f is globally Lipschitz in x, which guarantees that there exists a uniquesolution to (2.1) for every initial condition in X [61]. The continuous system of De�nition 5is deterministic in the sense that from a given point it generates a unique trajectory.Given two points x, x0 2 X , we say that x0 is reachable from x in time t < 1 if x0 = �x(t).We denote this by x t�!x0.
2.4 Hybrid AutomataA hybrid automaton is an automaton augmented with continuous variables whose dynamicsat every discrete state are de�ned by di�erential equations. Transitions between states areenabled by conditions on the values of these variables.
2.4.1 SyntaxDe�nition 7 (Hybrid Automaton)An n-dimensional hybrid automaton is a tuple A = (X ; Q; f;H;G;R) where� X � R n is the continuous state space. Elements of X are written as x = (x1; x2; : : : ; xn).� Q is a �nite set of discrete states.� f : Q! (X ! R n) assigns a continuous vector �eld on X to each discrete state. Whilethe hybrid automaton stays in discrete state q the evolution of the continuous variablesis governed by the di�erential equation _x = f(q)(x).� H : Q! 2X are staying conditions (\invariants"). H(q) is the condition that must besatis�ed by the continuous variables if the automaton is to stay in discrete state q.



2.4 Hybrid Automata 33� G : (Q�Q)! 2X are transition guards determining the conditions for switching fromone discrete state to another. When the automaton is in discrete state q and x 2 Gqq0 ,it can make a transition from q to q0.� R : (Q � Q) ! (X ! 2X ) is the reset map which assigns to each transition a multi-valued function. R(q; q0) de�nes how the continuous variables may change when theautomaton switches from q to q0.We assume that for every q 2 Q, f(q) is globally Lipschitz over x 2 H(q). This assumptionensures the existence and uniqueness of solutions of the di�erential equation at q for everyinitial condition in H(q) [61]. We also assume that for all q, q0 2 Q, H(q) and G(q; q0) areclosed sets.
The intuitive meaning of De�nition 7 is that the set of discrete states Q denotes all thepossible continuous \modes" of the hybrid automaton. The system can evolve in a discretestate q only if the current continuous state is in H(q). These staying conditions can arisefrom constraints imposed by physical systems or decisions in system design. While beingat discrete state q where x 2 H(q), the system can evolve according to the dynamics f(q).Whenever it reaches a point x0 2 G(q; q0) the transition from q to q0 is enabled and thesystem can switch to discrete state q0. At q0 the continuous variables will be reset to newvalues according to R(q; q0), which become the initial states for the evolution according tof(q0). Our convention is that if there is no transition from q to q0 then G(q; q0) is de�nedas empty set. If the reset map R(q; q) is the identity, i.e. R(q; q)(x) = fxg for all x 2 X ,we may assume further that G(q; q) = ; because a transition from a discrete state to itselfwithout a change in the continuous variables is meaningless. Notice that in the examples sofar all the reset maps were the identity.It is customary to represent graphically the hybrid automaton A by a directed graph whosevertices represent the discrete states and edges represent the transitions. We write the stayingconditions and the di�erential equations inside the vertices. With the edges we associate thetransition guards and the resets (identity resets will be omitted). From now on we will usethe notation fq for f(q), Gqq0 for G(q; q0), Gq for Sq0 Gqq0 , Hq for H(q), H for SqHq, andRqq0 for R(q; q0). We will often use `automaton' to refer to a hybrid automaton with thecontext indicating the meaning.We can now de�ne formally hybrid automata for the thermostats examined in the previouschapter (see Figure 2.4). The two operation modes `on' and `o�' are represented by twodiscrete states q1 and q2. The continuous variable x models the temperature, and its dy-namics in each mode is given by a di�erential equation. We de�ne the conditions for thethermostats to stay in each mode by the staying conditions, such as x � �M for q1 in caseof the ideal thermostat. The conditions on the temperature for the thermostats to switchbetween two modes are speci�ed by the transition guards. Notice that the upper (lower)bound of the switching condition for the transition from q1 to q2 (from q2 to q1) need not bede�ned due to the speci�ed staying conditions at the source state of the transition. In bothmodels, the temperature does not change at the switching points, and the resets are thus



34 Hybrid Automata
on off

q1 q2_x = f1(x) _x = f2(x)x � �M x � �m
x � �M

x � �m
on off

q1 q2x � �m � �x � �M + �
x � �M � �

x � �m + �
_x = f1(x) _x = f2(x)

(a) (b)Figure 2.4: The hybrid automata for the ideal thermostat (a) and for the thermostat withuncertainty (b).
identity functions.
Although the continuous evolution is deterministic at every discrete state, the hybrid evolu-tion may be non-deterministic for the following reasons:� The sets Hq and Gqq0 may intersect with each other not only on their boundaries. Asa result, there are points from which the system, when being at q, can either switch toq0 or continue the continuous evolution at q.To illustrate, consider again the automata of the thermostats. Suppose that the systemstarts at q1 (`on'). After some time the temperature rises to �M , which enables thetransition from q1 to q2. At this point the staying condition of q1 in (a) forces thesystem to switch to q2 while in (b) it allows the system to either stay there for somemore time as long as x � �m + � or switch at once. In other words, the system in(b) can switch from q1 to q2 anywhere in the interval [�M � �; �M + �]. Therefore, thebehavior of the system in (a) is deterministic while the behavior of the system in (b)is non-deterministic.� The resets can be set-valued maps, and this causes non-deterministic changes in con-tinuous variables whenever a transition is taken.� There can be multiple transitions enabled at the same time because Hq \Gqq0 \Gqq00may be non-empty.
2.4.2 SemanticsWe now turn to the semantics of a hybrid automaton like A. By the semantics of such anobject we mean the set of all behaviors it can generate. In this sense, the semantics of acontinuous system de�ned by a di�erential equation is the set of all solutions of its initialvalue problem, namely trajectories.



2.4 Hybrid Automata 35For the hybrid automaton A we will consider temporal behaviors over the hybrid state spaceQ� X . A state (q;x) of A can change in two ways:� By continuous evolution: the values of the continuous variables change according tothe dynamics fq while the discrete state q remains constant.� By discrete evolution: the system changes the discrete state by making a transition andpossibly changes the values of the continuous variables according to the reset function.Let x, x0 2 X and q, q0 2 Q. Let � : T ! X be the (unique) solution of _x = fq(x) with theinitial condition �(0) = x.The dynamics q is enabled from x for time t > 0 if �(t0) 2 Hq for every t0 2 [0; t]. This isdenoted by x q;t�!. The state (q;x0) is reachable from (q;x) by the continuous dynamics fqif there exists t <1 such that �(t) = x0 and �(t0) 2 Hq for every 0 � t0 � t. In this case wesay that x0 is q-reachable from x and denote it by x q;t�!x0.A state (q0;x0) is reachable from (q;x) via a discrete transition if x 2 Gqq0 , x0 = Rqq0(x) andx0 2 Hq0 .De�nition 8 (Trajectory of Hybrid Automata)A trajectory of a hybrid automaton A starting from a state (q0;x0) is a pair of behaviors = (�; �) of the same metric length where � : T ! X is piecewise-continuous and � : T ! Qis piecewise-constant satisfying the following conditions:1. Initiality: �(0) = x0 and �(0) = q0.2. Continuous evolution: for every interval Ik = [tk; tk+1) 2 I(�) such that ��k = q,�(tk) q;t�!�(tk + t) for every t 2 [0; tk+1 � tk).3. Transition condition: for every tk 2 J (�) such that ��k�1 = q and ��k = q0, �(t�k ) 2 Gqq0and �(tk) = Rqq0(�(t�k )) where �(t�k ) denotes the left limit of � at tk.The logical length of , denoted by jjl, is the logical length of �.Figure 2.5 sketches another hybrid automaton and a projection of one of its trajectories ontothe continuous state space X = R 2 .The use of staying conditions and the ability to switch in zero time between states cancreate phenomena which are impossible in models of well-behaving continuous systems. Thetwo behavioral anomalies that can be generated by hybrid automata are blocking and Zenobehaviors.
Blocking BehaviorsA trajectory is blocking if it reaches a point (q;x) from which it is impossible to continueneither by continuous nor by discrete dynamics, i.e. x 62 Hq and x 62 Gqq0 for every q, q0 2 Q.
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(1) (2)Figure 2.5: (1) A 3-state hybrid automaton A (X = R 2 , the guards G12 and G23 are theshaded regions and G32 is the line segment ab); (2) A sketch of a behavior of A starting from(q1;x0). The jump from x2 to x3 is due to the reset R23.
An automaton is non-blocking if from every (q;x) such that x 2 Hq there are no blockingtrajectories.There are two ways to enter into a blocking situation:� After a discrete transition, the system moves from (q;x) to (q0;x0) but x0 does notsatisfy the staying condition of q0; as a result, the continuous evolution cannot becontinued. This means that Rqq0(Gqq0) 6� Hq0 . As an example, consider the case whena careless user sets the thresholds of the thermostat such that �M < �m and thenturns on the heater. The temperature rises to �M + �, at which point the thermostatmust switch o� the heater, but the current temperature does not satisfy the stayingcondition of the mode `o�'; the automaton is thus blocked.� The system leavesHq without entering anyGqq0 ; consequently, the continuous evolutionat q is no longer possible, but the system cannot switch to another dynamics.One reason for blocking behaviors is the inconsistency of the model. An automaton can beguaranteed to be non-blocking as follows. To prevent the �rst source of blocking, for everyq; q0 2 Q, Gqq0 can be replaced by G0qq0 = Gqq0 \ R�1qq0(Hq0) where R�1qq0 : 2X ! 2X is de�nedas R�1qq0(X) = fx0 j 9x 2 X x = Rqq0(x0)g:



2.5 Reachability Notions 37The second type of blocking can be removed by adding a new discrete state that the systementers whenever it goes out of every Hq.
Zeno BehaviorsA Zeno behavior is a piecewise-constant behavior having an in�nite number of transitions ina bounded interval of time. For example, consider a behavior � such that J (�) is the timesequence ftkg; k = 0 : : :1, de�ned as t0 = 0 and tk = tk�1 + 1=2k which converges to 1,and �(tk) = 0 for even k and �(tk) = 1 for odd k. Such a behavior switches in�nitely manytimes between 0 and 1 in the interval [0; 1). An automaton is non-Zeno if it does not admitZeno behaviors.In the example of the thermostat with uncertainty, if the thresholds �m and �M are chosensuch that the intervals [�m � �; �m + �] and [�M � �; �M + �] overlap, then from points inthe intersection of these intervals the thermostat can make an in�nite number of switchingsbetween two modes in �nite time. The requirement of non-Zenoness, which ensures theprogress of time past any real number, comes from the fact that physical systems cannot bein�nitely fast which implies that only a �nite number of actions can be executed in a �niteamount of time. Since trajectories for dynamical systems are supposed to be well-de�nedon R n , blocking and Zeno hybrid automata are inadequate models, which often result frommodeling errors. In this thesis, when solving the veri�cation problem we assume that the hy-brid automata we address are non-Zeno1. We will discuss Zeno behaviors in Chapter 7 wherewe deal with the safety controller synthesis problem for hybrid systems. Since Zeno behav-iors are mathematically possible but not physically achievable, when solving the synthesisproblem, it is important that the automaton is non-Zeno, otherwise the synthesis algorithmmight produce a controller which succeeds in avoiding bad states by preventing time fromprogressing.
2.5 Reachability NotionsThe set reachable from a given set of states F by a hybrid automaton can be de�ned asthe set of all states visited by the trajectories starting from states in F . A trajectory of thehybrid automaton in the continuous state space can be thought of as a sequence of trajec-tory segments of continuous dynamics. Thus, for a clear understanding of the reachabilitynotions of hybrid automata, it is convenient to consider �rst discrete and continuous systemsseparately.
2.5.1 Reachability of AutomataConsider an automaton M = (Q; �) of De�nition 3.1The reader is refered to [79] for the work on �nding existence and uniqueness conditions under which alltrajectories can be extended to in�nite time.



38 Hybrid AutomataWe de�ne the successor operator Post for a set F � Q as the set of states that can bereached from F in one step: Post(F ) = fq0 j 9q 2 F q0 2 �(q)g:We also de�ne the predecessor operator Pre for F as the set of states from which F can bereached in one step: Pre(F ) = fq j 9q0 2 F q0 2 �(q)g:Hence, the set of states that can be reached from F is the least �xed point � of the equation� = F [ Post(�) and can be computed as the limit of the recursionP0 = FPi+1 = Pi [ Post(Pi)Similarly, the set of states from which F can be reached is the least �xed point of � =F [ Pre(�) and can be computed using the iterationP0 = FPi+1 = Pi [ Pre(Pi)
2.5.2 Reachability of Continuous SystemsWe consider a continuous system C of De�nition 5.De�nition 9 (Successors)The successor operator �I : 2X ! 2X is de�ned for a subset F of X and a time intervalI � T as �I(F ) = fx0 j 9x 2 F 9t 2 I x t�!x0g:
Recall that the notation x t�!x0 indicates that x0 is the state reachable from x after exactlyt time, in other words, x0 = �x(t) where �x is the trajectory of C starting from x.For simplicity, we use the notation �r for �[r;r] (states reachable after exactly r time) and�I(x) for �I(fxg). The reachable set from F is therefore �[0;1)(F ) (all states reachable afterany non-negative amount of time), denoted by �(F ).Figure 2.6 illustrates the above notions. In this two-dimensional example, the shaded regionrepresents �r(F ), that is, the set of successors of F at time point r, and the set reachablewithin the time interval [0; r] lies between two dotted lines and the outer boundary of F andof �r(F ).The set �(F ) can be thought of as the union of all trajectories over all possible initial pointsin F and is also known in the literature under the names reach tube [71] and ow pipe [122, 31].
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�r(F )F �[0;r](F )

Figure 2.6: Successors of F by a continuous system.
Similarly, we de�ne the predecessor operator. The predecessors of a set F are all the statesfrom which F can be reached.De�nition 10 (Predecessors)The predecessor operator �I : 2X ! 2X is de�ned for a subset F of X and a time intervalI � T as �I(F ) = fx j 9x0 2 F 9t 2 I x t�!x0g:The operators � and � satisfy the semi-group property [64], that is,�I2(�I1(F )) = �I1�I2(F )where � is the Minkowski sum, and, in particular, �[0;r2](�[0;r1](F )) = �[0;r1+r2](F ).
2.5.3 Reachability of Hybrid AutomataWe can now proceed with the reachability of hybrid automata. Consider a hybrid automatonA = (X ; Q; f;G;H;R) of De�nition 7.As we have already seen, there are two types of evolutions from a state (q;x), namely thecontinuous evolution by the dynamics fq and the discrete evolution by taking a transition.Accordingly, we de�ne two types of successors: successors by continuous evolution, whichwe call continuous-successors, and successors by discrete evolution, which we call discrete-successors.De�nition 11 (Continuous-Successors)Given a set of states (q; F ) where q 2 Q and F � X , we de�ne the set of continuous-successors of (q; F ), denoted by �c(q; F ), as�c(q; F ) = f(q;x0) j 9x 2 F 9t > 0 x q;t�!x0g:
Recall that the notation x q;t�!x0, introduced in Section 2.4.2, indicates that x0 is q-reachablefrom x. Intuitively, this notation means that the trajectory segment of the dynamics fq fromx to x0 lies inside Hq.



40 Hybrid AutomataFigure 2.7 depicts the continuous-successors of a set (q; F ) in the continuous state space.Unlike continuous systems, the behavior of the hybrid automaton at discrete state q isconstrained by the staying conditions Hq, which are de�ned in this example by the half-spaceon the left-hand side of the vertical straight line. The dotted trajectory is thus impossible,and the point z is not reachable from F by the continuous dynamics fq. However, theautomaton admits the segment of this trajectory from x to y. As a result, all the continuous-successors of (q; F ) lie on one side of the vertical line.

Hq
Fx �c(q; F )

yz

Figure 2.7: Continuous-successors of F by the dynamics fq
Let F be a set of states de�ned as F = f(q; Fq) j q 2 Q ^ Fq � Xg. We can naturallyextend the above de�nitions to the continuous-successors of F as follows:�c(F) = [q2Q �c(q; Fq):We turn now to discrete-successors.De�nition 12 (Discrete-Successors)Given a transition from q to q0 and a set of states (q; F ) where q; q0 2 Q and F � X ,we de�ne the set of discrete-successors of (q; F ) with respect to the transition from q to q0,denoted by �qq0(q; F ), as�qq0(q; F ) = f(q0;x0) j 9x 2 F \Gqq0 ^ x0 2 Rqq0(x) \Hq0g:The set �qq0(q; F ) contains the states (q0;x0) where x0 are the points in Hq0 resulting fromapplying the reset relation Rqq0 to the points x in F that satisfy the guard Gqq0 .To illustrate, consider the example shown in Figure 2.8 where the set F is the set ofcontinuous-successors in the example of Figure 2.7. The set Hq0 is the half-space belowthe horizontal line, and the guard Gqq0 is the rectangle. Suppose that the continuous vari-ables do not change after taking the transition from q to q0. The discrete-successors of (q; F )with respect to this transition can be obtained by intersecting F with Gqq0 and then withHq0 , which gives the shaded region in the �gure.
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Figure 2.8: Discrete-successors of F by transition from q to q0.

The set of discrete-successors of (q; F ) by executing all enabled transitions from q, denotedby �d(q; F ), is �d(q; F ) = [q02Q �qq0(q; F ):Hence, the set of discrete-successors for a set of states F = f(q; Fq) j q 2 Q ^ Fq � Xg is�d(F) = [q2Q �d(q; Fq):We de�ne now the operator � for F as the set of states reachable from F by continuousdynamics and then discrete transitions:�(F) = �d(�c(F)):Then, the reachable set from F by the automaton A is the limit of the recursionP0 = FPi+1 = �(Pi)
The successor operators are basic ingredients in forward reachability analysis. For backwardreachability, we introduce subsequently the predecessor operators.De�nition 13 (Continuous-Predecessors)Given a set of states (q; F ) where q 2 Q and F � X , we de�ne the set of continuous-predecessors of (q; F ), denoted by �c(q; F ), as�c(q; F ) = f(q;x0) j 9x 2 F 9t > 0 x0 q;t�!x g:



42 Hybrid AutomataDe�nition 14 (Discrete-Predecessors)Given a set of states (q; F ) where q 2 Q and F � X , we de�ne the set of discrete-predecessorsof (q; F ) with respect to the transition from q0 to q, denoted by �q0q(q; F ), as�q0q(q; F ) = f(q0;x0) j 9x 2 F \Rq0q(x0) ^ x0 2 Hq0 \Gq0qg:Then, the set of discrete-predecessors of (q; F ) is�d(q; F ) = [q02Q�q0q(q; F );
and the set of discrete-predecessors of F = f(q; Fq) j q 2 Q ^ Fq � Xg is�d(F) = [q2Q�d(q; Fq):
2.6 Other Hybrid System ModelsHybrid systems have been intensively studied by both computer science and control com-munities. However, the respective approaches to the modeling of hybrid systems are slighlydi�erent due to the di�erent types of problems of interest and analysis/design techniques inthese two disciplines.The approach pursued by computer scientists is to extend traditional �nite-state automataby introducing progressively more complex continuous dynamics. Timed automata [5] can beviewed as a very restricted class of hybrid automata in which the derivative of all continuousvariables is 1. The �rst model which augmented discrete transition systems with variablesgoverned by di�erential equations is the phase-transition system [84], from which the hybridautomaton model was derived. In [3] it was shown that the reachability problem for hybridautomata is undecidable, i.e. there is no general algorithm for any hybrid automaton. Theresearch in the computer science approaches continued in two major directions. One was tobuild tools for classes of hybrid systems for which the veri�cation problem is solvable (e.g.Kronos [120] and Uppaal [74] for timed automata) or semi-solvable (HyTech [56] for `linear'hybrid automata2). The other was to �nd further restrictions on continuous and discretedynamics that guarantee decidability. Several models along these lines are multirate timedautomata [3], piecewise-constant derivative systems PCD [14], integration graphs [65], andrectangular hybrid automata [99]. In these models, essentially, the guard and staying setsare polyhedra and the vector �elds are constant in every discrete state. These works gaveimportant insights concerning the di�culties in exporting exact veri�cation methodology tohybrid systems. In addition, the hybrid automaton model has been accepted as a workingmodel by the control community.2Linear hybrid automata should not be confused with hybrid automata where continuous dynamics arelinear.



2.6 Other Hybrid System Models 43Control theorists, on the other hand, approach hybrid systems by incorporating discrete be-haviors into their continuous dynamical descriptions, speci�cally ordinary di�erential equa-tions (see [50, 27] and references from there). Other models which deal explicitly withcontinuous dynamics and discrete event dynamics consist of a continuous plant (representedby di�erential equations) supervised by a discrete controller (represensed by an automaton).Examples of such models are [45, 92, 8]. A more general hybrid model is proposed in [28],which considers a variety of hybrid behaviors exhibited in hybrid control systems within auni�ed dynamical setting. Surveys of the hybrid models developed from the control pointof view can be found in [28, 27, 75] and a comparison between discrete and continuousdynamical systems in [83].
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Chapter 3
Algorithmic Veri�cation
3.1 Problematics
Having a formal model for hybrid systems and their behaviors, we need methods for provingthat these systems behave as required. We will adopt the algorithmic veri�cation methodol-ogy (also known as model checking [87]), which has been developed for discrete systems andapplied successfully to digital circuits and communication protocols. In this thesis, we willconcentrate on invariance properties, which are the simplest type of safety properties [86]and can be phrased as follows: no trajectory of the system should ever reach a certain subsetB of the state space, or equivalently, the system will always stay in the complement of B.For �nite automata, there are two straightforward methods to verify invariance properties,namely by forward and backward reachability. The forward reachability method consists instarting with an initial set F of states and computing iteratively their successors until theset of all reachable states is computed (this is guaranteed to happen after a �nite number ofsteps), and this set is then checked for intersection with B. This is summarized by the fol-lowing algorithm which makes use of the successor operator Post, introduced in the previouschapter.Algorithm 1 (Forward Reachability)R0 := F ;repeat k = 0; 1; 2; : : :if (Rk \ B 6= ;) return unsafeRk+1 := Rk [ Post(Rk);until Rk+1 = Rkreturn safe
Backward reachability starts with the set B, calculates iteratively its predecessors until con-vergence, and then checks whether the computed set intersects with the initial set F . The47



48 Algorithmic Veri�cationveri�cation algorithm using backward reachability is given below (Pre is the predecessoroperator).Algorithm 2 (Backward Reachability)R0 := B;repeat k = 0; 1; 2; : : :if (Rk \ F 6= ;) return unsafeRk+1 := Rk [ Pre(Rk);until Rk+1 = Rkreturn safe
The veri�cation problem for any �nite-state discrete system can be solved using either ofthe above algorithms since the transition function, the initial set F , the set B, and the set ofreachable states accumulated over the execution are �nite and can be represented explicitly.
Now, if extended to hybrid automata, these algorithms involve the computation of the fol-lowing functions over subsets of the state space of hybrid systems:� Successors or predecessors: Q� 2X ! Q� 2X ;� Union and intersection: 2X � 2X ! 2X ; and� Emptiness checking: 2X ! f0; 1g.Set union is needed to accumulate the reachable states; emptiness checking and set inter-section are needed to check whether the system reaches states in B. Note that to detectthe termination of the algorithms, i.e. when Rk+1 = Rk, one can check emptiness of the setdi�erence Rk+1 �Rk.In order to be able to compute these functions, the �rst ingredient we need is a �nite syntacticrepresentation of the sets encountered during the execution of the algorithms. The continuousstate space X of hybrid automata is in R n , and hence, unlike in �nite-state systems, subsetsof X do not admit an enumerative representation and can only be represented symbolically,such as by formulas of some logic. Examples of classes of subsets of X which admit asymbolic representation are the polyhedral sets (represented by Boolean combinations oflinear inequalities) and the semi-algebraic sets (represented by combinations of polynomialinequalities).Another di�culty comes with the two-phase evolution of hybrid systems, which requiresthe ability to compute the successors or predecessors of sets of states not only by discretetransitions but also by continuous dynamics. In the continuous phase, this associates withthe special problem of characterizing trajectories of continuous systems. For concreteness,we illustrate this problem by means of a hybrid automaton with only one discrete state whosestaying set is the whole state space. Suppose that the initial set F can be characterized by a



3.1 Problematics 49formula �F (x) whose truth value is 1 i� x 2 F , and similarly, the set B by a formula �B(x).Suppose further that the di�erential equation _x = f(x) of the continuous dynamics admitsa closed-form solution �x(t) for every initial condition x; hence the reachable set from F isexactly the set of x for which the formular(x) = 9x0 �F (x0) ^ 9t � 0 x = �x0(t)is true. Similarly, proving that the system is safe amounts to proving that the formula8x0 �F (x0)) 8t : t � 0 :�B(�x0(t)) (3.1)is true, which can be done by eliminating the quanti�ers. If �B, �F , and �x(t) are de�nablein a theory for which quanti�er elimination is possible, then the problem can, in principle,be solved by symbolic manipulation of formulas [37].When the derivative f is constant: f(x) = c, we have �x(t) = x+ ct; the quanti�ers in (3.1)can thus be eliminated using linear algebra. This is the basis for veri�cation algorithms forclasses of hybrid systems [120, 74, 56] in which the derivatives of continuous variables areconstant, staying conditions and transition guards are speci�ed as combinations of linearinequalities; hence, reachable sets are de�nable by linear formulas (see Figure 3.1 for anexample).
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Figure 3.1: Computation of the reachable set of a one-state hybrid system with constantderivatives where the initial set F and the bad set B are polyhedral. Checking the intersectionof the reachable set with B can be done by linear algebra.
For systems with non-trivial dynamics, the situation is much more complicated. First, inmany cases we do not know explicit solutions of the di�erential equations. Furthermore,even when we know such solutions, their forms may not allow a general method for provingequation (3.1). For example, for linear systems _x = Ax we have a closed-form solution�x(t) = eAtx, but a proof of (3.1) is possible only for a very restricted class of matri-ces. Recent results concerning the applicability of algebraic manipulation techniques for thereachability analysis of hybrid systems with linear continuous dynamics appear in [94, 7].In addition to the problem of characterizing the states reachable in one continuous phase,applying Algorithms 1 or 2 to hybrid automata may result in a computation which alternates



50 Algorithmic Veri�cationinde�nitely between two or more discrete states, each time adding more and more successors.Figure 3.2 depicts the reachable set computation for a 4-state PCD (piecewise-constantderivative) system [14] where X = R 2 and the staying conditions of the discrete statesare the disjoint rectangles. The system starts from the line segment F at discrete stateq1. One can see from the �gure that for this system the reachability algorithm does notterminate. It has been proved that even for simple systems with constant derivatives, wherethe computation of continuous-successors in each discrete state can be done exactly, thereis no general reachability algorithm which is guaranteed to terminate [54]. In other words,the reachability problem for hybrid automata is undecidable. The reader might wish toconsult [7] for a survey of the decidability results.
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Figure 3.2: An example of a non-terminating computation of reachable states.
We now turn to approximate methods. Numerical simulation is a powerful tool for approxi-mating solutions of di�erential equations for a given initial condition. Starting from a singlepoint x in the state space, one can numerically integrate the di�erential equation to obtainan approximation �̂x of the solution �x. Although the approximate solution is computedonly at discrete time points, the distance between an approximate value �̂x(t) and the truevalues at �x(t0) for t0 2 [t� �; t+ �] can be bounded. Hence, if we want to verify whether thetrajectory starting from a point x reaches B, we can, in principle, simulate the trajectoryforward and check at every step if the approximate solution is close to B. Termination is,however, not guaranteed since trajectories of continuous systems are not always periodic.Although simulation techniques are very useful for simulating single trajectories, they areless so when it comes to deal with sets of trajectories arising whenever the initial conditionof the system is speci�ed as a set of initial states rather than a single state, or when the con-tinuous dynamic is inuenced by under-speci�ed inputs. This is, in fact, the major di�erencebetween simulation/testing and veri�cation.The conclusion from the discussion thus far is that the main obstacle towards extending thealgorithmic veri�cation methodology outside the world of discrete systems or hybrid systemswith trivial continuous dynamics is the lack of e�ective methods for characterizing reachablesets of continuous dynamics. In the next section, we propose a framework for algorithmic



3.2 Approach to Solution 51analysis which, despite the theoretical di�culty, allows practical approximate solutions toveri�cation and synthesis problems.
3.2 Approach to Solution3.2.1 Representation of SetsGiven the di�culties in computing exactly reachable sets of hybrid automata, we resortto approximating them by polyhedra. The reason we choose polyhedra as the symbolicrepresentation of sets in R n is that, from the computational point of view, they are amongthe geometric objects which are easier to describe and manipulate. We replace all theoperations on the real sets in the abovementioned veri�cation algorithms by operations ontheir polyhedral approximations and compute a sequence of polyhedra P k approximatingRk. If over-approximations are used and the algorithm terminates, then the result is anover-approximation of the reachable set. Nevertheless, even with polyhedral approximationsthe problems of e�ectiveness and termination are not completely resolved.First, termination is still not guaranteed since there are in�nitely many polyhedral sets,even in a bounded subset of R n . Second, the sets of reachable states, which are iterativelycomputed by the veri�cation algorithms, may have complicated forms and their approximat-ing polyhedra might be hard to represent and manipulate. Polyhedral sets can be dividedinto two types: convex and non-convex. The former are simpler and admit canonical repre-sentations, namely the dual vertex-based and constraint-based representations, which allowe�cient implementations of intersection, membership, and equivalence testing. However, ifwe restrict ourselves to convex polyhedra, whenever we make a union of two sets, we needto approximate it by their convex hull, which might result in a too coarse approximation.Consequently, we need to use non-convex polyhedra, which are much more complex objects.In two dimensions, any polygon can be uniquely de�ned by an ordered list of its vertices,but the treatment of non-convex polyhedra in higher dimensions is, unfortunately, verycomplicated. Non-convex high dimensional polyhedra constitute a challenging object ofcomputational geometry. The topological representation of polygons can be generalized tographs of incidence and adjacency between vertices, ridges, and faces [117], yet with a lotof requirements for a polyhedron to be well-de�ned. Still, data structures and algorithmsbased on this representation are very sophisticated when it comes to deal with degeneracyand become ine�cient as the dimension grows. Alternatively, non-convex polyhedra can alsobe represented by unions of convex polyhedra1, or by series of Boolean operations on convexpolyhedra, such as CSG2 [69] and Octree [103]. Although these representations have provedsuccessful in two- or three-dimensional applications, such as computer graphics and solidmodeling, they are not appropriate for higher dimensions since geometric operations become1In the veri�cation tools Kronos [120] and Uppaal [74] for timed automata, reachable sets are also repre-sented by lists of simple convex polyhedra which can be written as conjunctions of inequalities of the formxi � xj � b.2CSG stands for Constructive Solid Geometry.



52 Algorithmic Veri�cationprohibitively expensive.For these reasons, we restrict ourselves further to orthogonal polyhedra which can be de-scribed as unions of closed full-dimensional hyper-rectangles with rational coordinates. Thejusti�cation for this choice is that for orthogonal polyhedra we have a compact and, moreover,canonical representation, which allows relatively e�cient manipulation including Boolean op-erations, equivalence checking, and all other geometric operations. However, while the useof orthogonal polyhedra makes algorithm design easier, a price for this is that the quality ofthe approximation is poorer.It should be noted that approximating sets of states for veri�cation or controller synthesispurposes is di�erent in nature from approximating single points or trajectories, as is donein numerical simulation. The goal of simulation is to ensure that the approximating objectis close enough to the real one. However, in set-based approximation, we often want toguarantee that the approximating set contains the real one (over-approximation) or, in somecases, is contained in the real one (under-approximation). We will show later that orthogonalpolyhedra are also suitable for these purposes.To summarize, in order to give an approximate solution to the veri�cation problem forhybrid systems, we intend to represent sets of reachable states using non-convex orthogonalpolyhedra. The main challenge in the implementation of the veri�cation algorithms is to �ndtechniques for approximating the continuous-successor operator. This requires the ability tocompute successors for purely continuous systems, which is the major problem we attack inthis thesis. In the rest of this section, we give the key ideas of the orthogonal polyhedronrepresentation, which will help the reader to understand the reachability techniques proposedin the following chapters. For more details on the representation of orthogonal polyhedra,the reader is refered to [26, 25].
Orthogonal Polyhedron RepresentationWithout loss of generality, we assume that we are working in the set [�M;M ]n for someinteger M > 0. With every rational number � � 0 we de�ne the corresponding uniform gridof size � as the set of grid points G� = f(z1�; : : : ; zn�) j zi 2 Zg (see Figure 3.3-(a)).With every grid point v = (v1; : : : ; vn) we associate an elementary hyper-cube g(v) = [v1; v1+�]� : : :� [vn; vn + �], namely the hyper-cube of size � whose leftmost corner is v. The setof all such hyper-cubes is denoted by 
� . An orthogonal polyhedron is any subset of 
� (seeFigure 3.3-(b)).A more general class of orthogonal polyhedra can be obtained by using non-uniform grids.Such polyhedra can be thought of as unions of arbitrary axis-parallel hyper-rectangles (seeFigure 3.3-(c)).A representation scheme for a class of objects (e.g. orthogonal polyhedra) is canonical if eachrepresentation corresponds to at most one object and each object has a unique representation.A compact canonical representation makes the checking of equivalence between polyhedrasimple. For example, the representation of convex polyhedra by the set of their vertices
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(a) (b) (c)Figure 3.3: (a) A uniform grid G�; (b) an orthogonal polyhedra on a uniform grid; (c) anorthogonal polyhedra on a non-uniform grid.
is canonical: every set of vertices de�nes exactly one convex polyhedron and every convexpolyhedron has a unique set of vertices. However, for non-convex polyhedra, a set of verticesis not a representation at all since two di�erent polyhedra can have the same set of vertices(see Figure 3.4). If we represent non-convex polyhedra as unions of convex ones, we mayhave more than one representation of the same polyhedron. In the sequel we discuss avertex-based canonical representation scheme for orthogonal polyhedra, developed in [26].
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P1 P2Figure 3.4: The polyhedra P1 and P2 are distinct but have the same vertices.
Given a grid point v and an orthogonal polyhedron P , we say the color of v is black ifg(v) 2 P and white otherwise. We de�ne the neighborhood N (v) of a vertex v of P asthe set of the vertices of the elementary hyper-cube lying between (v1 � 1; : : : ; vn � 1) andv. A vertex is called extreme if its neighborhood contains an odd number of black points.Figure 3.5 illustrates the above notions. The color of vertex v is black and that of v0 iswhite. The neighborhood of grid point v is N (v) = fv1;v2;v3;vg.It has been proved in [26] that an orthogonal polyhedron is uniquely represented by the set of
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v3v1 v2 v0v

Figure 3.5: Orthogonal polyhedron notions.
its extreme vertices. As an example, consider again the polyhedra of Figure 3.4. It is easyto see that all the vertices of P2 are extreme while the vertices a, b, c, and d of P1 are not.Hence, P2 is represented by all its vertices and P1 by all its vertices except a; b; c; d. Basedon this canonical representation, algorithms for Boolean operations, membership testing,equivalence checking as well as other geometric operations, such as face detection, weredeveloped and reported in [26, 25].
3.2.2 Reachability Analysis of Continuous SystemsHaving chosen a representation scheme for sets of states, the remaining problem is to �ndtechniques for computing reachable sets of continuous systems using this representation. We�rst formally state the problem and then present a basic reachability algorithm.
Basic Computation ProcedureConsider a continuous system C = fX ; fg, as in De�nition 5. The reachability problem weconsider is stated as follows.Problem 1 Given a set F � X , we want �nd an approximation of the set �(F ) of statesreachable from F by C.Numerical integration is a common method to approximate solutions of di�erential equations.The basic idea of this approach is the following. For a given initial condition x(0) = x0, thesolution of the di�erential equation of C can be written as

�x0(t) = x0 + Z t0 f(�x0(s))ds: (3.2)
Given a time step r > 0 and a sequence 0; r; 2r; : : : , we denote by xk a numerical estimateof the exact solution �x0(kr), k = 0; 1; 2; : : : . We can then obtain an approximate solutionusing the following rescursive scheme:xk+1 = xk + �(xk; r): (3.3)



3.2 Approach to Solution 55where � is an approximation of the integral in (3.2). The main concern of this approach isto �nd the time step r and � with respect to the desired accuracy and computational cost,and this leads to numerous advanced schemes, such as multistep and Runge-Kutta [62].This method, although not adequate for solving Problem 1 since our interest is to com-pute solutions for all points in the initial set and for all time points t � 0, inspires us toapproximate reachable sets on a step-by-step basis using the following iterative algorithm.Algorithm 3 (Computation of �(F ))P 0 := F ;repeat k = 0; 1; 2; : : :P k+1 := P k [ �[0;r](P k);until P k+1 = P k
The set P k here is the set of states reachable from F during the interval [0; kr], i.e. �[0;kr](F ).The algorithm terminates whenever no new reachable states are found. Algorithm 3 can beeasily extended to account for variable time steps.
To be e�ective, we use orthogonal polyhedra to represent the sets encountered in Algo-rithm 3 and replace all the operations with their approximate versions on orthogonal poly-hedra. Since orthogonal polyhedra are closed under the union operation, only �[0;r] needsto be approximated. Note also that, using orthogonal polyhedra, the set of reachable statesaccumulated over the execution is represented as a unique object, and hence terminationchecking can be done e�ciently. This also proves the advantage of orthogonal polyhedraover arbitrary polyhedra or ellipsoids since there is no easy way for deciding if a union ofconvex polyhedra or ellipsoids is included into another. Moreover, the use of orthogonalpolyhedra may guarantee the termination of the algorithm if we analyze the system only ina bounded subset of the state space, which can be represented as a union of a �nite numberof orthogonal polyhedra. This issue will be discussed in more detail in the next chapters.Nonetheless, using orthogonal polyhedra to approximate smooth sets, it is clear that wecannot avoid approximation errors. No matter which method to compute �[0;r] is proposed,the following question about error accumulation must be answered: \How does the error ineach iteration a�ect the global error in the obtained result?".It is important to emphasize that the global error is the distance between the exact solutionand the approximate one and should not be confused with the local error, namely the errorincurred when we compute P k+1 from P k under the assumption that P k is `exact'. It is notsu�cient to maintain the local error at less than a given tolerance since P k itself containserrors, which may propagate to the next iterations, and consequently the global error cangrow over the execution. Therefore, another desirable property of the approximation schemeis that the error in each iteration does not propagate.



56 Algorithmic Veri�cationLet us examine, in a rather general way, how the error accumulation phenomenon is mani-fested when using orthogonal polyhedra (and over-approximation in general) in Algorithm 3.Consider the example shown in Figure 3.6 where we want to over-approximate the set ofstates reachable from the box D0. The exact set is shown as the shaded region. Since x0 isreachable from x, we must include the box D1 (which is an elementary hyper-cube of theunderlying grid) in the set of successors. This box contains points, such as y, not reachablefrom D0, which bring in the next iteration new points, such as y0; as a result, we end upadding the box D02 which contains no reachable points from D0 at all.

x0x D1
D2 D02y0
yD0

Figure 3.6: Illustration of the over-approximation error accumulation.
The phenomenon is not speci�c to orthogonal polyhedra (although it is aggravated by thecoarseness of the approximation). Similar phenomena are exhibited, for example, in abstractinterpretation of programs over the integers [35] where over-approximation is called widening.The intuitive reason for the error accumulation is that Algorithm 3 advances the computationfrom kr to (k + 1)r using P k as the new initial set and thus includes in P k+1 the `fake'successors in P k. Even though we can control the local error, the global error can still growif the continuous dynamics f by its very nature expands regions. Note that, by the semi-group property, computing successors of �[0;kr](F ) is equivalent to computing successors of�kr(F ), or more precisely, �(�[0;kr](F )) = �(�kr(F )) [ �[0;kr](F ):Thus, one can employ �kr as the basis for the computation in the next iterations. This maybe helpful in reducing the accumulation error e�ect because one might expect that there ismore accumulated error in the approximation of �[0;kr] than in that of �kr. This solution,however, requires the additional computation of �kr, which is not more feasible except forlinear systems, as we will see in the next chapter. For non-linear systems, this can still bedone yet with much sophistication.In the following two chapters, we present two techniques for over-approximating reachablesets of continuous systems based on Algorithm 3. One technique is specialized for linearsystems, and the other can be used for non-linear systems. The advantage of both techniquesis that they can be easily adapted to the veri�cation of hybrid systems.Before proceeding, we discuss briey some other approaches reported in the literature.



3.3 Other Approaches 573.3 Other Approaches
The standard algorithmic approaches to the veri�cation of hybrid systems can be dividedinto two categories: direct and indirect. The direct approach works directly on the continuousstate space of the system (as in this thesis). Examples are the veri�cation algorithms imple-mented in the tools Kronos [120], Uppaal [74], and HyTech [56]. Recent works in [24, 59],which we will outline in Chapter 8, also solve the veri�cation problem for hybrid systemswith more complex continuous dynamics in a direct manner.The indirect approach, on the other hand, reduces �rst the system, via abstraction, to a�nite-state automaton. The abstraction procedure consists in �nding a �nite partition of thestate space such that the reachability between partition blocks is faithfully described by thetransition relation of the automaton (see [7] for more details on this issue). Once the �niteabstraction has been constructed, the veri�cation can be performed on the abstracted systemwith a termination guarantee, using standard tools for �nite-state systems. Nevertheless, itwas shown that such a �nite abstraction exists only for restricted classes of hybrid systemseither with simple continuous dynamics [5, 4, 93] or with simple discrete dynamics [73]. Evenwhen a given class of systems is proved to admit a �nite quotient, another di�culty comeswith the problem of actually computing the quotient, which requires calculating successors ofevery block in the partition and is consequently at least as hard as the veri�cation problem.However, it should be noted that this approach is important for proving correctness andtermination of the veri�cation algorithms for some classes of systems [5, 54] and allows toverify general temporal logic properties.Alternatively, other works consider discrete approximations, that is, instead of exact �nitequotient, they search for a �nite discrete system whose behaviors include all behaviors of theoriginal system. Recently, in [31], discrete approximations are done by iteratively re�ningstate partitions using an approximate reachability method for continuous dynamics, whichis similar in some aspects to the method we propose in the next chapter. In [95] the au-thor developed an analysis technique for piecewise linear systems using a geometric modeldescribing switching boundaries and some algorithms for mapping the patterns of trajectorymovements between boundaries into a node graph.An approach which can be viewed as a mixture of the direct and indirect approaches consistsin deriving from the original system an approximate system for which veri�cation algorithmsand tools are available [101, 57, 107, 109]. The approximate system can be generated by over-approximating the complex continuous dynamics with simple dynamics (such as constantslopes and rectangular inclusions) based on discretizations of the continuous state space.The main drawback of this approach is that, in addition to the considerable e�ort of initiallyabstracting continuous dynamics with respect to the desired accuracy, the size of the resultingsystem might be prohibitively large for the veri�cation algorithms.Besides the algorithmic approaches, the deductive approaches have also been used [86]. De-ductive methods involve proving a property by induction based on a set of axioms andinference rules. These approaches are often aided by theorem provers (e.g. [22]) and canverify a more general class of systems. However, unlike the algorithmic approaches, they are



58 Algorithmic Veri�cationnot automatic and require human intelligence in the process of �nding proofs.Optimal control is another approach to the veri�cation of hybrid systems, mostly used bythe control community. Instead of exploring all trajectories of the system, as is done inthe algorithmic methods, one can turn the veri�cation problem into an equivalent optimalcontrol problem, that is, �nding the worst possible trajectory with respect to the propertyto be veri�ed [100, 78]. Nevertheless, solving optimal control problems for hybrid systems isnon-trivial, both analytically and computationally.



Chapter 4
Reachability Analysis of LinearContinuous Systems
Linear dynamical systems have been extensively studied by the control community for yearsbecause they have a rich structure and provide su�ciently good models to design controllersfor a broad class of processes. The theory of linear systems is well developed and has beensuccessfully used in practice. In this chapter we develop a reachability technique for linearcontinuous systems. Although this technique is less e�cient than classical methods foranalyzing linear continuous systems, its main advantage is its straighforward adaptation toveri�cation and controller synthesis for hybrid systems.An outline of the chapter is as follows. After some preliminaries, we describe an algorithm forapproximating reachable sets of linear systems and then study the error in the approximation.We next show how this technique can be extended to linear systems with uncertain input.This chapter is a review of the results presented in [10].
PreliminariesAs the metric for our approximations, we will use the Hausdor� distance [41], which is a goodmeasure for di�erence between sets. We give below some basic de�nitions and properties.Let x, y be two points in R n and X, Y be two subsets of R n . We denote by hx;yi thescalar product of x and y. Let B be the unit ball at the origin: B = fx j hx;xi � 1g. TheMinkowski sum of X and Y is de�ned as X � Y = fx + y j x 2 X; y 2 Y g. For � 2 R ,�X = f�x j x 2 Xg. The set N(X; �) = X � �B is called the �-neighborhood of X.De�nition 15 (The Hausdor� distance)1. The distance between x and y is de�ned as d(x;y) = jjx�yjj where jj�jj is the Euclidiannorm, or equivalently, d(x;y) = (hx� y;x� yi) 12 .2. The diameter of X is de�ned as %(X) = supfd(x;y) j x;y 2 Xg. In other words, %(X)59



60 Reachability Analysis of Linear Continuous Systemsis the maximal distance between any two points in X.3. The Hausdor� semi-distance from X to Y is de�ned ash+(X;Y ) = inff� j X � N(Y; �)g;or equivalently, h+(X;Y ) = supx2X infy2Y fd(x;y)g:4. The Hausdor� distance between X and Y ish(X;Y ) = sup fh+(X;Y ); h+(Y;X)g:If X and Y are closed sets, inf and sup in the above de�nitions can be substituted bymin and max, respectively. It is well-known that the Hausdor� distance has the followingproperties [41].Lemma 1(h1) Given sets X, Y , Z in R n , h(X;Z) + h(Z; Y ) � h(X;Y ).(h2) Given sets X1, X2, Y1, Y2 in R n , if h(X1; Y1) � � and h(X2; Y2) � � thenh(X1 [X2; Y1 [ Y2) � �:Here and further the term `distance' refers to the Hausdor� distance (if not explicitly statedotherwise). We also introduce the following notation [52] which will be used in error estima-tion.De�nition 16 (Asymptotic notation) Let x be a real variable tending to some limit. Letv(x) be a positive function and u(x) any function. Then, we write u = O(v) if there existsa constant b such that ju(x)j < bv(x) for all values of x.
4.1 Computation ProcedureConsider a continuous linear system C = fX ; fg where X � R n . The dynamics of C isdescribed by the linear di�erential equation_x = Ax (4.1)where A is an n� n matrix.For a given initial set F � X , our goal is to �nd an orthogonal polyhedron over-approximatingthe reachable set �(F ). We begin by stating an important property of linear systems.



4.1 Computation Procedure 61Lemma 2 If F is a convex set, then for every t � 0 the set �t(F ) of states reachable fromF at time point t is convex.ProofLet �x : T ! X be the trajectory of C starting from a point x 2 X . By solution ofequation (4.1), we have �x(t) = eAtx: (4.2)Therefore, the set �t(F ) can be written as �t(F ) = eAtF . The matrix exponential eAt is alinear operator [61] and hence preserves convexity, which implies that �t(F ) is convex.
We suppose further that the initial set F is a convex bounded polyhedron. Then, F can bewritten as F = conv(V ) where conv denotes the convex-hull operator and V = fv1; : : : ;vmvgis a �nite set of vertices. Note that the successor of a single point can be easily computedeither by matrix exponentiation, as shown in (4.2), or by numerical integration. Thus, todetermine �t(F ), it su�ces to compute the set of successors at time t of the vertices of F ,that is, f�t(v1); : : : ; �t(vmv)g, and then�t(F ) = convf�t(v1); : : : ; �t(vmv)g: (4.3)
Figure 4.1 illustrates the above computation in two dimensions. If we were working in discrete

F �t(F )
v1 v4

v2 v3 �t(v3)
�t(v4)�t(v1)

�t(v2)

Figure 4.1: Illustration of the computation of �t for a convex polygon F with verticesfv1; : : : ;v4g.
time, this computation would be su�cient. We want, however, to compute all the statesreachable at any time t � 0. In the sequel we present a technique for over-approximating�(F ).
4.1.1 Approximation SchemeWe consider the following sub-problem.



62 Reachability Analysis of Linear Continuous SystemsProblem 2 (Over-approximating �[0;r])Given a convex polyhedron F and a time step r � 0, �nd an orthogonal over-approximationof �[0;r](F ), denoted by b�[0;r](F ).Note that the solution can be easily generalized to problems where the initial sets are non-convex polyhedra since these can be decomposed into �nitely many convex polyhedra.We have just shown that �r(F ) can be e�ectively computed using (4.3), and we will exploitthis to over-approximate �[0;r](F ). To begin, we make some preliminary observations. Anobvious approximation of �[0;r](F ) can be obtained by taking the convex hull C = conv(F [�r(F )). The polyhedron C is, in general, neither a subset nor a superset of �[0;r](F ). Theproblem is then to �nd a neighborhood of C that is guaranteed to include all the statesreachable within the time interval [0; r].Let �x : T ! X be the trajectory starting from an arbitrary point x 2 F , and let y = �x(r)be the point reachable from x at time r. The line segment from x to y can be thought of asan approximation of �x(t) for t 2 [0; r] by a linear interpolation sx : T ! X de�ned assx(t) = x+ tr (�x(r)� x); t 2 [0; r]:Let S be the set of all these line segments:S = fsx(t) j x 2 F ^ t 2 [0; r]g:Note that the set S is often a curved object. Since x 2 F and y 2 �r(F ), by convexity wehave S � C. Similarly, the reachable set �[0;r](F ) can be written as�[0;r](F ) = f�x(t) j x 2 F ^ t 2 [0; r]g:Theorem 1 Given a time step r � 0, there exists #(r) which is O(r2) such that �[0;r](F ) �N(C; #(r)).ProofSince S � C, we have N(S; #(r)) � N(C; #(r)); hence, to prove the theorem, we will provethat �[0;r](F ) � N(S; #(r)). To this end, we estimate the distance between �[0;r](F ) and S.Using Lemma 1-(h2), h(�[0;r](F ); S) is the upper bound on the distance between �x(t) andsx(t) for every x 2 F and for every t 2 [0; r]. This distance is written asjjsx(t)� �x(t)jj = jjx+ tr (eAr � I)x� eAtxjj:By Taylor's theorem eAt = I + At+ 12A2t2 + 1Xi=3 1i!Aiti:We �nd after obvious simpli�cationsjjsx(t)� �x(t)jj = jj[12A2t(r � t) + 1Xi=3 1i!Ait(ri�1 � ti�1)]xjj:



4.1 Computation Procedure 63Let M be the constant bounding the norm jjxjj. Then, the following inequality holds for allt 2 [0; r]: jjsx(t)� �x(t)jj � 18M jjAjj2r2 +O(r3) = #(r): (4.4)This means that �[0;r](F ) � N(S; #(r)), and consequently �[0;r](F ) � N(C; #(r)). For-mula (4.4) also shows that #(r) is indeed O(r2). This completes the proof of the theorem.
Theorem 1 suggests the following scheme to solve Problem 2.Scheme 1 (Over-approximating �[0;r](F ))1. Compute �r(F ).2. Compute C = conv(F [ �r(F )).3. Find the neighborhood N(C; #(r)) with #(r) from Theorem 1.4. Find an orthogonal polyhedron over-approximating N(C; #(r)).Although N(C; #(r)) is already an over-approximation of �[0;r](F ), the goal of the last stepis to represent the reachable set after successive iterations succintly as a unique orthogonalpolyhedron, so that termination checking can be done e�ciently.We show now how to implement Scheme 1. The �rst step can be done, as mentionedearlier, by numerical integration or matrix exponentiation, and the second can be doneusing standard convex-hull algorithms. Let us proceed with the third step.
Constructing N(C; #(r))The set N(C; #(r)) = C � #(r)B is not polyhedral, and in order to stay in the world ofpolyhedra we �nd a polyhedral over-approximation of N(C; #(r)). For doing this, we de�nethe operator bloat as follows.De�nition 17 Let C be a convex polyhedron C = Tmci=0fx j hai;xi � big, and let d be a realnumber. We de�ne bloat(C; d) = mc\i=0fx j hai;xi � bi + djjaijjg:
In words, bloat(C; d) is the convex polyhedron resulting from pushing outward the half-spacesof C by the amount d. As an example, consider the polygon C shown in Figure 4.2, wherethe enveloping polygon represents bloat(C; d) and the boundary of the neighborhood N(C; d)is the curved line.It can be easily shown that bloat(C; #(r)) is indeed an over-approximation of N(C; #(r)) andthe distance between C and bloat(C; #(r)) is bounded by pn#(r).
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C

bloat(C; d)
d

Figure 4.2: Illustration of bloat(C; d).
Orthogonal ApproximationThe last step of Scheme 1 is the over-approximation of a convex polyhedron by an orthogonalpolyhedron. Under-approximations are needed for other types of analysis, which we shalldiscuss later. It is important to emphasize that every orthogonal polyhedron that is used inour approximation procedure should be de�ned on the same underlying grid.De�nition 18 (Orthogonal approximation)We de�ne the operators grido and gridu for a convex polyhedron C and a grid G� as follows.� grido(C) is the smallest orthogonal polyhedron de�ned on G� such that grido(C) � C.� gridu(C) is the largest orthogonal polyhedron de�ned on G� such that gridu(C) � C.Followed immediately from the de�nition, grido(C) and gridu(C) can be written asgrido(C) = fg(v) j v 2 G� ^ g(v) \ C 6= ;g;gridu(C) = fg(v) j v 2 G� ^ g(v) � Cgwhere g(v) is the elementary hyper-cube associated with a grid point v in G�. In other words,gridu(C) is the union of all elementary hyper-cubes which are inside C, and grido(C) is theunion of all elementary hyper-cubes whose intersection with C is not empty (see Figure 4.3).Note that for a given underlying grid, grido(C) and gridu(C) are tight orthogonal approxi-mations of the convex polyhedron C in the sense that there exists no orthogonal polyhedronsmaller than grido(C) that includes C and there exists no orthogonal polyhedron larger thangridu(C) that is inscribed in C.An obvious method for computing grido(C) and gridu(C) is to test all the elementary hyper-cubes g(v) residing in the bounding box of C. This is, evidently, ine�cient since the numberof tests, which depends on the ratio of the volume of C to the volume of the elementaryhypercubes of the grid, can be large. In Chapter 8 (Implementation), we will present a moree�cient method for computing grido and gridu, inspired by the Binary Space Partitionconcept [44].
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C
gridu(C)

grido(C)
Figure 4.3: Orthogonal approximations: the convex polyhedron C is over- and under-approximated by grido(C) and gridu(C).
It is not hard to see that the error in both over-approximation and under-approximationin terms of the Hausdor� distance is bounded by pn�, and one can obtain more accurateorthogonal approximations by using �ner grids.
4.1.2 Reachability AlgorithmWe have now all the ingredients needed to compute an orthogonal over-approximation of�[0;r](F ). Embedding this procedure in Algorithm 3, we obtain the following algorithm forover-approximating the reachable set �(F ).Algorithm 4 (Over-approximating �(F ))P 0 := ;; X0 :=F ;repeat k = 0; 1; 2; : : :Xk+1 := �r(Xk);Ck+1 := conv(Xk+1 [Xk);Ck+1o := bloat(Ck+1; #(r));Gk+1 := grido(Ck+1o );P k+1 := P k [Gk+1;until P k+1 = P kreturn P k+1
Figure 4.4 illustrates the steps of Algorithm 4 with a simple two-dimensional example wherethe initial set F is a line segment with two extreme points v1 and v2. The setX0 is initializedto the initial set F , and the algorithm basically repeats the following four steps:
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X1

v1 �r(v2)�r(v1)
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X0 C1

(1) X1 = convf�r(v1); �r(v2)g: (2) C1 = conv(X0 [X1):
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G1 = P 1
(3) C1o = bloat(C1; #(r)): (4) G1 = grido(C1o ):

X2
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The second iteration computes P 2 = G1 [G2:G2 based on X1:Figure 4.4: Two iterations of Algorithm 4 on a simple example where the initial set F is atwo-dimensional line segment with two extreme points v1 and v2. The computation in thesecond iteration starts from X1.



4.1 Computation Procedure 671. Compute Xk+1 = �r(Xk), which represents the reachable set after exactly (k + 1)rtime. In Figure 4.4, the dotted lines are the real trajectories starting from the verticesof X0, and the exact set �[0;r](X0) lies between these lines.2. Compute Ck+1 as the convex hull of (Xk[Xk+1) or equivalently the convex-hull of thevertices of both Xk and Xk+1. The convex-hull algorithm provides us with informationabout the orientation of the faces of Ck+1, which is used in the next step.3. Bloat Ck+1 by the amount #(r) determined according to (4.4) to obtain the convexpolyhedron Ck+1o , which is guaranteed to contain �[0;r](Xk).4. Compute the orthogonal over-approximation Gk+1 of Ck+1o . The polyhedron Gk+1representing b�[kr;(k+1)r](F ) is then added to P k+1 that is used to store all the statesreachable over the execution.In the example shown in Figure 4.4, after the �rst iteration we get the orthogonal polyhedronG1 � �[0;r](F ). In the next iteration, we repeat the above four steps starting from X1 to ob-tain G2 � �[r;2r](F ). The orthogonal polyhedron P 2 = G1[G2 is thus an over-approximationof the set of states reachable after two iterations.
Careful readers may realize that approximate calculations are used in Algorithm 4, andhence the condition P k+1 = P k is not su�cient to ensure that whenever the algorithmterminates, it gives an over-approximation of the whole reachable set. We defer this problemto Section 4.4 and continue with a brief discussion on the main factors which inuence thetime cost of Algorithm 4.
Computational CostThe computation time of the �rst three steps depends on the number of vertices of Xkbecause it determines the number of numerical integrations to perform as well as the timecomplexity of the convex-hull algorithm. Note that the bloat operation requires intersectinghalf-spaces, which can be transformed into a convex-hull problem. It is worth mentioning thatalthough the number of vertices of Xk is unchanged over the execution, the time needed fornumerical integration1, being sensitive to the sti�ness of di�erential equations, may vary. Wehave already seen that the computation time needed for orthogonal approximations dependsmostly on the ratio of the volume of Xk to the granularity of the underlying grid. Moreover,the use of �ner grids results in more vertices in P k and consequently more computation timefor the union operation and equivalence testing in the next two steps. We will show, in thenext section, that the size of the underlying grid must be chosen according to the desiredaccuracy. Therefore, a crucial problem is to �nd the right compromise between accuracy andcomputational cost.1The time step r of our approximation scheme should not be confused with the step-size of numericalintegration procedures.



68 Reachability Analysis of Linear Continuous Systems4.2 Error AnalysisIn order to guarantee the desired accuracy, we need to determine the bound on error in theapproximate solution and �nd conditions for ensuring an error under the speci�ed tolerance.
4.2.1 Error PropagationThe main advantage of Algorithm 4 is that it avoids the e�ect of over-approximation erroraccumulation due to the use of orthogonal polyhedra. To clarify this, let us indicate twotypes of errors that are introduced into the computation in each iteration.� Numerical integration error which results from the computation of Xk+1 from Xk.� Over-approximation error which is inherent in the approximation of �[0;(k+1)r](F ) byP k+1 based on Xk+1 and Xk.Indeed, the polyhedron P k contains the over-approximation error while Xk does not. SinceP k+1 is computed based on Xk and not on P k, the over-approximation error does not prop-agate from iteration to iteration.We assume that the numerical integration error is negligible2; therefore, every polyhedraXk is the exact set �kr(F ). Under this assumption, we can state an important property ofAlgorithm 4: the global error does not accumulate over the execution. In other words, theerror in the result is the upper bound on the local error incurred in each iteration.
4.2.2 Error EstimationWe now estimate the error in our approximation under the assumption that there is nonumerical integration error. We will prove that the error in terms of the Hausdor� distancecan be made arbitrarily small by choosing the adequate value of the time step and the gridsize.We are interested in �nding the worst-case error, that is, the largest error for any inputsystem, so that we can guarantee that the error in the results produced by our algorithmwill never be beyond this.Since the over-approximation error does not propagate from one iteration to another, it suf-�ces to study the local error incurred in each iteration. To get a bound on it, we estimate thedistance between the exact set �[0;r](F ) and the approximate set b�[0;r](F ), which is obtainedby making the convex hull C, bloating C to get Co, and transforming Co into orthogonal.By the triangle inequality, we haveh(�[0;r](F ); b�[0;r](F )) � h(�[0;r](F ); C) + h(C;Co) + h(Co; b�[0;r](F )):2The numerical integration error is sometimes inevitable due to the e�ects of round-o� errors in thearithmetic of the computer. To handle this problem, special arithmetics, such as interval arithmetic [1], canbe used.



4.2 Error Analysis 69We have shown earlier that the distance between Co and b�[0;r](F ) = grido(Co) is boundedby the grid size pn�. Then,h(�[0;r](F ); b�[0;r](F )) � h(�[0;r](F ); C) + h(C;Co) +pn�: (4.5)We estimate �rst h(�[0;r](F ); C). The distance between an arbitrary point x 2 F and itssuccessors �t(x) = eAtx for every t 2 [0; r] satis�es the following inequality:jj�t(x)� xjj �M jjeAr � Ijjwhere M is the constant bounding jjxjj.It then follows by Lemma 1-(h2) thath(�[0;r](F ); F ) �M jjeAr � Ijj:Since C = conv(F [ �r(F )), we also have h(C;F ) �M jjeAr � Ijj. This leads toh(�[0;r](F ); C) � h(�[0;r](F ); F ) + h(F;C) � 2M jjeAr � Ijj:Expanding eAr in a Taylor series, we obtainh(�[0;r](F ); C) � 2M jjAjjr +O(r2) = �: (4.6)This means that the distance between the real set �[0;r](F ) and the convex hull C is boundedby �, which is of the order O(r).As stated in the previous section, h(C; Co) � pn#(r) where#(r) = 18M jjAjj2r2 +O(r3)is the bloating amount applied to the convex hull C and n is the dimension of the system.Therefore, h(�[0;r](F ); b�[0;r](F )) � 2M jjAjjr +pn� +O(r2): (4.7)Note that h(C; Co) is now included in the O(r2) term in the right-hand side of the aboveinequality. Formula (4.7) yields the following theorem.Theorem 2 The error in the approximation is bounded by� = 2M jjAjjr +pn� +O(r2)where r is the time step and � is the size of the underlying grid.The theorem also shows that � is of the order O(r), and this provides us with the informationabout how fast the approximate solution approaches the true solution by reducing the timestep. In addition, by re�ning the underlying grid, � can be made as small as desired. Thefollowing result is an immediate consequence of Theorem 2.



70 Reachability Analysis of Linear Continuous SystemsResult 1 The error in the approximation can be made arbitrarily small by changing the timestep r and the grid size �.Remark 1 The upper bound � on the error from Theorem 2 can be much larger than thereal error in practice.As we have already seen, the error in our approximation is mostly due to the approximationby the convex hull C. This comes as no surprise since the reachable set �[0;r](F ) need notbe convex. The error incurred in the convex-hull step is of the order O(r) while the othererrors are of the order O(r2). However, the bound � on the distance h(�[0;r](F ); C), givenin (4.6), is approached only when the set �[0;r](F ) is very concave. In many other cases, thisdistance can be much smaller.
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(1) (2)Figure 4.5: In (1) the distance h(�[0;r](F ); C) is of the order O(r) while in (2) it is of theorder O(r2).
To illustrate this point, consider two examples shown in Figure 4.5. The initial set F is thetwo-dimensional line segment ab, and the set of its successors at time r is the line segmenta0b0. The dotted curves are the true trajectories from a and b, and the exact reachable sets�[0;r](F ) are shown as the shaded regions in both examples. One can see that the distanceh(�[0;r](F ); C) in (1) is O(r). However, in (2) the set S and the convex hull C coincide. Inaddition, we have shown in the proof of Theorem 1 that h(�[0;r](F ); S) = O(r2); thereforeh(�[0;r](F ); C) in (2) is O(r2).
4.2.3 Accuracy ImprovementA conclusion from the error analysis is that the intermediate convex-hull approximationcauses the most signi�cant error in the results. A solution to remedy this consists in, �rst,partitioning the polyhedron F into sub-polyhedra, whose successors at time r can be easilycomputed from �r(F ) by simple linear transformations, and, second, applying the approxi-mation scheme to each sub-polyhedron separately. If the sub-polyhedra are small enough,then the convex-hull approximation incurs considerably less error. To illustrate how partion-ing can improve the approximation accuracy, consider again the example with the worst-case
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(1) (2)Figure 4.6: Accuracy improvement by partitioning of the polyhedron.
error shown in Figure 4.5. Figure 4.6-(1) and -(2) depict the results obtained without andwith prior partitioning the initial polyhedron. In (2), the segment ab is split into eight sub-segments. The successors of the sub-segment aa1 is a0a01, and the shaded polygon C1 is theirconvex hull. One can see that by treating each sub-segment separately the error due to theconvex-hull approximation is reduced, and the accuracy of the result is remarkably improved.As shown in the �gures, the global error �2 in the result obtained with partitioning in (2) ismuch smaller than the error �1 in (1). Nevertheless, it is clear that this solution results in aloss of e�ciency in terms of computation time.
4.3 Under-approximationWhile the safety veri�cation problem requires over-approximation of the � operator, othertasks such as controller synthesis (characterizing all states from which the system satis�es agiven property) require under-approximation of this operator. In this section, we show howto compute an orthogonal under-approximation of �[0;r](F ), denoted by e�[0;r](F ).The idea is the following. Let G be the orthogonal over-approximation of �[0;r](F ): G =b�[0;r](F ). We know that the distance between �[0;r](F ) andG is bounded by � from Theorem 2,and hence we can compute e�[0;r](F ) by `narrowing' the polyhedron G by the amount �. Fordoing this, we de�ne the rectangular neighborhood of G as follows.Let E be the set of faces of G. Consider a face e 2 E whose normal is parallel to the axisi 2 f1; : : : ; ng. The face e is indeed an (n � 1)-dimensional hyper-rectangle and can bewritten as e = [l1; u1]� : : :� [li; li]� : : :� [ln; un]:The rectangular �-neighborhood of e, denoted by Ns(e; �), is simply a full-dimensional hyper-rectangle written asNs(e; �) = [l1 � �; u1 + �]� : : :� [li � �; li + �]� : : :� [ln � �; un + �];



72 Reachability Analysis of Linear Continuous Systemsand the rectangular �-neighborhood of the boundary of G isNs(@G; �) = [e2ENs(e; �):
We compute the under-approximation e�[0;r](F ) as follows:e�[0;r](F ) = G nNs(@G; �): (4.8)Then, to obtain an under-approximation of the whole reachable set, we need just to insertthis computation in Algorithm 4.An important remark is that the under-approximation e�[0;r](F ) described above may beempty even if the interior of the initial polyhedron F is not empty. This happens when �,which is O(r), is large and the polyhedron F is narrow. In such cases, in order to obtain anon-empty under-approximation, one needs to reduce the time step r.
4.4 Termination ConditionIn order for Algorithm 4 to be correct, the termination condition must ensure that when thealgorithm terminates, it gives an over-approximation of the whole reachable set.
By construction, the set computed in each iteration is guaranteed to be an over-approximationof the required set. However, the equivalence between the approximate sets obtained in twoconsecutive iterations is not su�cient for the termination decision. In fact, P k can be writtenas P k = �[0;kr](F )[ Ek where Ek represents the over-approximation error. If the polyhedronXk+1 is, unfortunately, included in Ek, then using P k+1 = P k as termination condition onemay decide to stop whereas Xk+1 can still generate new reachable states. The exampleshown in Figure 4.7 illustrates this phenomenon. In this example, the system starts from aline segment X0. As integration is performed, the line segment spirals towards the origin.After some iterations, Xk+1 is included in the previously computed set P k because of theover-approximation error, and we have then P k+1 = P k. If the algorithm stops at this point,some reachable states will be missed.As stated earlier, the polyhedronXk+1 is the exact set �(k+1)r(F ). Hence, for the terminationdecision, it is su�cient to check the conditionXk+1 � �[0;kr](F ) (4.9)Indeed, when this condition is satis�ed, the polyhedron Xk+1 contains uniquely the statesthat the system has already visited during the time interval [0; kr]; as a result, Xk+1 will notcontribute any new reachable states. Nevertheless, we do not know the exact set �[0;kr](F ).To be sound, we use a stronger condition, that is, we check whether Xk+1 is included ine�[0;kr](F ), which is a subset of �[0;kr](F ). Note that the checking of this condition, in somecases, cannot detect that the set Xk+1 is included in Xk, and we will therefore check both.To be precise, the algorithm using this termination condition is as follows.
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X0
P k P k+1 = P k

Xk+1Xk

Figure 4.7: The condition P k+1 = P k is satis�ed, but not all the reachable states are visited(the exact reachable set lies between two dotted curves).
Algorithm 5 (Over-approximating �(F ))P 0 := ;; X0 := F ; P 0u := ;;repeat k = 0; 1; 2; : : :Xk+1 := �r(Xk);Ck+1 := conv(Xk+1 [Xk);Ck+1o := bloat(Ck+1; #(r));Gk+1 := grido(Ck+1o );Gk+1u := Gk+1 nNs(@Gk+1; �);P k+1u := P ku [Gk+1u ;P k+1 := P k [Gk+1;until Xk+1 � P ku _ Xk+1 � Xkreturn P k+1
In each iteration, the orthogonal polyhedronGk+1u is an under-approximation of �[kr;(k+1)r](F )and P k+1u is an under-approximation of �[0;(k+1)r](F ).We can now state an important property of Algorithm 5, which is a direct consequence ofthe above analysis.Theorem 3 (Soundness)If Algorithm 5 terminates then it produces an over-approximation of the reachable set.As mentioned above, the new termination condition being stronger than (4.9), the price forsoundness is that the algorithm may not terminate in some cases.
Before continuing with a discussion on linear systems with uncertain input, we remark that



74 Reachability Analysis of Linear Continuous Systemsthe results presented so far can be straightforwardly extended to systems with constant inputof the form _x = Ax+ u where u is a constant in R n .
4.5 Extension to Linear Systems with Uncertain InputIt is of great interest to study systems which are subject to external disturbances aboutwhich we know only some constraints. An example of such systems is a thermostat whosebehavior is inuenced by uctuations in the outside temperature about which we know onlythe minimum and maximum values.We have proposed a reachability algorithm for linear systems without input. In the followingwe discuss an extension of this algorithm to linear systems with uncertain input. We present�rst some basic notions related to non-deterministic behavior of such systems.
4.5.1 Additional NotationsConsider a continuous system C = fX ; U; fg where X � R n is the state space of the systemand U � Rm is the input set. The behavior of the system is described by the followingdi�erential equation _x = f(x;u) (4.10)where x 2 X is the state of the system and u 2 U is the input. We assume a set of admissibleinputs U consisting of measurable functions of the form � : T ! U .
The behavior of such systems can also be analyzed using di�erential inclusions [17].De�nition 19 (Trajectory of Continuous Dynamical Systems with Input)A trajectory of C starting from a point x 2 X under a given input �: T ! U is a continuousbehavior �x; � : T ! X such that �x; �(t) is the solution of _x(t) = f(x(t); �(t)) with the initialcondition x(0) = x.The trajectory �x; � is also called the `response' of the system to � when starting at x.We assume that the function f is globally Lipschitz in x and continuous in u. This assump-tion guarantees existence and uniqueness of the solution of the di�erential equation (4.10)for a given � 2 U [53, 61]; therefore the trajectory �x; � is unique.When the input cannot be observed, the behavior of the system is non-deterministic. For agiven initial condition x, every �xed input � generates a di�erent solution to (4.10). As aconsequence, under all admissible inputs the system produces a dense `bundle' of trajectories.Let F be a subset of X . The set of states reachable from F at time point t under a giveninput � 2 U, denoted by �t; �(F ), is simply the set of states visited at time t by all the



4.5 Extension to Linear Systems with Uncertain Input 75trajectories starting from points in F under �:�t; �(F ) = [x2F �x; �(t):The set of all states reachable from F at time point t, denoted by �t(F ), is�t(F ) = [�2U �t; �(F ):Then, the set of all states reachable from F during the time interval [0; r] is�[0;r](F ) = [t2[0;r] �t(F );and the set of all states reachable from F after any non-negative amount of time is thus�[0;1](F ), which we denote by �(F ) for brevity. The above notions are illustrated in Fig-ure 4.8. One can see from the �gure that under di�erent inputs the system, when started atpoint x, generates di�erent trajectories.
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Figure 4.8: Reachable set of a continuous dynamical system with input.
4.5.2 Reachability AlgorithmWe consider a linear system C = fX ; U; fg where X � R n and U � R n . The dynamics ofthe system is de�ned by the linear di�erential equation_x = Ax+ u (4.11)where x 2 X and u 2 U . We assume that the input set U is convex and compact.
Note that any system _x = Ax+Bv where v 2 V � Rm can be transformed into a system ofthe form (4.11) by letting u = Bv and de�ning the input set U = fu j u = Bv ^ v 2 Vg.
Let us recall our reachability problem. Given a convex polyhedron F , we want to computean over-approximation of the reachable set from F , that is, �(F ).



76 Reachability Analysis of Linear Continuous SystemsA natural inclination is to use the underlying idea of the method for linear systems withoutinput. Concretely, to over-approximate �[0;r](F ) we compute the convex hull C = conv(F [�r(F )), bloat C by a certain amount, and over-approximate it by an orthogonal polyhedron.However, in order to extend this method to systems with uncertain input, one has to considerthe following two facts:1. The technique for computing �t(F ), presented in Section 4.1, is no longer appropriatebecause it is impossible to simulate trajectories from the vertices of F with all possibleinputs. To solve this problem, we will make use of the technique suggested by P.Varaiya [114], which is based on the Maximum Principle of optimal control [64, 82].2. The estimation of the bloating amount applied to the convex hull C that guaranteesover-approximations must take into account uncertainty in the input.We begin by presenting the technique of [114] for approximating �t(F ), i.e. the set of statesreachable from F at time point t.
Approximating �t(F )Consider a face e of F whose supporting hyper-plane isP = fx j ha;xi = ha;yigwhere a is the outward normal to e and y is an arbitrary point on the face e, which we callsupporting point of P . Hence, the polyhedron F lies inside the half-space H = fx j ha;xi �ha;yig.
The key idea is the following. By the Maximum Principle, for every face e of F there existsan input �� 2 U such that calculating the successors of its supporting plane P under �� issu�cient to derive a tight polyhedral approximation of �t(F ).It can be proved that the evolution of the normal to P is governed by the adjoint system ofC, denoted by CT , whose dynamics is described by the following di�erential equation [82]:_x = �ATx: (4.12)
Let �a : T ! X be the trajectory of CT starting from a, in other words, �a is the solutionto the di�erential equation (4.12) with the initial condition x(0) = a:�a(t) = e�AT ta: (4.13)One can see that the trajectory �a of the normal to e does not depend on the input.



4.5 Extension to Linear Systems with Uncertain Input 77Recall that �x; � denotes the trajectory of C starting from point x and under the inputfunction �. By solution of (4.11), we have�x; �(t) = eAtx+ Z t0 eA(t�s)�(s)ds:Thus, h�a(t); �x; �(t)i = h�a(t); eAtxi+ h�a(t);Z t0 eA(t�s)�(s)dsi: (4.14)Since �a(t) = e�AT ta and, in addition, every initial point x 2 F satis�es ha;xi � ha;yi,after obvious simpli�cations we obtain from (4.14) the following inequality which holds forall inputs � 2 U, for all x 2 F and for all t � 0:h�a(t); �x; �(t)i � h�a(t); �y; �(t)i: (4.15)Intuitively, this means that the set �t; �(F ) of states reachable from F at time t under the�xed input � is inside the half-space H�(t) = fx j h�a(t);xi � h�a(t); �y; �(t)ig.Similarly, since every point x in the supporting hyper-plane P of the face e satis�es ha;xi =ha;yi, using (4.14) again, it is also easy to prove that the set �t; �(P ) is the hyper-plane P�(t)with the normal �a(t) and the supporting point �y; �(t):�t; �(P ) = P�(t) = fx j h�a(t);xi = h�a(t); �y; �(t)ig:We remark that the normal �a(t) to the hyper-plane P�(t) is independent of the input;therefore for all � 2 U the hyper-planes P�(t) are parallel to each other as shown in Figure 4.9.
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Figure 4.9: The solid and the dotted curves are the trajectories �y; �� under �� and �y; �under �. At time point r, the hyper-plane P��(r) = �r; ��(P ) is determined by the normal�a(r) and the supporting point �y; ��(r).
Let �� 2 U be an input function such that the following holds for all t � 0:h�a(t); �y; ��(t)i = maxfh�a(t); �y; �(t)i j � 2 Ug: (4.16)



78 Reachability Analysis of Linear Continuous SystemsThe above and (4.15) imply that for all inputs � 2 U, for all initial points x 2 F and for allt � 0 h�a(t); �x; �(t)i � h�a(t); �y; ��(t)i: (4.17)Formula (4.17) simply says that all the states reachable from F at time t are inside the half-spaceH��(t) = fx j h�a(t);xi � h�a(t); �y; ��(t)ig and the hyper-plane P��(t) = fx j h�a(t);xi =h�a(t); �y; ��(t)ig supports the reachable set �t(F ) at �y; ��(t).We will exploit this important result to derive an over-approximation of �t(F ). For doingthis, we need to �nd the input function �� which steers the initial hyper-plane P to P��(t)at every time point t.
By solution of the di�erential equation (4.11), (4.16) is equivalent to the following (the termsinvolving y cancel):h�a(t);Z t0 eA(t�s)��(s)dsi = maxfh�a(t);Z t0 eA(t�s)�(s)dsi j � 2 Ug;or equivalently,Z t0 h�a(t); eAte�As��(s)ids = maxfZ t0 h�a(t); eAte�As�(s)ids j � 2 Ug: (4.18)
Since �a(t) = e�AT ta, we haveh�a(t); eAte�As�(s)i = he�AT ta; eAte�As�(s)i= ha; e�As�(s)i:Therefore, (4.18) becomesZ t0 ha; e�As��(s)ids = maxfZ t0 ha; e�As�(s)i ds j � 2 Ug:Note again that ha; e�As�(s)i = he�AT sa; �(s)i. Hence, the input function �� satis�es thefollowing for every time point t��(t) 2 argmaxfh�a(t);ui j u 2 Ug:Now, we apply the above analysis to the initial polyhedron F , which can be represented asthe intersection of, say, mh half-spaces Hi as follows:F = mh\i=1fx j hai;xi � hai;yiig
Let ��i (t) 2 argmaxfh�ai(t);ui j u 2 Ug for every t � 0, i = 1; : : : ;mh. The followingproposition is a direct consequence of the above results.



4.5 Extension to Linear Systems with Uncertain Input 79Proposition 3
�t(F ) � m\i=0 fx j h�ai(t);xi � h�ai(t); �yi; ��i (t)ig:

The reader might wish to consult [114] for another proof of Proposition 3.
Proposition 3 provides the following scheme for computing an over-approximation of thereachable set from F at time point t. We denote this by b�t(F ).For brevity we denote y�i (t) = �yi; ��i (t) and a(t) = �ai(t). Let ai(t), y�i (t) be solutions tothe di�erential equations (4.19) and (4.20), i = 0; : : : ;mh._ai(t) = �ATai(t); ai(0) = ai; (4.19)_y�i (t) = Ay�(t) + ��i (t); y�i (0) = yi; (4.20)��i (t) 2 arg max fhai(t);ui j u 2 Ug: (4.21)Scheme 2 (Over-Approximating �t(F ))1. For i = 1; : : : ;mh:(a) Compute ai(t) by solving (4.19).(b) Compute ��i (t) = arg max fhai(t);ui j u 2 Ug.(c) Compute y�i (t) by solving (4.20) with ��i (t) obtained in step 1(b).2. b�t(F ) = Tmhi=1 fx j hai(t);xi � hai(t);y�i (t)ig.
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Figure 4.10: Over-approximation of �t(F ).
The step 1(a) can be done by numerical integration. Note that if the input set U is a boundedconvex polyhedron then ��i (t) can be selected at one of its vertices at every time point t.The step 2 consists in intersecting all the half-spaces de�ned by the normal vectors ai(t) and



80 Reachability Analysis of Linear Continuous Systemsthe points y�i (t) to obtain the convex polyhedron b�t(F ), which is an over-approximation of�t(F ) (see Figure 4.10 for an illustration of the algorithm).It is important to note that for linear systems without input (or with constant input) wecan compute the set �t(F ) exactly, but for systems with uncertain input the above schemeproduces only an over-approximation of this set.
Conservative ApproximationsWith a view to over-approximating �[0;r](F ) based on the convex hull C = conv(F [ b�r(F )),we need to estimate the amount by which C is bloated (by pushing outward its faces). Thissection is concerned with this estimation.For every input � 2 U we denote �m = 1r Z r0 �(s)ds; (4.22)and let �� be an input which is constant on the interval [0; r]:��(t) = �m; t 2 [0; r]: (4.23)Consider the trajectory �x; ��(t) starting from a point x 2 F under the input ��. As is donefor linear systems without input, we de�ne the linear interpolation sx; ��(t) of �x; ��(t) on theinterval [0; r] as the line segment with two extreme points x and �x; ��(r). Let Su be the setof all segments sx; ��(t) over all the initial points x 2 F and all possible inputs � 2 U:Su = fsx; ��(t) j x 2 F ^ t 2 [0; r] ^ � 2 Ug:The exact reachable set �[0;r](F ) can be written similarly as�[0;r](F ) = f�x; �(t) j x 2 F ^ t 2 [0; r] ^ � 2 Ug:By convexity, the convex hull C contains the set Su. Therefore, a su�cient bloating amountapplied to C is the distance between Su and �[0;r](F ). This distance is indeed the upperbound of jj�x; �(t) � sx; ��(t)jj for all t 2 [0; r], for all x 2 F and for all inputs � 2 U. Wedenote this bound by #u.The estimation of #u is done in three steps:1. Estimate the bound #1 on the distance between �x; �(t) and �x; ��(t) for all t 2 [0; r],for all x 2 F and for all inputs � 2 U.2. Estimate the bound #2 on the distance between �x; ��(t) and its linear interpolationsx; ��(t) for all t 2 [0; r], for all x 2 F and for all inputs � 2 U.3. The bound #u is then obtained by using the triangle inequality, that is,#u � #1 + #2: (4.24)



4.5 Extension to Linear Systems with Uncertain Input 81To estimate the distance between �x; ��(t) and �x; �(t), we use the following proposition whichis a direct consequence of the results on time-discretization of control systems obtained byV. Veliov in [115].Proposition 4 Given an arbitrary input � 2 U and r � 0, let �� be the input de�ned asin (4.22) and (4.23). Let �x; �(t) be the trajectory under � and �x; ��(t) be the trajectoryunder ��. Then, for all t 2 [0; r]jj�x; �(t)� �x; ��(t)jj � 2Mur2ejjArjjwhere Mu is the constant bounding jjujj.Using Proposition 4, we have #1 = 2Mur2ejjArjj.
We proceed now with the second step. Since �� is constant on the interval [0; r], we writesx; ��(t) = x+ tr (eArx+ Z r0 eA(r�s)ds �m � x):Hence, for every t 2 [0; r]�x; ��(t)� sx; ��(t) = eAtx+ Z t0 eA(t�s)ds �m � x� tr (eArx+ Z r0 eA(r�s)ds �m � x)

= [eAt � I + tr I � tr eAr]x+ [Z t0 eA(t�s)ds� tr Z r0 eA(r�s)ds]�mExpanding eA(t�s) in a Taylor series and after direct calculations the above leads to�x; ��(t)� sx; ��(t) = [eAt � I + tr I � tr eAr]x+ [ 1Xi=0 Aiti+1(i+ 1)! � tr 1Xi=0 Airi+1(i+ 1)! ]�m:= [A2t(t� r)2 + 1Xi=3 Ait(ti�1 � ri�1)i! ]x+ [At(t� r)2 + 1Xi=2 Ait(ti � ri)(i+ 1)! ]�m
= t(t� r)2 (A2x+ A�m) + 1Xi=3 Aix+ Ai�1�mi! t(ti�1 � ri�1)

Thus, we have for all t 2 [0; r], for all x 2 F and for all � 2 Ujj�x; ��(t)� sx; ��(t)jj � 18(M jjAjj2 +MujjAjj)r2 +O(r3) = #2where M is the constant bounding the norm jjxjj.
Using (4.24) the bound #u on jj�x; �(t)� sx; ��(t)jj for all t 2 [0; r], for all inputs � 2 U andfor all x 2 F isjj�x; �(t)� sx; ��(t)jj � 18(M jjAjj2 +MujjAjj)r2 + 2Mur2ejjArjj +O(r3) = #u: (4.25)



82 Reachability Analysis of Linear Continuous SystemsThis means that by bloating the convex hull C = conv(F [ b�r(F )) by the amount #u givenin the above formula we obtain a polyhedron which is guaranteed to contain �[0;r](F ). For-mula (4.25) also shows that, like in linear systems without input, the bloating amount is ofthe order O(r2). The scheme for over-approximating �[0;r](F ) is presented below.Scheme 3 (Over-approximating �[0;r](F ))
1. Compute the convex polyhedron b�r(F ) over-approximating �r(F ) using Scheme 2.
2. Compute C = convfF [ b�r(F )g.
3. Bloat C by the amount #u given in (4.25), that is, Co = bloat(C; #u).
4. Compute an orthogonal polyhedron G = grido(Co), which is guaranteed to contain�[0;r](F ).The algorithm for over-approximating the whole reachable set from F can be obtained fromAlgorithm 4 with the computation in one iteration replaced by the above scheme.

4.6 Examples
Let us now illustrate our approach by means of three examples. The results and the runningtimes were obtained using d/dt on a Sun Ultra Sparc-10.
Two Linear Systems Without InputConsider �rst a 3-dimensional system whose dynamics and initial set are given below.

A = 0@ �1:0 �4:0 0:04:0 �1:0 0:00:0 0:0 0:5
1A ; F = [0:025; 0:05]� [0:1; 0:15]� [0:05; 0:1];

Figure 4.13 shows the reachable set �[0;3:5](F ), computed in 8s (with run-time visualization).The time step is r = 0:2 and the grid size is 0:005.The second example is a 6-dimensional system of the Jordan form with the following matrix
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Figure 4.11: The reachable set of the 3-dimensional system (the system diverges in dimension3).
and initial set.

A =
0BBBBBB@

�0:8 1:0 0:0 0:0 0:0 0:00:0 �0:8 1:0 0:0 0:0 0:00:0 0:0 �0:8 1:0 0:0 0:00:0 0:0 0:0 �0:8 1:0 0:00:0 0:0 0:0 0:0 �0:8 1:00:0 0:0 0:0 0:0 0:0 �0:8

1CCCCCCA ;
F = [0:025; 0:05]� [0:01; 0:03]� [0:05; 0:15]�[�0:05; 0:1]� [�0:05; 0:1]� [0:03; 0:08]� [�0:01; 0:05]:The reachable set of the system, computed with time step r = 0:15 and grid size � = 0:01,appears in Figure 4.12. The running time is 60s.

A Linear System With Uncertain InputWe consider now a 4-dimensional system with uncertain input, adapted from Example 4.5.1of [71], pp. 279-285.The dynamics of the system is _x = Ax+ u where
A = 0BB@ 0:0 1:0 0:0 0:0�8:0 0:0 0:0 0:00:0 0:0 0:0 1:00:0 0:0 �4:0 0:0

1CCA
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Figure 4.12: The 6-dimensional system: the projection of the reachable set at time pointskr on dimensions 2, 3, and 4 (r is the time step). One can see that the system converges tothe origin.
and the input u ranges inside the hyper-rectangle [�1:0; 1:0] � [�0:01; 0:01] � [�1:0; 1:0] �[�0:01; 0:01].The initial set is a hyper-rectangle F = [�1:0; 1:0]� [0:0; 2:0]� [�1:0; 1:0]� [0:0; 2:0]. Thereachability analysis is performed for bounded time Tm = 0:35, i.e. we compute the reachableset �[0;0:35](F ). With time step r = 0:05 and grid size � = 0:35, the running time is 18s.In Figure 4.13 one can see the evolution of the projection of the reachable set on dimen-sions 3 and 4 over time, similar to the results in [71] obtained by using ellipsoidal techniques.

Figure 4.13: The reachable set of the system with uncertain input projected on x3, x4 and t.
Remark 2Experiments with various examples showed that a major factor that inuences the compu-tation time is the dimensionality. For a 7-dimensional system similar to the example of theJordan form, the computation took 220 seconds. In addition, the complexity of the algo-rithm depends on the granularity of the orthogonal approximations and the coupling of the



4.7 Summary and Related Work 85continuous variables.
4.7 Summary and Related WorkWe have proposed a technique for computing over-approximations and under-approximationsof reachable sets of linear systems. Our technique has the advantage of not propagating over-approximation error and thus allows to guarantee the desired accuracy for unbounded time.Moreover, as will be shown later, it can be easily adapted to the veri�cation and synthesis ofhybrid systems. We have also showed an extension of this technique to linear systems withuncertain input.There have been other works on computing reachable sets of linear continuous systems.The closest work to ours is that of Chutinan and Krogh [31]. The authors consider linearsystems with constant input and use a method similar to ours to compute polyhedral over-approximations of the sets �[kr;(k+1)r](F ) (\ow pipe" segments). Their approach di�ers fromours in their way to guarantee conservative approximations by solving some optimizationproblems. Moreover, by exploiting some linear system properties, the ow pipe is computedonly for the �rst time interval [0; r], to which some linear transformations are then appliedto obtain the ow pipe segments on the next intervals. However, this idea seems di�cultto extend to systems with time-varying, uncertain input since these properties no longerhold. In addition, ow pipes are represented as unions of convex polyhedra, which makestermination harder to check than in our method.Another approach is to approximate reachable sets by classes of domains of some �xed shapes.Among the methods in this direction are those based on ellipsoidal techniques proposed byKurzhanski and Varaiya [71, 72]. Approximations via parallelotopes were also investigatedby Kostousova in [66]. These methods can deal with more general systems than thosewe consider, namely linear control systems with time-varying coe�cients. Recent resultsshow that reachable sets can be represented exactly by parametrized families of ellipsoidsor parallelotopes. However, these works are mainly concerned with the approximation ofreachable sets in discrete time.
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Chapter 5
Reachability Analysis ofNon-Linear Continuous Systems
This chapter is concerned with the reachability problem for non-linear continuous systems.We propose a technique which is a variation of the technique suggested by Mark Green-street in [47] for over-approximating reachable sets of two-dimensional systems. The mainadvantage of our technique is that it can be applied to any dimension. We describe an im-plementation of this technique along with a procedure of error control. Finally, we illustrateour techniques with some examples. This chapter reviews the results presented in [39].
5.1 The Face Lifting ConceptConsider a continuous non-linear system C = fX ; fg where X � R n . The dynamics of thesystem is de�ned by the di�erential equation_x = f(x): (5.1)We assume that the function f is Lipschitz.
As before, we are interested in the reachability problem: given an initial set F � X we wantto compute an over-approximation of the set �(F ) of states reachable from F by the systemC.Trying to compute reachable sets of arbitrary non-linear systems, our �rst observation is thatthe information obtained from simulations of a �nite number of trajectories is, in general,not su�cient to derive an over-approximation of the reachable set (even in discrete time).For some special non-linear systems, if we can prove that this property still holds then thetechnique for linear systems, presented in the previous chapter, might be useful. However,approximations by convex hull are often too coarse. In the following we describe a technique,inspired by the work of Mark Greenstreet in [47], which we call face lifting.87



88 Reachability Analysis of Non-Linear Continuous SystemsThe technique is based, �rst of all, on the following basic observation concerning continuityof trajectories. Consider a trajectory �x starting from some interior point x 2 F . It is clearthat the trajectory �x either remains in F forever or traverses the boundary of F after sometime. In the former case, �x does not contribute any reachable points outside F . In thelatter, if a point y outside F is reachable from x after t1 time then there exists a point x0on the boundary @F of F and t0 < t1 such that y = �x(t0). It then follows that�[0;t](F ) = F [ �[0;t](@F ): (5.2)Hence, to compute �(F ), it is su�cient to look at the boundary of F .
xF
@F yx0
Figure 5.1: Continuity of trajectories.

We assume now that F is a convex polyhedron. The boundary of F is then the union ofits faces. Let E be the set of faces of F . Consider a face e 2 E whose supporting plane iswritten as P (e) = fx j hn(e);xi = cegwhere n(e) is the unit outward normal to e. Thus, the polyhedron F lies inside the half-spaceH(e) = fx j hn(e);xi � ceg and can be written asF = \e2EH(e):
We start by constructing the neighborhoods of the faces of F as follows. We de�ne theneighborhood of F as the polyhedron obtained by pushing outward each face e of F by anamount �e, denoted by N�(F ) where � = f�e j e 2 Eg. In other words,N�(F ) = \e2Efx j hn(e);xi � ce + �eg:
Next, we de�ne the neighborhood N(e) of face e asN(e) = Ho(e) \N�(F ) (5.3)where Ho(e) is the half-space de�ned as Ho(e) = fx j hn(e);xi � ceg.Figure 5.2 illustrates the neighborhood construction with a two-dimensional example. Theset F here is a polygon with vertices fa; b; c; dg, and N�(F ) is the dotted polygon. Theneighborhood N(e) of the face e is then the shaded polygon.
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F e N(e)�e

Ho(e)

P (e)cb
a

de0�e0

Figure 5.2: Neighborhood construction for a polygon.
Let fe(x) denote the outward component of f(x) relative to e, that is, the projection of f(x)on n(e): fe(x) = hn(e); f(x)i;and let f̂e denote the maximum of fe over N(e):f̂e = maxffe(x) j x 2 N(e)g: (5.4)
The following assumption should be kept in mind during subsequent discussions since it playsa crucial role in our analysis.A trajectory starting from the boundary of F which goes out of F at some time t 2 (0; r] iscalled outward trajectory.Assumption 1 All trajectories starting from the boundary of F stay in N�(F ) for at leastr time.In Section 5.3, we will show how this important assumption can be guaranteed to hold byproperly choosing r and �e.Consider an outward trajectory �x starting from point x 2 e. By solution of the di�erentialequation (5.1) we have �x(t) = x+ Z t0 f(x(s))ds:Thus, hn(e); �x(t)i = ce + Z t0 fe(x(s))ds:Due to (5.4), the trajectory �x at every time point t 2 [0; r] satis�es the followinghn(e); �x(t)i � ce + tf̂e:



90 Reachability Analysis of Non-Linear Continuous SystemsWe denote �fe = � f̂e if f̂e > 0,0 otherwise.It is not hard to see that for all t 2 [0; r]hn(e); �x(t)i � ce + r �fe: (5.5)This means that all the points reachable from e within the time interval [0; r] remain insidethe half-space de�ned as Hl(e) = fx j hn(e);xi � ce + r �feg. Geometrically speaking, Hl(e)is the half-space resulting from lifting H(e) in the direction n(e) by the amount r �fe. It thenfollows that �[0;r](e) � Hl(e):
P (e0)

F
N(e0)

Hl(e0)

a
b

c d d0

Hl(e)

�x

e N(e)
rf̂e0e0

rf̂e
x

Figure 5.3: Illustration of the face li�ng concept.
Now, consider a face e0 which is adjacent to e. Similarly, we have �[0;r](e0) � Hl(e0).Claim 5 Any outward trajectory from e cannot leave the half-space Hl(e0) at time t 2 [0; r].Sketch of ProofTo prove this, we observe that by convexity any trajectory from F can leave Hl(e0) onlyby crossing the hyperplane P (e0) (see Figure 5.3). Consider now an outward trajectory �xstarting from a point x 2 e. By construction �x stays within N(e) during the time interval[0; r], which means that �x can go out of Hl(e0) only by crossing the set M = P (e0) \N(e)(in Figure 5.3 the set M is the line segment dd0). Clearly, M � N(e0). Since any point y inM satis�es hn(e0);yi = ce0 and, in addition, the maximum of fe0 is calculated over N(e0), itfollows by (5.5) that �x can leave Hl(e0) only at time t � r.



5.1 The Face Lifting Concept 91Lemma 6 Let Fl = Te2E Hl(e). Then, �[0;r](F ) � Fl.Sketch of ProofTo prove the lemma, it su�ces to prove that all the trajectories from a face e of F stayinside the polyhedron Fl for at least r time. Due to Claim 5, any outward trajectory frome cannot leave the lifted half-spaces of its adjacent faces during the time interval [0; r]. Inaddition, any inward trajectory from e can leave F only by crossing another face e0 of F andthus stays inside Hl(e0) for t � r time.
Lemma 6 suggests the following scheme for over-approximating �[0;r](F ).Scheme 4 (Over-approximating �[0;r](F ))1. Neighborhood construction� For every face e of F , compute the appropriate �e. The description of this isdeferred to Section 5.3.� Construct the neighborhood N(e) for each face e, as shown in (5.3).2. Lifting operation� For every face e of F :{ Calculate f̂e, i.e. the maximum of fe(x) over N(e), and determine �fe accord-ingly.{ Lift the half-space H(e) outward by the amount r �fe to obtain Hl(e). Notethat if f̂e is negative or null Hl(e) is just H(e).� Intersect all the half-spaces Hl(e) to obtain a new convex polyhedron which is anover-approximation of �[0;r](F ).As an illustration, consider the two-dimensional example shown in Figure 5.4 where theinitial set is a polygon F . Some values of f on its edges are sketched. Only edges e1, e2have a positive outward component of f , and the corrresponding half-spaces are thus pushedoutward. The other half-spaces remain unchanged. The intersection of these half-spacesgives the polygon Fl which contains �[0;r](F ).An important observation is that the above scheme may produce poor approximations sincethe calculation of the lifting amount for every face e is based uniquely on the maximum offe over the neighborhood N(e). In order to avoid excessively conservative approximations,the neighborhood should be small enough and, as a result, some of the faces must be split apriori. Note that the approximation scheme works for convex polyhedra, which means thatface splitting amounts to partitioning F into small convex polyhedra Pi

F = mp[i=1Pi
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e2F e1Hl(e1)

Hl(e2)

Fl

Figure 5.4: Illustration of face lifting.
where mp is the number of polyhedra in the partition. Then,

�[0;r](F ) = mp[i=1 �[0;r](Pi):Being a union of convex polyhedra, �[0;r](F ) need not be convex. Consequently, when com-ing to compute the whole reachable set from F , we are faced again with the problem ofrepresenting and manipulating non-convex polyhedra.In two dimensions, the technique can be easily implemented since an arbitrary polygon can berepresented by an ordered list of its vertices, and its faces are simply the line segments de�nedby two neighboring vertices in the list. Furthermore, thanks to the special properties of planargeometry, we can compute the successors of a non-convex polygon without decomposingit into convex ones as follows. Instead of lifting the half-spaces, we just need to lift thesupporting planes of the faces and then the vertices of the new polygon can be obtainedby intersecting the new supporting planes corresponding to adjacent faces. As an example,consider the polygon F shown in Figure 5.5. Since the vertex v2 belongs to the faces e1and e2, the new vertex v02 is obtained by intersecting the lifted supporting planes of thesefaces. This is indeed the basis of the technique suggested by Mark Greenstreet in [47] fortwo dimensional systems.Nevertheless, this method cannot be generalized to three or more dimensions since the rep-resentation by vertices is not applicable to higher dimensions. For this reason, we restrictourselves to orthogonal polyhedra which o�er important advantages regarding the requiredoperations, namely1. The faces of an orthogonal polyhedron are (n � 1)-dimensional hyper-rectangles andcan be systematically enumerated.2. Using orthogonal polyhedra, we can bene�t from relatively e�cient algorithms for theunion operation and convex decomposition.
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Figure 5.5: Face lifting on a non-convex polygon.
Our approximation scheme takes as input convex polyhedra; therefore non-convex orthogonalpolyhedra should be decomposed a priori into hyper-rectangles. Since hyper-rectangles areclosed under the lifting operation, so are orthogonal polyhedra (see Figure 5.6).

f̂ee

Figure 5.6: Orthogonal polyhedra are closed under the lifting operation: f̂e are alwaysparallel to one of the axes and the resulting polyhedron is orthogonal.

5.2 Computation Procedure
In this section, we describe an algorithm for face lifting using orthogonal polyhedra. Fromnow on we assume that the initial set F is an orthogonal polyhedron. We �rst introducesome notations.



94 Reachability Analysis of Non-Linear Continuous SystemsAdditional NotationsLet x be a point in R n and i 2 f1; : : : ; ng be a direction. The ith coordinate of x is denotedby xi. For a real number d, we denote by bdc the integer part of d.A hyper-rectangle b in R n can be written as b = [l1; u1] � : : : � [ln; un]. Let E(b) =fe�1 ; e+1 ; : : : ; e�n ; e+n g be the set of faces of b where e�i is the face consisting of points xsatisfying xi = li and e+i the face consisting of points x satisfying xi = ui. In other words,e�i and e+i are the faces whose outward normal vector is parallel to the axis i and orientedto the negative and positive direction, respectively.The projection of the function f(x) on the outward normal to e�i is �fi(x) where fi(x) isthe ith component of f(x). Similarly, the projection of f(x) on the outward normal to e+i isfi(x).We de�ne the lifting operator for a hyper-rectangle as follows.De�nition 20 The lifting operator � is de�ned for a hyper-rectangle b = [l1; u1]�: : :�[ln; un]in R n and two vectors d�, d+ 2 R n as�(b;d�;d+) = [l1 + d�1 ; u1 + d+1 ]� : : :� [ln + d�n ; un + d+n ]:Thus, d�i and d+i are the lifting amounts for the faces e�i and e+i , respectively.
5.2.1 Reachability AlgorithmSuppose the orthogonal polyhedron F (de�ned over a uniform grid G�) is decomposed intomb non-overlapping hyper-rectangles bj and can be thus represented as

F = mb[j=1 bj :Note that the above representation is not unique since there can be more than one convexdecomposition for an orthogonal polyhedron. Although the problem does not a�ect thecorrectness of our subsequent reasoning, the decomposition that is used may have impact onthe e�ciency of the algorithm. This issue will be discussed later.It follows that �(F ) = mb[j=1 �(bj):We have shown earlier that �(F ) = F [ �(@F ). Therefore
�(F ) = F [ mb[j=1 �(@bj \ @F ):



5.2 Computation Procedure 95Hence, to compute �(F ) it su�ces to look at those faces of the hyper-rectangles bj which lieon the boundary of F .For the time being we suppose that no face splitting is needed and the time step r and theneighborhoods are given. The tuning of these parameters to achieve the desired accuracy ispresented in Section 5.3. The basic algorithm for face lifting using orthogonal polyhedra issketched below.Algorithm 6 (Face Lifting Algorithm)P 0 := F ;repeat k = 0; 1; 2; : : :for all bj 2 decomp(P k) fd� := 0; d+ := 0;for all i 2 f1; : : : ; ng fif (e�i � @P k) ff̂ := maxf�fi(x) j x 2 N(e�i )g;if (f̂ > 0) d�i := �brf̂=�c;gif (e+i � @P k) ff̂ := maxffi(x) j x 2 N(e+i )g;if (f̂ > 0) d+i := �(brf̂=�c+ 1);ggb0j := �(bj ;d�;d+);P k+1 := P k [ b0j ;guntil P k+1 = P kreturn P k+1
The algorithm uses the function decomp which takes as input an orthogonal polyhedronand returns a convex decomposition of the polyhedron in form of a list of non-overlappinghyper-rectangles. In each iteration the orthogonal polyhedron P k+1 is computed as follows.For each hyper-rectangle bj in P k, we compute the lifting amount for every face of bj whichlies on the boundary of P k and then apply the lifting operator to bj . This gives a newhyper-rectangle b0j , which is next added to P k. The lifting amount for a face e whose f̂e isnegative is simply zero.The following theorem states the correctness of Algorithm 7.Theorem 4 If the state space X of the system is bounded, then Algorithm 7 always termi-nates and produces an over-approximation of �(F ).



96 Reachability Analysis of Non-Linear Continuous SystemsProofWe need to prove: (a) if the algorithm terminates then it produces an over-approximationof the reachable set, (b) the algorithm always terminate. We begin with the proof of (a).By construction, in each iteration the hyper-rectangle b0j is guaranteed to include all thepoints reachable from @bj \ @P k. It then follows thatmb[j=1 b0j � mb[j=1 bj [ �[0;r](@bj \ @P k) = P k [ �[0;r](mb[j=0(@bj \ @P k)):Thus, P k+1 � P k [ �[0;r](@P k): (5.6)The above leads to P k � P k [ �[0;r](P k), and hence P k � �[0;kr](F ).If the algorithm terminates, that is, the condition P k+1 = P k is satis�ed, formula (5.6)implies that �[0;r](@P k) = ;, which means that all the trajectories from P k stay in P k foreverand so do all the trajectories from �[0;kr](F ). We then deduce that when the algorithmterminates, the computed set P k+1 is indeed an over-approximation of �(F ). This proves(a).The proof of termination is based on the fact that the state space X , being bounded, can berepresented as the union of a �nite number of orthogonal polyhedra.
5.2.2 Computational AspectsWe have presented an algorithm for over-approximating reachable sets of continuous non-linear systems. When it comes to a real implementation, a common desired feature is thatthe implemented algorithm ful�lls its goal not only accurately but also economically. In thecontext of Algorithm 7, several details must be considered.
Face Splitting and Variable Time StepsAs mentioned earlier, the lifting amount for the face e of a hyper-rectangle, determinedbased on the maximum of fe over its neighborhood, guarantees over-approximations but atthe same time can make the result too conservative especially when fe has a large variationover the neighborhood. In this case, more accurate approximations can be achieved bysplitting the hyper-rectangle into smaller ones.In addition, depending upon the variation of f near the boundary of P k, the time step forone iteration can be di�erent from another. The use of variable time steps can improvesigni�cantly the time-e�ciency of the algorithm.Consequently, for both accuracy and e�ciency purposes, the algorithm should exert someadaptative control over the progress of the computation: making frequent changes in thetime steps and splitting the hyper-rectangles if necessary. We devote the next section to thisimportant issue.



5.2 Computation Procedure 97Convex DecompositionAs we have already seen, our algorithm decomposes non-convex orthogonal polyhedra intohyper-rectangles before applying the lifting operation. Obviously, such a decompositionis not unique in the sense that there is more than one way to represent an orthogonalpolyhedron as a union of non-overlapping hyper-rectangles. It is clear that the complexity ofthe algorithm depends on the number of hyper-rectangles in the decomposition. Nevertheless,it is not always advantageous to decompose the orthogonal polyhedron into few large hyper-rectangles if partitioning is then needed. On the other hand, in some cases we can mergesmall hyper-rectangles sharing the same face of the orthogonal polyhedron.

(a) (b)Figure 5.7: Illustration of the face lifting algorithm on a uniform grid (a) and a non-uniformone (b). The initial orthogonal polygon F is decomposed into rectangles, whose faces lyingon the boundary of F are annotated by the arrows representing rf̂e. In (b) the algorithmcan cause a re�nement of the grid.

Uniform and Non-Uniform GridsNotice that our algorithm can be applied to both orthogonal polyhedra de�ned on uniformand non-uniform grids. The main advantage of non-uniform grids over uniform ones is theaccuracy of approximation. With an uniform grid, we need to push every face further to thenext grid point, which sometimes creates unnecessary over-approximation beyond what isinherent in the face lifting alone (see Figure 5.7-(a)). With a non-uniform grid we can pushthe faces as little as we want (see Figure 5.7-(b)). This, however, implies that the grid shouldbe changed dynamically over the execution, and thus the algorithm may be less e�cient interms of computation time. Therefore, one should consider a combination of the desirablefeatures of the two to achieve better performance and accuracy.



98 Reachability Analysis of Non-Linear Continuous Systems5.3 Error AnalysisThis section is concerned with the problem of determining two important parameters, namelythe time step and the size of neighborhoods, with respect to the correctness and accuracyof the algorithm. We establish the relation between these two parameters which guaranteesthe desired properties by analyzing the local error in the approximation and then examinethe problem of error accumulation.
5.3.1 Local Error ControlRecall that the correctness of our algorithm is guaranteed by Assumption 1 which states thatall trajectories departing from the boundary of F remain in N�(F ) within the time interval[0; r]. We now show how to determine the time step r and the size of the neighborhood �so that this assumption is always ful�lled. We also prove that locally the error can be madearbitrarily small by �ne-tuning these parameters.
Our discussion is preceded by some auxiliary results related to Lipschitz functions [61].Lemma 7 Let f , g : R n ! R n be continuous functions. Suppose that for all x 2 R n ,jjf(x)� g(x)jj � �:Let K be a Lipschitz constant for f . If �(t), �0(t) are solutions to _x = f(x) and _x = g(x),respectively, and �(0) = �0(0), thenjj�(t)� �0(t)jj � �K (eKt � 1)for all t � 0.ProofSince �(0) = �0(0), for t � 0 we have�(t)� �0(t) = Z t0 [f(�(s))� g(�0(s))] ds:Hence, jj�(t)� �0(t)jj � Z t0 jjf(�(s))� f(�0(s))jj ds+ Z t0 jjf(�0(s))� g(�0(s))jj ds

� Z t0 Kjj�(s)� �0(s)jjds+ Z t0 � ds:Denote �(t) = jj�(t)� �0(t)jj. The above becomes�(t) � K Z t0 (�(s) + �K )ds:



5.3 Error Analysis 99Using Grownwall's inequality, we obtain�(t) + �K � �K eKt;which yields Lemma 7.
Lemma 8 Let f : R n ! R n be a Lipschitz function with a Lipschitz constant K. Let �(t)be a solution to _x = f(x). Thenjj�(t)� �(0)jj � jjf(�(0))jjK (eKt � 1):
ProofBy solution of the di�erential equation we havejj�(t)� �(0)jj = jjZ t0 f(�(s)) dsjj � Z t0 jjf(�(s))jj ds:From the Lipschitz conditions, it is not hard to see that jjf(�(s))jj � jjf(�(0))jj+Kjj�(s)��(0)jj. Therefore, jj�(t)� �(0)jj � jjf(�(0))jjt+ Z t0 Kjj�(s)� �(0)jj ds:Using Grownwall's inequality again, this leads tojj�(t)� �(0)jj � jjf(�(0))jjt+ Z t0 jjf(�(0))jjsKeK(t�s) ds:Developing the integral in the right-hand side of the above and after obvious calculations weestablish the lemma.
We return now to the problem of �nding the appropriate time step and the size of neighbor-hoods which ful�ll Assumption 1 and ensure the local error under the pre-speci�ed tolerance,say, �.The lifting operation, when applied for a face e, can be thought of as replacing the realderivative fe(x) in the neighborhood N(e) by a constant derivative f̂e. Denote�fe = maxfjjfe(x)� f̂ejj j x 2 N(e)g:Let %(e) be the diameter of N(e). If L is a Lipschitz constant of fe then we have�fe � %(e)L: (5.7)Let �x be the real trajectory starting from a point x 2 e, and let �̂x be the trajectorycorresponding to the constant derivative f̂e. Due to Lemma 7, the bound on the distance



100 Reachability Analysis of Non-Linear Continuous Systemsbetween �x(t) and �̂x(t) for all initial points x 2 e and for all t � 0 is given by the followinginequality: jj�x(t)� �̂x(t)jj � �feL (etL � 1):Therefore, in order to keep the local error under �, the time step r and the neighborhooddiameter %(e) must satisfy %(e)(erL � 1) � �: (5.8)In addition, we need to guarantee that all the trajectories from the boundary of F remain inN�(F ) for at least r time. Recall that �e is the amount of pushing outward the face e in theneighborhood construction. We denote by Me the maximum value of jjf(x)jj for all x 2 e.It follows by Lemma 8 that for all t 2 [0; r]jj�x(t)� xjj � MeL (eLr � 1):Thus, the time step r must satisfy the followingMeL (eLr � 1) � �e;or equivalently, r � 1L ln(�eLMe + 1): (5.9)
Formulas (5.8) and (5.9) establish the relation between the neighborhood, the time step andthe local error. Replacing r in (5.8) with the term in the right-hand side of the inequality (5.9)and after direct calculations we obtain%(e)�e � �MeL : (5.10)We now apply the above analysis to a hyper-rectangle b. Note that the neighborhood con-struction for hyper-rectangles can be done via the lifting operator � of De�nition 20. Moreconcretely, the neighborhood of b is N(b) = �(b;��;�+) where ��, �+ 2 R n and for everyi 2 f1; : : : ; ng ��i and �+i are the lifting amounts for the faces e�i and e+i , respectively (seeFigure 5.8).Denote li the length of the hyper-rectangle b in direction i. The diameter of e+i is thuswritten as %(e+i ) =sXk 6=i(lk + ��k + �+k )2 + �+i 2:
Then, due to (5.10) we choose �� and �+ satisfying the following inequalities, for i = 1; : : : ; n(%(e�i )��i � �M�i =L%(e+i )�+i � �M+i =L (5.11)
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e�2 N(e+1 )
Figure 5.8: Neighborhood construction for a rectangle: the neighborhood of the face e+1 isthe shaded rectangle.
where M�i and M+i are the maxima of jjf(x)jj over the faces e�i and e+i , respectively.We next estimate the time step r. For each face e, let re be the value of the term in theright-hand side of the inequality (5.9), i.e.re = 1L ln(�eLMe + 1):All the trajectories from e are then guaranteed to stay in the neighborhood N(e) within thetime interval [0; re], and we choose the time step r for the hyper-rectangle b as the minimumof these values:r = minf 1L ln(��i LM�i + 1); 1L ln(�+i LM+i + 1) j i 2 f1; : : : ; ngg: (5.12)
The Lipschitz constant of fe, which is needed for the above calculations, can be estimatedby solving the following optimization problem:L = maxf jjDfe(x)jj j x 2 X gwhere Dfe(x) is the n � n matrix of partial derivatives whose element ij is de�ned as@(fe)i=@xj.
We are now ready to indicate the steps of our error control procedure to be applied to eachhyper-rectangle b prior to the lifting operation.
Error control procedure1. For each direction i 2 f1; : : : ; ng, computeM�i and M+i as the maxima of jjf(x)jj overthe face e�i and e+i , respectively.



102 Reachability Analysis of Non-Linear Continuous Systems2. Choose �� and �+ according to (5.11) and use them to construct the neighborhoodsof the faces.3. Determine the time step r using (5.12).
We remark that, for a given error tolerance, when the diameter of a face is large, for-mula (5.10) shows that its neighborhood should be small, and due to (5.9) the time stepis accordingly small. In this case, partitioning the hyper-rectangle a priori into smallerones allows larger time steps and can thus help to achieve better performance in terms ofcomputation time.
5.3.2 Error AccumulationWe have presented a procedure for controlling the local error, that is, the error incurred ineach iteration. However, the goal of ensuring the global error under the desired toleranceis still problematic because of the accumulation of over-approximation error. As a result,there are cases where, in the long run, the over-approximation error becomes too large forthe result to be useful.

f

P 0 = F
P 1 P 2

Figure 5.9: An example where the over-approximation error accumulation leads to pooraccuracy.
Consider a two-dimensional example shown in Figure 5.9 where the vector �eld f is constantwith non-zero components in both dimensions and the initial set is the rectangle F . Theexact reachable set lies between the two dotted diagonal lines. After the �rst iteration weobtain the rectangle P 1. The shaded regions in the �gure represent the over-approximationerror in P 1. In the next iteration we compute P 2 from P 1, and one can see that the over-approximation error in P 1 propagates to P 2. It is clear that the algorithm ends up with thewhole upper-right quadrant. For such systems, the use of local error control does not helpto avoid the growth of the global error. To remedy this, we propose in the following sectiona modi�cation to the face lifting algorithm.



5.4 Mixed Face Lifting 1035.4 Mixed Face LiftingThe reason for the accumulation of over-approximation error is that for every lifted face welook only at the normal direction (which points outward) and ignore the other directions(which may point inward as in the above example). By exploiting some of the inwardinformation we can signi�cantly reduce the accumulation of errors and use a computationscheme similar in spirit to the one used in the previous chapter for linear systems. The ideais to keep separately the sets P k of states reachable so far and the sets Qk which representthe `frontiers' of the set of reachable states at time points kr. This can be formalized asfollows.Let P 0 = F and Q0 = F . The reachable set from F can be computed using the followingiterative algorithm: Qk+1 = �r(Qk)P k+1 = P k [ �[0;r](Qk) (5.13)
Note that, due to the semi-group property, �[0;(k+1)r](F ) = �[0;kr](F ) [ �[0;r](�kr(F )), whichguarantees that the above algorithm is correct. Next, we show how to over-approximate�r(F ).In order to take inward evolution into account, we need a new neighborhood construction forthe faces of F . Recall that N�(F ) is the neighborhood of F resulting from lifting outwardthe faces e of F by the amounts �e.

F eeN(e)
e0 dba

c

�e0
�e �e

eH(e)Figure 5.10: Neighborhood construction for the polygon F with vertices fa; b; c; dg: N�(F )is the dotted polygon, and eN(e) is the shaded one.
Consider a face e whose supporting hyper-plane is P (e) = fx j hn(e);xi = ceg where n(e) isthe unit outward normal to e. We de�ne the neighborhood eN(e) of e aseN(e) = N�(F ) \ eH(e)



104 Reachability Analysis of Non-Linear Continuous Systemswhere eH(e) is the half-space de�ned as eH(e) = fx j hn(e);xi � ce � �eg. Thus, the newneighborhood includes points on both sides of the hyper-plane P (e) (see Figure 5.10 for anillustration).We denote by ~fe the maximum of fe over the neighborhood eN(e), that is, ~f(e) = maxffe(x) j x 2eN(e)g.We observe that the successor of every point x 2 e at time point r satis�eshn(e); �r(x)i � ce + r ~fe: (5.14)The above formula provides us with useful information about the boundary of the reachableset �r(F ). We suggest a variation of the basic face lifting scheme: we lift the half-space ofevery face e by the amount r ~fe, and the direction of lifting (inward or outward) is determinedby the sign of r ~fe. The intersection of the lifted faces gives a new polyhedron F 0, which isguaranteed to contain �r(F ).We note that the polyhedron F 0 contains many points reachable before time r and is, there-fore, a rough over-approximation of �r(F ); however, it contains less over-approximation errorthan the polyhedron obtained by pushing the faces uniquely outward.

F 0e1 e3F
e4

e2r ~fe2
r ~fe3r ~fe1

r ~fe4Figure 5.11: Combination of lifting inward and outward to derive an over-approximation of�r(F ).
As an example, the over-approximation of �r for a rectangle F is depicted in Figure 5.11.The arrows in the left �gure show the directions and amounts of lifting. The faces e1 and e4whose ~fe are positive are lifted outward, and the other faces whose ~fe are negative are liftedinward. The polyhedron F 0 is the shaded rectangle in the right �gure, and the polyhedronresulting from lifting outward alone is the enveloping rectangle.Embedding the above scheme for over-approximating �r in (5.13), we obtain Algorithm 7shown on the next page. This algorithm, which we call mixed face lifting, can reduce theaccumulation of error by considering both outward and inward evolutions. Basically, in eachiteration we perform the additional computation of Qk, in which the lifting amounts do notdepend on the sign of ~fe. The boundary of Qk is a better approximation of @(�r(P k)) thanP k, and Qk is used as the basis for the computation of �[0;r] in the next iteration. It shouldbe noted that P k is computed from Qk using the original face lifting algorithm; hence, theresult obtained is guaranteed to be an over-approximation of �(F ).
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Figure 5.12 illustrates the behavior of the mixed face lifting algorithm on the example ofFigure 5.9. The initial set F is the rectangle with the vertices fa; b; c; dg. After the �rstiteration, the set Q1 is the shaded rectangle shown in the left �gure, and the set P 1 of statesreachable within the �rst iteration is the rectangle with vertices fa; g; h;mg. Next, startingfrom Q1 (the dotted rectangle in the right �gure) the set of new reachable states in the seconditeration is the rectangle with vertices fn; p; q; sg, and the set Q2 is the shaded rectangle.The set P 2 of reachable states accumulated so far is the enveloping orthogonal polygon withvertices fa; g; p; q; s; h;mg. Here, one can see that the modi�ed algorithm produces a muchmore accurate approximation. Note that in this example, due to the constant derivative,the sets Qk are the exact successors of F at time points kr, i.e. Qk = �kr(F ). In moregeneral cases, these sets contain over-approximation errors, and the modi�ed algorithm canonly reduce the accumulation of over-approximation error. Note also that when ~fe is positiveeverywhere, the mixed face lifting algorithm gives exactly the same result as the originalone.
5.5 ExamplesWe have implemented the above algorithms using both uniform and non-uniform grids. Wewish to mention that at the time we were exploring the technique, the work on the canonicalrepresentation for orthogonal polyhedra was still in progress. All the results described beloware for demonstration purposes and obtained by a simple implementation. The data structurefor uniform grids is an n-dimensional matrix. For non-uniform grids, in addition to thematrix, we used a linked list to represent the variable grid coordinates. Although advanceddata structures such as dictionaries or dynamic arrays allow compact storage for sparsematrices, this implementation is clearly very costly for the required geometric operations. Weintend to implement face lifting using the canonical representation of orthogonal polyhedrain a near future and believe that this implementation will improve signi�cantly the e�ciencyof the technique both in terms of space and time usage and thus increase the applicabilityto high dimensional systems.
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Algorithm 7 (Mixed Face Lifting Algorithm)P 0 := F ; Q0 = F ;repeat k = 0; 1; 2; : : :/* Computing �[0;r] of Qk by lifting outward alone */for all bj 2 decomp(Qk) fd� := 0; d+ := 0;for all i 2 f1; : : : ; ng fif (e�i � @P k) ff̂ := maxf�fi(x) j x 2 N(e�i )g;if (f̂ > 0) d�i := �brf̂=�c;gif (e+i � @P k) ff̂ := maxffi(x) j x 2 N(e+i )g;if (f̂ > 0) d+i := �(brf̂=�c+ 1);ggb0j := �(bj ;d�;d+);P k+1 := P k [ b0j ;g/* Computing Qk+1 from Qk by lifting outward and inward */Qk+1 := ;;forall bj 2 decomp(Qk) fd� := 0; d+ := 0;for all i 2 f1; : : : ; ng fif (e�i � @Qk) f~f := maxf�fi(x) j x 2 eN(e�i )g;d�i := �br ~f=�c;gif (e+i � @Qk) f~f := maxffi(x) j x 2 eN(e+i )g;d+i := �(br ~f=�c+ 1);ggb0j := �(bj ;d�;d+);Qk+1 := Qk+1 [ b0j;guntil P k+1 = P kreturn P k+1



5.5 Examples 1075.5.1 Linear Systems
Linear Systems in R 2
We demonstrate the behavior of the algorithm on various classes of linear systems of the form_x = Ax (see [61] for the classi�cation). The examples treated are described in Figure 5.13and the results obtained appear in Figure 5.14.

Type A Initial set
Center � 0:0 �6:03:0 0:0 � [�0:25; 0:25]� [�0:25; 0:25]
Node � �5:0 0:00:0 �2:0 � [0:2; 0:5]� [0:2; 0:4]
Saddle � �5:0 0:00:0 4:0 � [0:0; 0:4]� [�0:0; 0:4]
Sink � �2:0 �3:03:0 �2:0 � [�0:1; 0:3]� [0:1; 0:3]

Figure 5.13: Examples of linear systems.
Sometimes, the use of a �xed grid generates an over-approximation which covers all thespace. This is evident the case of the �rst example (center) where every edge has a non-zero outward component in some dimension. To obtain the desired result, we have changedin these cases the rounding rule, that is, we push a face to the nearest grid unit and notnecessarily outward. Consequently, the resulting polyhedron is not guaranteed to be anover-approximation of the reachable set. Using a variable grid is another way to solve thisproblem. Note that the optimization of fe is much cheaper computationally in the linearcase.
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Figure 5.14: Reachable sets of linear systems of type: 1) Center, 2) Node, 3) Saddle and 4)Sink. The white rectangles are the initial sets.



5.5 Examples 109Linear Systems in R 3In Figure 5.15 one can see the reachable set of a 3-dimensional system with
A = 0@ �2 0 01 �2 00 1 �2

1A
starting from the initial region [�0:025; 0:025]� [�0:1; 0:1]� [0:05; 0:07].

Figure 5.15: Reachable states (left) starting from an initial region (right) for a 3-dimensionallinear system.
5.5.2 Mixing TankThis example, taken from [108], is a typical non-linear equation encountered in chemicalengineering. The mixing tank, depicted in Figure 5.16, consists of a free outlet stream v3and of two controlled inlets with di�erent rates v1, v2 and di�erent concentrations c1, c2.The variables x1 and x2 represent the height and the concentration of liquid, respectively.The dynamics of these variables are described by the following di�erential equations:_x1 = 1k1 (v1 + v2 � k2px1)_x2 = 1k1x1 (v1(c1 � x2) + v2(c2 � x2))where k1, k2 are geometrical parameters.With the following choice of parameters:k1 = 1 m2; k2 = 0:02 m2:5=s; c1 = 1 mole=l; c2 = 2 mole=l;
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x1 x2; v3

c2; v2c1; v1

Figure 5.16: A Mixing Tank.
(1:322; 1:652) is an equilibrium state of the system. Figure 5.17 depicts the set of statesreachable from an initial set [1:12; 1:17]� [1:56; 1:68] (white rectangle), and one can see theconvergence to the equilibrium.

Figure 5.17: Reachable set of the mixing tank system.
5.5.3 Airplane SafetyThe next example is taken from [80]. The state variables x1, x2 represent, respectively, thevelocity and the ight path angle of an aircraft. Their evolution is governed by

_x1 = �aDx21m � g sinx2 + u1m_x2 = aLx1(1� cx2)m � g cosx2x1 + aLcx1m u2where u1 (the thrust), u2 (the pitch angle) are bounded control inputs such that u1 2[Tmin; Tmax] and u2 2 [�min;�max]; m is the mass of the aircraft; g is the gravitationalacceleration; c, aL, and aD are the system parameters.



5.5 Examples 111The problem is to determine the safe subset of the state space, that is, the states from whichthe system does not leave the envelope P de�ned as the rectangle [Vmin; Vmax]� [min; max].For doing this, we take the complement of P , that is, X n P , as the set of initial statesand compute the set R reachable by the reverse system _x = �f(x). Therefore, the set Rcontains all the states which can leave P , and the safe subset will be P n R. Note that ourtechnique produces an over-approximation of R and, as a result, the computed safe subsetis an under-approximation of the real set. The results, depicted in Figure 5.19, correspondto the following parameters:m = 85000kg; c = 6; aL = 30; aD = 2; Tmin = 40000N; Tmax = 80000N; �min = �22:5o;�max = 22:5o; Vmin = 180m=s; Vmax = 240m=s; min = �22:5o; max = 22:5o;and for the speci�c choices of the controls u1 = Tmax; u2 = �min: (for the left boundary ofthe rectangle P ) and u1 = Tmin; u2 = �max (for the right boundary of P ). These results areconsistent with those in [80] obtained using analytical methods.

Figure 5.18: Airplane Safety: u1 = Tmax; u2 = �min:

Figure 5.19: Airplane Safety: u1 = Tmin; u2 = �max.



112 Reachability Analysis of Non-Linear Continuous Systems5.6 Summary and Related Work
We have presented an algorithm for over-approximating reachable sets of non-linear contin-uous systems of arbitrary dimensions. The novelty of our method is the way of representinghigh dimensional sets, which guarantees termination of the algorithm and, moreover, allowsan easy extension to hybrid systems, as we will show in the next chapter.
There have been various works on the computation of reachable sets for non-linear continuoussystems. However, few of these are concerned with the important questions of data structuresfor high dimensional sets.To our knowledge, the �rst appearance of the ideas underlying face lifting was the workof Kurshan and McMillan in [70]. Their approach can be classi�ed as indirect since theywere trying to construct a �nite-state discrete abstraction of an electrical circuit (de�nedusing the di�erential equations for voltage and current of transistor). They partitioned thecontinuous state space into hyper-cubes using a �xed grid and computed the reachabilityrelations between these cubes by optimizing normal derivatives, as in face lifting. No generalpurpose tool has been built based on these ideas.Our work was triggered by the paper of Greenstreet [47], motivated by similar problems asin [70], where the idea of face lifting in two dimensions for arbitrary polyhedra was �rstproposed. Later works of Greenstreet and Mitchell [48, 49] concentrated on an alternativemethod to represent high dimensional polyhedra by their two-dimensional projections (apolyhedron is thus the largest set satisfying the constraints of its projections). By doingthis, all the operations are performed on the projections of the polyhedron. The advantageof this representation is that successors of projections can be more e�ciently and accuratelycomputed. However, its obvious drawback is that polygonal projections, even non-convex,cannot capture the real geometric form of the full-dimensional reachable sets, and this resultsin further over-approximation error which is hard to control.The reachability method of Chutinan and Krogh [31], which we have outlined in the previouschapter, was �rst developed for non-linear systems and then specialized for linear systems.Their method di�ers from ours in their trajectory-based approximations and in our use oforthogonal polyhedra to store reachable states.The idea of approximating reachable sets over a grid was used by Puri, Borkar, and Varaiyain [98] for di�erential inclusions _x 2 f(x). Their method consists in partitioning a priorithe state space into a �nite number of boxes such that the variation of f within each box isbounded by a given constant � and then associating with each box a constant rectangulardi�erential inclusion of the form cl � _x � cu. Then, the computation of the reachableset is performed on the resulting approximate model (for which the reachability problemis decidable). This approach, like ours, can guarantee error bounds only for a �nite timehorizon.Finally, the reachability problem can be formulated using partial di�erential equations (see,e.g., [29, 111]). The reachable set �[0;t](F ) can be described as �[0;t](F ) = fx j l(x; t) � 0g



5.6 Summary and Related Work 113where l : X � T ! R is the solution to the following equation:@l@t = �grad(l) � fwith the initial conditions:� l(x; 0) = 0 if x is on the boundary of F ,l(x; 0) < 0 if x is in the interior of F .Various methods for tracking the evolution of l exist (see, e.g., [105]). However, numericalsolutions are often complicated, and so far we have found no special computational advantageof this formulation over the direct ODE formulation.
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Chapter 6
Veri�cation of Hybrid Systems
In this chapter we show how the approximate reachability techniques for continuous systems,presented in the previous chapters, are adapted to hybrid systems. Reachability analysis isa basic component of many veri�cation and synthesis procedures. We are interested in theveri�cation of invariance properties, which is equivalent to the reachability problem.An outline of this chapter is as follows. We begin by stating formally the veri�cation problemfor hybrid automata and then give an abstract veri�cation algorithm, based on which wedevelop an e�ective approximate algorithm. We also present a concrete implementation ofthe approximate algorithm and discuss important computational issues. Finally, we illustratethe application of our approach with some examples. Some of the results of this chapter havebeen presented in [10].
6.1 Problem Statement
Consider a hybrid automaton A = (X ; Q; f;G;H;R) of De�nition 7. Let F = f(q; Fq) j q 2Q ^ Fq � Xg be the set of initial states. The problem of safety veri�cation is stated asfollows.Problem 3 (Safety veri�cation problem)Given a set S = f(q; Sq) j q 2 Q ^ Sq � Xg we want to verify that the hybrid automatonA satis�es 2S, i.e. all trajectories of A remain inside S.We say that the hybrid automaton A is safe if it satis�es the speci�cation 2S and unsafeotherwise.In the hybrid automaton model to be considered, the sets Hq and Gqq0 are convex polyhedrain R n for all q; q0 2 Q. This assumption is not restrictive for two reasons. First, in manypractical systems, staying conditions and transitions guards are speci�ed as conjunctions oflinear inequalities, which de�ne convex polyhedra. Second, the algorithms presented here can115



116 Veri�cation of Hybrid Systemsbe extended to hybrid automata whose staying and guard sets are non-convex polyhedra.Similarly, we require the sets Sq and Fq to be polyhedral (convex or orthogonal). Non-polyhedral sets should be replaced a priori by their polyhedral approximations.We consider a�ne, set-valued reset maps, more precisely, for all q; q0 2 Q, Rqq0(x) = Dqq0x+Jqq0 where Dqq0 is an n � n matrix and Jqq0 is a convex polyhedron in R n . Of particularinterest are the following special cases of Rqq0 :1. Deterministic resets: Jqq0 is a singleton fjqq0g. The reset Rqq0 maps every point x 2 Xto a unique point Dqq0x+ jqq0 .2. Identity resets: Dqq0 is the identity matrix and Jqq0 = f0g, which means that thecontinuous variables remain unchanged after the transition from q to q0.3. Memoryless resets: Dqq0 is the zero matrix, and Rqq0 is thus an arbitrary set-valuedmap. If all Rqq0 satisfy this condition, we say that the system is memoryless.
6.2 Veri�cation AlgorithmProving that the hybrid automaton A satis�es 2S is equivalent to proving that A neverreaches the set B = f(q;Bq) j q 2 Q ^ Bq = X nSqg, the complement of S, which representsthe set of unsafe (\bad") states. Problem 3 can be solved by using either forward or backwardreachability analysis. We focus �rst on forward analysis and present an adaptation forbackward analysis in Section 6.5.In essence, we compute the set reachable by the system from F and then check emptiness ofits intersection with the bad set B. The abstract algorithm for solving Problem 3 is shownbelow.Algorithm 8 (Forward Veri�cation Algorithm)P0 := F ;repeat k = 0; 1; 2; : : :if (Pk \ B 6= ;) return unsafePc := �c(Pk);Pd := �d(Pc);Pk+1 := Pk [ Pc [ Pd;until Pk+1 = Pkreturn safe
The reachable set is initialized with the initial set: P0 = F . In each iteration the continuous-successor operator �c is applied to Pk. This gives the set of states reachable by continuousdynamics, to which the discrete-successor operator �d is next applied to obtain the set ofstates reachable by executing discrete transitions. If the intersection of the computed set Pk



6.2 Veri�cation Algorithm 117with the bad set B is not empty, then the algorithm reports that the system is unsafe andterminates. Otherwise, the algorithm continues until no new reachable states are found. Ifthe algorithm terminates and the bad set is not reached, then the system is proved to satisfythe safety speci�cation.
This abstract algorithm is in fact the basic model-checking algorithm implemented in theveri�cation tools such as Kronos [120] for timed automata and HyTech [56] for `linear' hybridautomata. As discussed earlier, for systems with arbitrary continuous dynamics, exact com-putation of reachable sets is, in general, not possible. Our approach is to use Algorithm 8with successive approximations of continuous- and discrete-successors using orthogonal poly-hedra. Note that in the context of safety veri�cation, over-approximations are required. Inthe following we show how to over-approximate the operators �c and �d. From now on allthe sets we manipulate are either convex or orthogonal polyhedra.
6.2.1 Continuous-SuccessorsGiven a set of states (q; F ) where q 2 Q and F is a polyhedron in R n , we want to computean orthogonal over-approximation of �c(q; F ), denoted by b�c(q; F ).
We have presented in the previous chapters two algorithms for over-approximating the suc-cessor operator � of continuous systems. One is specialized for linear systems that can admituncertain input. For brevity, from now on we call it the LIN algorithm. The other algorithm,based on the face lifting technique, can be applied to non-linear systems, and we call it theFL algorithm. We will approximate the continuous-successors operator of hybrid automatausing these algorithms. Note that for the FL algorithm non-orthogonal initial polyhedra arereplaced by their orthogonal over-approximations, and for the LIN algorithm non-convexinitial polyhedra are �rst decomposed into convex ones.The only di�erence between the operator �c of hybrid automata and the operator � of con-tinuous systems is the presence of staying conditions in the former. During the continuousevolution at a discrete state q, some trajectories may go out of the staying set Hq and fromthere no further continuous evolution at the current discrete state is possible. Hence, thereachability algorithms for continuous systems should be modi�ed to account for stayingconditions.
We consider �rst the FL algorithm. Essentially, starting from F this algorithm iterativelycomputes P k+1 = P k [ b�[0;rk](P k)where b�[0;rk] is an over-approximation of the reachability operator �[0;rk] and every P k is anorthogonal polyhedron. Recall that for accuracy and e�ciency purposes the FL algorithmuses variable time steps.The treatment of staying conditions consists in removing from the sets P k+1 the states that



118 Veri�cation of Hybrid Systemsdo not satisfy Hq and starting the next iteration from the resulting set. In other words, inthe modi�ed algorithm we compute P k+1 as follows:P k+1 = (P k [ b�[0;rk](P k)) \Hq: (6.1)Since Hq is a convex polyhedron, the scheme (6.1) involves intersections of orthogonal andconvex polyhedra, which cannot be exactly computed (orthogonal polyhedra are obviouslynot closed under such an operation). To remedy this, we approximate these intersectionsusing the following operator.De�nition 21 Given an orthogonal polyhedron G and a convex polyhedron C, C uoG is thesmallest orthogonal polyhedron de�ned on the grid of G such that C uo G � C \G.We defer the computation of the uo operator to the end of this section.
Now, replacing \ with uo in (6.1) we obtain the following schemeP k+1 = (P k [ b�[0;rk](P k)) uo Hq; (6.2)which guarantees to produce an orthogonal over-approximation b�c of �c.
We turn now to the LIN algorithm. The basic iterative scheme of the LIN algorithm iswritten as P k+1 = P k [ b�[0;r](Xk)Xk+1 = �r(Xk)Recall that besides P k, which is used to accumulate the reachable states, the LIN algorithmmaintains a convex polyhedron Xk which is the exact reachable set at time point kr andused as the basis for the computation of P k+1. Therefore, to adapt the LIN algorithm forcomputing b�c, we need interesect not only P k+1 but also Xk+1 with Hq. Again, we makeuse of the uo operator to compute b�c as follows:P k+1 = (P k [ b�[0;r](Xk)) uo HqXk+1 = �r(Xk) \Hq (6.3)
Since every �r(Xk) is a convex polyhedron, Xk+1 can be exactly computed.
Before proceeding, we make two important observations concerning the accuracy and e�-ciency of the above modi�ed algorithms.� In both algorithms, the uo operator introduces further error into the approximation.The FL algorithm computes P k+1 based on P k, it it clear that this error propagates



6.2 Veri�cation Algorithm 119from iteration to iteration. However, the LIN algorithm computes P k+1 based onXk, which is exactly computed. Consequently, the LIN algorithm, when applied forcomputing b�c, preserves the property of not propagating over-approximation errors inthe continuous phase.� Recall that the computation cost of the LIN algorithm depends on the number of ver-tices of the convex polyhedraXk. For purely continuous systems the number of verticesremains constant, but for hybrid systems it might change due to the intersection withHq (see Figure 6.1).

X2

P 1 Hq
X1 X0 = F

Figure 6.1: Over-approximating �c(q; F ) using the LIN algorithm: the intersection of X1and Hq results in more vertices in X2.
We now show how to compute the uo operator, which is used by both modi�ed algorithms.
Computing the uo operatorThe uo operator takes as input a convex polyhedron C and an orthogonal polyhedron Gand returns the smallest orthogonal polyhedron de�ned on the grid of G that includes theintersection C \G.Let G� be the underlying grid of G. We can represent the orthogonal polyhedron G as theunion of, say, mg elementary hyper-cubes of G� : G = fgi j i = 1; : : : ;mgg. It is not hardto see that (C uo G) is the union of the elementary hyper-cubes gi in G whose intersectionwith C is not empty (see Figure 6.2). We writeC uo G = fgi j gi \ C 6= ;; i = 1; : : : ;mgg:The algorithm for computing uo is described in Chapter 8 (Implementation).By construction, the distance between each hyper-cube gi in CuoG and C\G is at most thesize � of the underlying grid. It then follows by Lemma 1-(h1) that h(C uo G;C \ G) � �,which means that the error incurred in replacing \ by uo is bounded by pn�.
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C uu G

C uo G

C

G
Figure 6.2: Orthogonal approximations of C \G: C uo G is the dotted orthogonal polygonand C uu G is the shaded one.
We note that the above results can be naturally extended to under-approximate the continuous-successor operator. For doing this, we de�ne C uu G as the largest orthogonal polyhedronsuch that C uu G � C \G. It is easy to see thatC uu G = fgi j gi � C; i = 1; : : : ;mggand the distance h(C uu G;C \ G) is also bounded by pn�. Hence, an orthogonal under-approximation of �c(q; Fq) can be obtained by replacing uo with uu in the schemes (6.2)and (6.3).
6.2.2 Discrete-SuccessorsFor a given set of states (q; F ) where q 2 Q and F is an orthogonal polyhedron in R n , wewant to compute an orthogonal over-approximation of �d(q; F ), denoted by b�d(q; F ).The reason we consider the problem where F is orthogonal is that continuous-successors, asshown above, are represented by orthogonal polyhedra. In addition, the algorithm presentedin the following is also applicable for convex polyhedra.The set of discrete-successors of (q; F ) is written as�d(q; F ) = [q02Q �qq0(q; F )where �qq0(q; Fq) is the set of discrete-successors of (q; F ) with respect to the transition fromq to q0. Followed immediately from the de�nition of �qq0 ,�qq0(q; F ) = (q0; Rqq0(F \Gqq0) \Hq0):



6.2 Veri�cation Algorithm 121Recall that by convention the guard Gqq0 is empty if there is no transition from q to q0. Weconsider �rst the problem of �nding an orthogonal polyhedron P such thatP � Rqq0(F \Gqq0) \Hq0 :As mentioned earlier, the resets in the hybrid automata considered are linear transformations,that is, Rqq0(x) = Dqq0x+Jqq0 where Dqq0 is an n�n matrix and Jqq0 is a convex polyhedronin R n .Since the polyhedron F is orthogonal and Gqq0 is convex, we replace again F \ Gqq0 byF uo Gqq0 . The orthogonal polyhedron F uo Gqq0 can be decomposed into, say, mb non-overlapping hyper-rectangles bi: F uo Gqq0 = mb[i=1 bi:We can represent the convex polyhedron Jqq0 by the convex hull of its vertices fj1; : : : ; jmjg:Jqq0 = convfj1; : : : ; jmjg. Then, the image of a point x 2 R n by Rqq0 can be written asRqq0(x) = convfDqq0x+ j1; : : : ;Dqq0x+ jmjg: (6.4)
Hyper-rectangles are convex, and their convexity is preserved by linear transformation; there-fore, the image of the hyper-rectangle bi by Rqq0 can be obtained by applying Rqq0 to its 2nvertices fv1; : : : ;v2ng as shown in (6.4) and then taking the convex hull of the resultingsets. In other words, Rqq0(bi) = conv(Rqq0(v1) [ : : : [ Rqq0(v2n)). Hence, to compute P , weneed just transform every convex polyhedron Rqq0(bi) \Hq0 into orthogonal using the gridooperator: P = mb[i=1 grido(Rqq0(bi) \Hq0):
We derive from the above formula the following algorithm for computing an orthogonalover-approximation b�qq0(q; Fq) of �qq0(q; Fq). Recall that decomp denotes the function thatdecomposes an orthogonal polyhedron into a list of non-overlapping hyper-rectangles.Algorithm 9 (Computing b�qq0(q; F ))P := ;;Fg := F uo Gqq0 ;for all bi 2 decomp(Fg) fhi := Rqq0(bi) \Hq;G := grido(hi);P := P [G;gb�qq0(q; Fq) := (q0; P );



122 Veri�cation of Hybrid SystemsNote that the union of all the convex polyhedra hi is also an over-approximation of the setRqq0(F \ Gqq0) \Hq0 . This fact will be exploited in Section 6.3 to increase the e�ciency ofthe veri�cation algorithm in certain cases.Now, b�d(q; F ) can be readily computed as follows:b�d(q; F ) = [q02Q b�qq0(q; F ):We proceed with the estimation of the approximation error. The error is �rst introduced bythe uo operator and bounded at this stage by pn� where n is the dimension of the hybrid au-tomaton. After the linear transformation Rqq0 , the bound on this error becomes pn�jjDqq0jj,and hence after applying grido the total error in b�qq0(q; F ) is bounded by pn�(jjDqq0jj+ 1).
As before, to under-approximate �qq0(q; F ), one can use Algorithm 9 with the operators uoand grido replaced by uu and gridu, respectively.
It remains now to replace the exact operators �c and �d in Algorithm 8 by b�c and b�d to obtainan approximate veri�cation algorithm for hybrid automata.Algorithm 10 (Approximate Forward Veri�cation Algorithm)P0 := F ;repeat k = 0; 1; 2; : : :if (Pk \ B 6= ;) return bad-set-reachedPc := b�c(Pk);Pd := b�d(Pc);Pk+1 := Pk [ Pc [ Pd;until Pk+1 = Pkreturn safe
In Algorithm 10, checking emptiness of Pk \ B, when the bad set B is not orthogonal, isdone by decomposing Pk into hyper-rectangles rather than by using uo in order to avoidintroducing additional error. Since the algorithm over-approximates the reachable set, itmight declare the system unsafe even though the exact reachable set does not intersect B.On the other hand, Algorithm 10 is sound: if it terminates by declaring the system to besafe, then the system is indeed safe.
6.2.3 ImplementationAlgorithm 11, a more concrete version of Algorithm 10, appears, in pseudo-code form, inFigure 6.3. Before detailing the implementation of this algorithm, let us recall the compu-tational procedures on which it is based:



6.3 E�cient Implementation 123� Over-approximation of reachable sets of continuous dynamics by orthogonal polyhedra;� Over-approximation of intersections of orthogonal polyhedra and convex polyhedra byorthogonal polyhedra;� Exact Boolean operations on orthogonal polyhedra;� Tests of equivalence between polyhedra.Algorithm 11 maintains two arrays, Reached and Explore, both of size m where m is thenumber of discrete states. The qth element of Reached, denoted by Reached[q], contains anorthogonal polyhedron that represents the reachable set at discrete state q. Each element ofthe array Explore contains a list of polyhedra, each of which can be orthogonal or convex.The polyhedra of Explore[q] represent the sets to be explored at discrete state q. The useof lists of polyhedra for Explore facilitates some modi�cations which will be explained later.The algorithm uses two additional arrays of orthogonal polyhedra, Rc and Rd, both of sizem to store reachable states in one iteration.Although the FL algorithm can work for linear systems, for e�ciency purposes it is preferableto use the LIN algorithm to approximate �c whenever possible. Recall that the FL algorithmaccepts as input only orthogonal polyhedra and the LIN algorithm only convex polyhedra; inorder to use the LIN and FL algorithms in a uniform way, a pre-processing phase is needed:if the dynamics at q is linear and the set F to explore is an orthogonal polyhedron, wedecompose it into hyper-rectangles. Similarly, if the dynamics at q is non-linear and F isconvex, we over-approximate it by grido(F ).We detail now the steps of Algorithm 10. In the continuous phase, we compute the continuous-successors of the unexplored states at every discrete state. Thus, the orthogonal polyhedronin Rc[q] represents new states reachable by the continuous evolution at q. In the discretephase, we compute the discrete-successors of the states in Rc, and hence Rd[q] contains thepolyhedra representing new reachable states generated by transitions leading to q. There-fore, the polyhedra in Rc and Rd represent the states reachable in one iteration. For thetermination decision we check whether these polyhedra are included in the previously com-puted Reached and then add them to Reached in the update phase. The array Explore isnext replaced with Rd since only the new states reachable by discrete evolution need to beexplored in the next iteration. Safety checking is done at the beginning of every iteration,and the ag Bad indicates whether the bad set is reached.
6.3 E�cient ImplementationWhen coming to actual computation, our consideration is to economize on computationalcost while ensuring the desired accuracy. The main practical limitation of Algorithm 10 is itscomputational cost, mostly due to the approximation of continuous-successors. One reasonfor this comes from the continuous dynamics: if the di�erential equations are sti�, the nu-merical integration procedure needs to reduce signi�cantly the step-size (in a portion of the



124 Veri�cation of Hybrid SystemsAlgorithm 11 (Concrete Veri�cation Algorithm)� InitializationBad = Stop = False.For every q 2 f1; : : : ;mg{ Reached[q] = ;, Explore[q] = Fq.� Main computation loopAs long as Stop = False the algorithm repeats the following steps:1. Safety checking: for every q 2 f1; : : : ;mg{ If Reached[q] \ B 6= ; then Bad = True and go to Output.2. Pre-processing: for every q 2 f1; : : : ;mg{ If fq is linearEvery non-convex orthogonal polyhedron P in Explore[q] is replaced bydecomp(P ).{ If fq is non-linearEvery convex polyhedron P in Explore[q] is replaced by grido(P ).3. Continuous phaseSuppose Explore[q] contains mp polyhedra fPj j j = 0; : : :mpg.For every q 2 f1; : : : ;mg
Rc[q] = mp[j=1 b�c(Pj)4. Discrete phase: for every q 2 f1; : : : ;mgRd[q] = [q02Q b�q0q(Rc[q0])

5. Termination checking:If 8q 2 f1; : : : ;mg (Rc[q] [Rd[q]) � Reached[q] then Stop = True.
6. Update: for every q 2 f1; : : : ;mgReached[q] = Reached[q] [Rc[q] [Rd[q]Explore[q] = Rd[q]Rd[q] = ;� OutputIf Bad = True then report that the bad set is reached. Otherwise, report that thesystem is safe and stop.

Figure 6.3: A concrete version of Algorithm 10.



6.3 E�cient Implementation 125time interval) to avoid instability. The other reason is the structure of the polyhedra to beexplored: if they are too complex, the geometric operations can be prohibitively expensive.The measure of complexity for a polyhedron with regard to the LIN algorithm is the numberof vertices and with regard to the FL algorithm is the number of faces.
We propose the following methods and strategies for improving the performance of thealgorithm.
Convex-Hull approximationWhen using the LIN algorithm to compute b�c of a non-convex orthogonal polyhedron, we�rst need decompose it into hyper-rectangles, as described in the pre-processing phase, andthen treat each hyper-rectangle in the continuous phase separately. This is evidently costlydue to redundancy. An alternative is to over-approximate this orthogonal polyhedron byits convex hull (see Figure 6.4). This may reduce signini�cantly the number of verticesand thus improve the e�ciency in both time and space without a�ecting the correctness ofthe algorithm. Of course, the price is an increase of the approximation error, and a goodcompromise between precision and e�ciency should be made. The idea of using convex hullas an abstract operator to accelerate the computation is also employed in [40] for timedautomata and in [55] for `linear' hybrid automata.

Figure 6.4: Over-approximating an orthogonal polyhedron by its convex hull to reduce thenumber of vertices.
Order of ExplorationThe current algorithm works in a combination of breadth-�rst and depth-�rst search. Thealgorithm is breadth-�rst with respect to discrete transitions, but from the point of viewof elapsed time, in each iteration we explore �rst all the continuous-successors at discretestate qi and then all the continuous-successors at discrete state qi+1. Alternatively, we canexplore the discrete states in a breadth-�rst way. For example, we can �x a time limitfor the continuous-successor computation in each discrete state. Beyond this limit, if the



126 Veri�cation of Hybrid Systemscomputation does not terminate we store un�nished sets in a local variable and add themto Explore at the end of the iteration. In case the system is unsafe, a di�erent searchorder might accelerate the detection of intersection with the bad set. In general, someunderstanding of the system's dynamics is required to exploit this possibility. For a systemwhich is safe, we need to explore the whole state-space, whatever order we use. However,experience with timed automata [20] shows that even in such situations the order of thesearch might have a notable inuence on the performance of the algorithm.
Geometric Decompositions
For a given discrete state q, the polyhedra in Explore[q] may contain states which havealready been explored in the previous iterations. It is thus su�cient to continue with thestates which are not included in the set Reached[q]. If the intersection of each polyhedronin Explore[q] with Reached[q] results in a less complex polyhedron (with regard to the algo-rithm used for computing b�c), then this will reduce the computational cost of the continuousphase at q. However, the resulting polyhedra may also be more complex, and in such casesthe separation is no more of interest. To illustrate, consider two examples in Figure 6.5. Thepolyhedra Explore[q] are drawn in dotted lines and the polyhedra resulting from separatingExplore[q] from Reached[q] are shaded regions. One can see that in (a) the separation isadvantageous since the resulting polyhedron has fewer faces as well as fewer vertices thanExplore[q], which is not the case in (b).

Reached[q]
Explore[q]

Reached[q]
Explore[q]

(a) (b)Figure 6.5: Separating Explore[q] from Reached[q] is advantageous in (a) but not in (b).
Another improvement can be made by exploiting the fact that Algorithm 9 for computingb�qq0(q; Fq) can produce, as an intermediate result, a list of convex polyhedra whose union isalready an over-approximation of �qq0(q; Fq). If fq0 is linear then we can use these convexpolyhedra instead of the orthogonal polyhedron b�qq0(q; Fq) as the initial sets when treatingthe continuous dynamics at q0. This not only reduces the over-approximation error but alsoavoids decomposing the orthogonal polyhedron.



6.4 Error Analysis 1276.4 Error AnalysisIn the sequel we discuss briey the error in our approximation.In the continuous phase, besides the error speci�c to the approximate algorithm (LIN orFL), the use of the uo operator introduces further error. The error incurred in the discretephase is due to both uo and grido operators. Although using the LIN algorithm the over-approximation errors do not accumulate during the continuous phase, they propagate toother continuous dynamics whenever a discrete transition is taken.To illustrate how the over-approximation errors propagate after successive discrete and con-tinuous evolutions, let us consider a single discrete transition, say, from discrete state q1 toq2 where Rq1q2(x) = Dq1q2x+ Jq1q2 .Suppose that after treating the continuous dynamics at q1, the error in the approximate set is�1. As shown in Section 6.2.2, when making the transition to q2, we introduce an additionalerror bounded by �12 = pn�(jjDq1q2 jj + 1) where � is the grid size and n is the dimensionof the hybrid automaton. Consequently, the bound on the total error is � = �1 + �12. At thetarget discrete state q2, besides the new error inherent in the computation of b�c, the error �evolves under the continuous dynamics fq2 , in the worst case, as:�(t) = eL2t�; t � 0:where L2 is a Lipschitz constant of fq2 .Hence �(t) at this stage is bounded by eL� � where � is the time needed for the computationto terminate at q2. However, depending on the nature of the continuous dynamics at q2,�(t) may increase or decrease over time, and it is thus di�cult to make a general statementabout the magnitude of �(t) when the next transition is taken. Due to the insensivity of theLipschitz constant, the above estimation may not reect the real error in practical situations.A better assessement requires a mechanism integrated in the computational package wherebythe local error is evaluated and possibly controlled in the course of the computation.
6.5 Backward Veri�cation AlgorithmThe veri�cation algorithm using forward reachability can be easily adapted for backwardreachability analysis. It remains to compute the orthogonal over-approximations b�c and b�dof the continuous-predecessor �c and discrete-predecessor �d operators.To compute b�c(q; F ), one can use the algorithm for b�c(q; F ) on the reverse dynamics, i.e. fqis replaced with �fq.
We now show how to over-approximate discrete-predecessors. The exact set �q0q(q; F ) canbe written as �q0q(q; F ) = (q0; R�1q0q(F ) \Gq0q \Hq0)



128 Veri�cation of Hybrid Systemswhere R�1q0q : 2X ! 2X is the inverse map of Rq0q de�ned as R�1q0q(X) = fx0 j 9x 2 X x =Rq0q(x0)g. We consider the following two cases of Rq0q.1. The map Rq0q is memoryless, that is, Rq0q = Jq0q. Then,b�q0q(q; F ) = � ; if F \ Jq0q = ;,(q0; grido(Gq0q \Hq0)) otherwise.
2. The map Rq0q is Rq0q(x) = Dq0qx + Jq0q where Jq0q = convfj1; : : : ; jmjg. Assumethat the matrix Dq0q is invertible. It is not hard to see that R�1q0q(x) = convfD�1q0qx �j1; : : : ;D�1q0qx� jmjg, and for a convex polyhedron P = convfv1; : : : ;vmpgR�1q0q(P ) = conv(R�1q0q(v1) [ : : : [R�1q0q(vmp)):Hence, we can compute b�q0q(q; F ) by decomposing F into mb non-overlapping hyper-rectangles bj and then

b�q0q(q; F ) = (q0; mb[j=1 grido(R�1q0q(bj) \Gq0q \Hq0))
With b�q0q(q; F ) characterized as above, we can next compute the orthogonal over-approximationof discrete-successors as b�d(q; F ) = [q02Q b�q0q(q; F ):
The backward veri�cation algorithm is sketched below. The algorithm computes the setbackward reachable from the bad set B and checks whether it intersects with the initial setF . Note that for a given safety veri�cation problem, backward reachability may be moree�cient than forward reachability and vice versa.Algorithm 12 (Approximate Backward Veri�cation Algorithm)P0 := B;repeat k = 0; 1; 2; : : :if (Pk \ F 6= ;) return bad-set-reachedPc := b�c(Pk);Pd := b�d(Pc);Pk+1 := Pk [ Pc [ Pd;until Pk+1 = Pkreturn safe



6.6 Veri�cation Examples 1296.6 Veri�cation ExamplesIn the sequel we illustrate our approach with some results obtained using the above algo-rithms implemented in d/dt .
6.6.1 Example 1Consider the hybrid automaton sketched in Figure 6.6. This automaton has two discretestates q1 and q2 whose dynamics are the following:A1 = � �2:0 �3:03:0 �2:0 � ; A2 = � 0:0 �0:63:0 0:0 � :The initial set is F = (q1; [0:3; 0:6]� [�0:2; 0:2]). In other words, the system starts at discretestate q1 from the rectangle shown in Figure 6.7-(a). The successors by A1 (a center dynamics)are computed until the trajectories all go out of the staying conditions H1 (x1 � �0:15). Theintersection with the guard G12 (x1 = �0:15) is then computed and from there the dynamicsA2 is applied, shrinking the set until all the trajectories go out of H2 (see Figure 6.7-(b)).From the intersection with the guard G21 (x1 = �0:02) the dynamics A1 induces a \ring" ofstates which stay in q1 forever (see Figure 6.7-(c)).

_x = A2x
x1 = �0:02
x1 = �0:15

q1 q2
_x = A1xx1 � �0:15 x1 � �0:02

Figure 6.6: A hybrid automaton.
6.6.2 Collision AvoidanceThe second example is the model of a single lane of highway of an Automated Vehicle/HighwaySystem (AVHS), taken from [100].Consider a vehicle i on the lane. Let di be the distance of vehicle i from the origin, and letsi and ai be its speed and acceleration, respectively (see Figure 6.8). The dynamics of eachvehicle depends on the state of the vehicle in front; therefore, to avoid an in�nite dimen-sional problem, when studying vehicle i, the dynamics of the vehicle i� 1 is conservativelyabstracted by ai�1 = [Al; Au] where Al is the maximum deceleration and Au is the maximumacceleration. Let d = di�1�di be the distance between vehicles i and i� 1. We focus on theleader control mode in which vehicle i follows vehicle i� 1, and the control law is written asfollow: _ai = �3ai � 3(si � si�1) + d� si + 10: (6.5)
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q1 q2 q1(a) (b) (c)Figure 6.7: The 3 stages in the computation of the reachable set.

0 di+1 di di�1
i+ 1 i� 1i

Figure 6.8: A single lane of highway.
This control mode is applied when the inter-vehicle distance is small or the relative speedbetween vehicles is large. More precisely, it is applied to vehicle i if the following conditionsare satis�ed. 8>>>>>><>>>>>>:

d � 5si 2 [0; 30]si�1 2 [0; 30]ai 2 [�5; 2]d+ (s2i � s2i�1)=2Al � (si � si�1) � 10
(6.6)

A detailed description of the AVHS can be found in [100].The goal is to prove that the control law (6.5), when applied to vehicle i, guarantees thatcollision between vehicles i and i � 1 never happens, i.e. the distance d is always positive,regardless of the behavior of vehicle i�1. For doing this, we consider the following dynamical



6.6 Veri�cation Examples 131system: _d = si � si�1_si = ai_si�1 = ai�1_ai = �3ai � 3(si � si�1) + d� si + 10
The continuous state of the system is (d; si; si�1; ai), and the last di�erential equation de-scribes the control law. Note that the acceleration ai�1 of vehicle i � 1 is now the input(disturbance) of the system ranging inside [Al; Au] where Al = �5m=s2 and Au = 2m=s2.In addition, the system is subject to the constraints _si�1 � 0 and _si � 0. Therefore we modelthe system as a one-state hybrid automaton with these constraints as staying conditions atthe discrete state. To prove that the system never reaches a state where d � 0, we take theset Sl described by (6.6) as the initial set and compute its successors. The last inequalityof (6.6) is non-linear, and to over-approximate the initial set by a convex polyhedron wereplace it with si�1 � 2740si � 3:

Figure 6.9: The reachable set projected on the �rst three dimensions at time point t = 0:2s.
We perform bounded time reachability analysis, and the result obtained shows that thesystem is safe until 200s. Termination can be checked if we restrict the analysis to a boundedset. The projection of the reachable set at time point t = 0:2s on the �rst three dimensionsis drawn within its bounding box in Figure 6.9. This safety property was proved by theauthors of [100] using optimal control techniques.



132 Veri�cation of Hybrid Systems6.6.3 Double PendulumAnother example we consider is inspired by the biped robot developed at Inria Rhone-Alpes.We consider a simpli�ed model of a robotic leg having two motors installed at the hip andknee (see Figure 6.10). The continuous state of the system is z = � z1z2 � where z1 and z2are the hip and knee angles. The dynamics of the robot leg is described by the well-knowndouble pendulum equations: M(z)�z+N(z; _z) =W� (6.7)where M is the matrix de�ning the kinetic energy; N gathers generalized gravity, Coriolis,and centrifugal forces; � includes all external generalized forces; W is a constant matrix. Wefocus on the case where the system is under-actuated: W = � 10 �, that is, only the hip isactuated.Consider the following coordinate transformation parametrized by a = (a1; a2) 2 R 2 :z! � e1(z)e2(z) � = � z1 � a1z2 � a2z2 � :We are interested in the zero dynamics, that is, e1 is stabilized at 0 by using the control � (thecontrol law that drives the system to the zero dynamics is detailed in [42]). Once the zerodynamics is reached, the motion of the pendulum is free since no more control is available(dim(e1) = dim(W ) = 1). In many cases, this free motion is periodic, i.e. the trajectoryof the system starting from a given point z is a periodic orbit (corresponding to an energylevel) and determined uniquely by the value of a. We denote this orbit by �z;a. Hence, theparameter a can be used as an additional control (or a supplementary degree of freedom).In this study, the parameter a is discretized, and we are interested in the following question:\Is a goal orbit reachable from an initial orbit by a �nite number of discrete jumps in a?". Amore general question is whether a set of target orbits can be reached from a connected setof initial orbits. In particular, we want to �nd the sequence of discrete values of a that steersthe system from low-energy orbits to high-energy ones and, moreover, with the least numberof jumps. In the following we will show how to use our reachability algorithms implementedin d/dt to solve this synthesis problem.The evolution of the system in the zero dynamics is described by the following equationresulting from the projection of (6.7) on the constraint e1 = 0:M(a; z2)�z2 + C(a; z2) _z2 + G = 0To facilitate reachability analysis, we will linearize the system. Without getting into detail(see [42]), the above equation, linearized about an equilibrium point � z�2_z�2 � = � a21+a10 �,becomes _x = Ax+ u; (6.8)
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Figure 6.10: A double pendulum.
where x = � z2_z2 � ; u = � 0�z�2 � ;A = � 0 1�� 0 � ; � = l2 + a11 + a1L1cos( a21 + a1 ):The condition for ensuring the existence of periodic orbits is � > 0.The geometric parameters of the double pendulum at the robotics laboratory in Inria [42] areas follows: L1 = 0:52m, l1 = 0:3m, l2 = 0:29m, m1 = 6kg, m2 = 4kg, and the gravitationalacceleration g = 9:81m=s2.Since the pendulum is submitted to physical bounds on the joints: zi 2 [zmini ; zmaxi ], theequation e1 = z1 � a1z2 � a2 = 0 of the zero dynamics leads to linear constraints in theparameter a. We consider 7 discrete values of a:p0 = (�0:32;�0:1); p1 = (�0:28; 0:0); p2 = (�0:25; 0:05);p3 = (�0:15; 0:0); p4 = (�0:1; 0:1); p5 = (0:05; 0:2); p6 = (0:15; 0:3): (6.9)
Thus, the pendulum can be modeled as a 7-state hybrid automaton. In each discrete state qicorresponding to a parameter value pi, the linearized continuous dynamics is given in (6.8).Since the controller is subject to mechanical constraints, the transitions between discretestates (or the jumps in a) cannot be arbitrary. More precisely, we can switch from a to a0if jai � a0ij � �ai; i = 1; 2. The transition relation of the hybrid automaton is shown inFigure 6.11. Moreover, when we switch from a to a0 there might be a transient period untilthe system reaches the new zero dynamics. Hence, we need to make sure that e01 and _e01 bealready close to their zero. For e01 this meansje01j = jz1 � a01z2 � a02j < �1



134 Veri�cation of Hybrid SystemsSince e1 = z1 � a1z2 � a2 = 0, the above leads toj(a1 � a01)z2 + (a2 � a02)j < �1 (6.10)For _e01 we have j _e01j = j(a1 � a01) _z2j < �2 (6.11)The conditions (6.10) and (6.10), which form rectangles in the phase-space of the zero dy-namics, will be used as transition guards in the hybrid automaton model. Note that theseconditions are symmetric, i.e. they are the same for the transition from (a01; a02) to (a1; a2).q1 q2 q3q4q5q6
q0

Figure 6.11: The transition relation of the hybrid automaton of the pendulum with 7 discretevalues of a given in (6.9).
Let Ot be the set of goal orbits f�x;at j x 2 Ftg, and let O0 be the set of initial orbitsf�x;a0 j x 2 Fg. We describe briey the procedure for �nding the switching sequence (thedetailed algorithm is given in [9]). Starting with an initial orbit in the (z2; _z2) space, wecalculate in a breadth-�rst manner all the continuous-successors of F at the discrete statecorresponding to a0, and then, via instersection with the guards, the discrete-successors. Wecontinue until at some level k of the search tree, the computed reachable sets at one or morenodes intersect with Ot. From these non-empty intersections we do backward reachabilityanalysis to �nd the subset Fk of F from which the goal orbits can be reached using ktransitions. Next, we restart the process from F 0 where F 0 = F n Fk is the subset of Fconsisting of the points not covered yet.We illustrate the process where the initial set F is the rectangle [0:7�0:9]�[0:01; 0:02] at stateq3 (i.e. a0 = p3), and the goal orbits are speci�ed by the rectangle Ft = [1:05; 1:3]�[0:01; 0:02]at the same state (i.e. at = p3). We choose �1 = 0:05 and �2 = 0:02. The search treeof the �rst iteration is shown in Figure 6.12 where there are two intersections with thegoal orbit after 4 transitions. Going backward we conclude that initial states satisfyingz2 2 [0:7552; 0:9] can reach the goal orbits by following the sequence q3; q2; q3; q2; q3 andthose satisfying z2 2 [0:7152; 0:9] can do it following the sequence q3; q2; q1; q2; q3. Note thatfrom states in the set [0:7552; 0:9]� [0:01; 0:02] both sequences can be used. In the seconditeration, we start with the remaining initial states, i.e. z2 2 [0:7; 0:7152] and �nd thatfrom there the goal orbits can be reached by either one of the three following 6-transitionsequences: q3; q2; q3; q2; q3; q2; q3; q3; q2; q3; q2; q1; q2; q3; q3; q2; q1; q2; q1; q2; q3. The fact that_z2 does not matter here is particular to this example | with other sets of parameters thepartition of the initial set did involve conditions on _z2. The reachable states which correspondto the �nding of the sequence q3; q2; q3; q2; q3 are depicted in Figures 6.13 and 6.14.
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Figure 6.12: The search tree of the �rst iteration: the goal orbits are �rst reached after 4switchings along two paths q3; q2; q3; q2; q3 and q3; q2; q1; q2; q3.
6.7 SummaryWe have described a veri�cation algorithm for hybrid automata based on the approximatereachability techniques for continuous systems. Our algorithm can work with a large classof hybrid systems with arbitrary continuous dynamics and rather general discrete dynamics.We have also discussed various methods for increasing the e�ciency of the algorithm and anadaptation for backward reachability analysis. To illustrate the applicability of our approach,we have shown some examples treated using the implemented algorithms.Along these lines, there are the works of [31], [24], and [59], the results of which are thehybrid system veri�cation tools CheckMate, VeriShift, and HyperTech, respectively. Wedefer a discussion on these works to Chapter 8 after presenting our tool d/dt .
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z2q2 q2 ! q1Figure 6.13: Computation of reachable states for the sequence q3; q2; q1; q2; q1; q2; q3: on theleft we see the reachable set at mode qi, and on the right we show the intersecion with theguard from qi to qj .
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z2q3Figure 6.14: Computation of reachable states for the sequence q3; q2; q1; q2; q1; q2; q3 continuedfrom Figure 6.13.
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Chapter 7
Switching Controller Synthesis
In this chapter we study the problem of synthesizing switching controllers for hybrid systems.The setup of the system we consider is shown in Figure 7.1. The system, which we referto as the plant, can be in one of several \modes", in each of which its behavior is governedby a distinct continuous dynamics. In some zones of the continuous state space X � R nthe system can switch from one mode to another. These modes can arise from di�erentstructures of a continuous system (such as gears in a car or combination of open and closedvalves in a liquid container), the use of di�erent operation ranges of continuous regulators, theapproximation of non-linear continuous systems by piecewise-linear ones, etc. . The choicebetween the modes is made by a discrete controller, which continuously observes the stateof the plant and decides continuously which mode to select. The discrete controller can thusbe modeled as an automaton with a set Q of states, where each state is identi�ed with amode of the plant. We assume the controller has complete observability of the plant, in otherwords, the observation space of the controller is X . Hence, the domain of the feed-back mapis Q� X .We allow the controller to be non-determinisitic, i.e. a function s : Q�X ! 2Q. This meansthat when the current mode is q and the state of the plant is x, the controller might choose tostay in q as well as to switch to one of several other modes. In synthesis problems, one usuallystarts with a \liberal" controller which allows the system to be in one of several modes at agiven state. In other words, s(q;x) contains all the modes to which it is physically possibleto switch from (q;x). The result of the synthesis process is a more restrictive controllerwhich allows to stay in a mode or to switch to another mode only if this does not lead to badconsequences. As in the previous sections, we concentrate on invariance properties, namelythe avoidance of bad states. In our setting, the combined system which is a product of thecontroller and the environment is viewed as a hybrid automaton over the state space Q�X ,and the synthesis algorithm is performed on this automaton.We begin by discussing some aspects of hybrid automata behavior, which are important inthe synthesis context. Next, we de�ne formally the controller synthesis problem and givean abstract algorithm to solve it. We then describe an approximate implementation of this
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Plant

Discrete switching controller

Mode selection
C2
C1
C3

q 2 Q x 2 X
q2q3

q1

Figure 7.1: A plant with a switching controller.
algorithm for systems with linear continuous dynamics, which is based on the reachabilitytechniques presented in Chapters 4 and 6 and gives an approximate switching controller thatguarantees correctness. We illustrate our approach with some examples and conclude with adiscussion of related work. The material of this chapter is developed from the presentationin [11].
7.1 PreliminariesThe automata-theoretic formulation of the synthesis problem is as follows: given a hybridautomaton, restrict the transition guards and staying conditions of the automaton so thatall remaining trajectories satisfy some safety speci�cation. Our approach is to iterativelyreduce the staying and guard sets, so that the automaton will be forced to leave a continuousdynamics which leads to bad states and will not take transitions which lead to such states,until we obtain an automaton all of whose behaviors are good. There are two anomalies thatmay result from a careless application of this approach, namely blocking and Zeno behaviors.
Blocking BehaviorIn the process of iteratively restricting the automaton, one should ensure that the result-ing automata are non-blocking, that is, from every reachable state there is always either acontinuous dynamics or a discrete transition which is enabled. To prevent blocking aftertransitions, for every q, q0 2 Q, we replace Gqq0 with G0qq0 = Gqq0 \ R�1qq0(Hq0) where R�1qq0 is



7.1 Preliminaries 143the inverse map of Rqq0 . Hence, Rqq0(G0qq0) � Hq0 (7.1)
There is always a trivial way to synthesize controllers with respect to a given safety propertyby generating an automaton with H = G = ;. This automaton has no trajectories at alland thus satis�es the property. In order to obtain sensible solutions, we are interested in�nding the maximal non-blocking sub-automaton of A which satis�es the property. As inthe theory of supervisory control of discrete-event systems [102], such a maximal controllerexists for safety properties. However, since we are dealing here with hybrid systems, we willeventually produce an approximation of this maximal automaton.
Zeno BehaviorThe importance of avoiding Zeno behavior in synthesis problems cannot be underestimated.Indeed, because of this inevitable anomaly associated with modeling of interaction betweendiscrete and continuous dynamics, a synthesis algorithm may come to wrong conclusionsand produce a controller that `avoids' bad states by generating Zeno behaviors. Similarphenomena have been extensively studied in sliding mode control [43, 113, 12, 2]. To illustratethe problem, consider a car driving towards a wall. The driver's only means of control is toturn the radio on and o�. The system can be modeled as an automaton with two discretestates corresponding to two modes (on and o�) of the radio. In both discrete states, thederivative of the continuous variable x which models the distance from the car to the wall is�v where v > 0 is the constant speed of the car (see Figure 7.2).

radio_on radio_off

x 2 X
x 2 X

x 2 X x 2 X_x = �v _x = �v
Figure 7.2: Car driving automaton (the staying and guard sets are the whole state space X ).
Clearly such a car is doomed to reach the bad state x = 0 and bump into the wall. However,formally, there is a behavior of the automaton where the driver switches the radio on and o�in�nitely many times in a bounded time interval, and consequently the car does not progressbeyond a given point x > 0.One straightforward way to ensure that our synthesis algorithm will not rely on such phe-nomena is to restrict its scope to hybrid automata which are non-Zeno by construction. Thismotivates the following de�nitions.



144 Switching Controller SynthesisWe consider a hybrid automaton A = (X ; Q; f;H;G;R). The set of all trajectories startingfrom (q;x) 2 Q�X is denoted by L(A; (q;x)), and the set of trajectories starting from any(q;x) such that x 2 Hq is denoted by L(A). The automaton A is non-Zeno if L(A) containsno Zeno behaviors.For the time being we assume that in the hybrid automata to be considered the reset mapRqq0 is the identity for all q, q0 2 Q, that is, there are no jumps or resets in the values of thecontinuous variables when transitions are taken, and hence R will be omitted. An extensionof the synthesis algorithm to automata with resets will be examined later.De�nition 22 (Strongly Non-Zeno Hybrid Automaton)� A state cycle of A is a sequence of states q1; : : : qs such that q1 = qs.� A cycle is non-Zeno if there exists a sub-sequence of states q; q0; q00 in the cycle suchthat cl(Gqq0) \ cl(Gq0q00) = ; where cl is the closure operator.� A hybrid automaton is strongly non-Zeno if all its cycles are non-Zeno.A Zeno cycle may allow the automaton to make a sequence of transitions leading from astate (q;x) to itself inde�nitely in non-diverging time and result hence in a Zeno behavior.Lemma 9 If the automaton A is strongly non-Zeno, then it is non-Zeno.ProofBy de�nition of strongly non-Zeno automata, every state cycle � of A has at least a sub-sequence of states q; q0; q00 such that the intersection of cl(Gqq0) and cl(Gq0q00) is empty, whichmeans that there is a positive lower bound on the distance between Gqq0 and Gq0q00 . Hence,every traversal of � must do some continuous evolution between a point x 2 Gqq0 and a pointy 2 Gq0q00 . This implies that every behavior whose discrete part is cyclic must pass sometime in the continuous phase and thus has a positive lower bound on its duration. Let d bethe minimal such lower bound over all cycles.Let consider a behavior  = (�; �) of in�nite logical length. Let q be a state which repeatsin�nitely often in the discrete behavior �. Then, the behavior � can be decomposed intoq; : : : ; q; : : : ; q; : : : ; q; : : : , that is, a concatenation of �nite cyclic behaviors. As we have justshown, each cyclic behavior spends at least d > 0 time in the continuous phase, and henceany behavior of in�nite logical length has an in�nite metric length and is non-Zeno.
It can be veri�ed that Lemma 9 is also true with a weaker de�nition of strongly non-Zenoautomata, that is, the automaton A is strongly non-Zeno if every cycle q1; : : : qs of A satis�ess�1\i=1Gqi;qi+1 = ;:



7.2 The Problem and An Abstract Solution 145It is important to note that these conditions are both su�cient but not necessary for a hybridautomaton to be non-Zeno1. In addition, the above conditions on the intersection of guardsare de�ned for automata without resets; for those with reset maps, more complex conditionsneed to be de�ned.De�nition 23 (Hybrid Automaton Restriction)Let A = (X ; Q; f;H;G) and A0 = (X ; Q; f;H 0; G0) be two hybrid automata. We say thatA0 is more restrictive (in terms of behaviors) than A, denoted by A0 � A, if H 0 � H andG0 � G, i.e. H 0q � Hq and G0qq0 � Gqq0 for every q; q0 2 Q.Clearly if A0 � A then L(A0) � L(A) and, in addition, if A is non-Zeno, so is A0.
Before formulating the synthesis problem we need some additional notations related to con-tinuous evolutions of hybrid automata. Let us �rst recall the notations introduced in Chap-ter 2. A trajectory of the hybrid automaton A = (X ; Q; f;H;G) is a pair (�; �) where� : T ! X is a piecewise-continuous behavior and � : T ! Q is a piecewise-constant behav-ior. Let x, x0 be points in X and q 2 Q. The notations x q;t�! indicates that the dynamics qis enabled from x for time t > 0 and x q;t�!x0 indicates that x0 is q-reachable from x in timet.De�nition 24 (Continuous Evolution)Let F and G be subsets of X . Let  = (�; �) be a trajectory of A starting from (q;x).

� If x q;t�! , and, in addition, �(t0) 2 F for every t0 2 [0; t] we write it as x q;t�!F .� If x q;t�!x0 and, in addition, �(t0) 2 F for every t0 2 [0; t] we write it as x q;t�!F x0.� The set G is q-reachable from x in time t if x q;t�!x0 for some x0 2 G. We denote thisby x q;t�!G. If, in addition, �(t0) 2 F for every t0 2 [0; t], we write it as x q;t�!F G (Funtil G).
7.2 The Problem and An Abstract SolutionWe formulate a simple control problem of avoiding bad states in a non-trivial way.Problem 4 (Safety Synthesis for Hybrid Automata)Let A = (X ; Q; f;H;G) be a hybrid automaton and let F be a subset of Q�X . The safetycontroller synthesis problem is to �nd the maximal non-blocking hybrid automaton A� � Asuch that for every trajectory  2 L(A�) and every t 2 T , (t) 2 F .1In this thesis we do not address the problem of �nding more precise non-Zenoness conditions. Recentworks on this topic can be found in [79, 121].



146 Switching Controller SynthesisThe existence and uniqueness of the solution A� to Problem 4 is not self-evident and will beshown in the proof of Theorem 5.In the following we present a synthesis algorithm which works for strongly non-Zeno hybridautomata and then show how to generalize it to arbitrary hybrid automata. Our approachto Problem 4 is to calculate the maximal set P� of `winning' states, that is, the states fromwhich the controller, by switching properly, ensures that all the trajectories of the controlledsystem lie within F . Then, the switching rule can be derived from P�, and we will call P�the maximal invariant set.
7.2.1 Characterizing the Maximal Invariant SetThe calculation of the set P� is the core of any synthesis algorithm, and for doing this wemake use of the following operators.De�nition 25 (Unbounded-time-predecessor Operator)Given q 2 Q, the unbounded-time-predecessor operator �1q : 2X ! 2X is de�ned for a setX � X as �1q (X) = fx j x q;1�!X g:Intuitively, �1q (X) is the set of states from which it is possible to continue inde�nitely withthe dynamics fq while staying in X (see Figure 7.3(a)).De�nition 26 (Until Operator)Given q 2 Q the until operator Uq : 2X � 2X ! 2X is de�ned for two sets X, Y � X asUq(X;Y ) = fx j 9t x q;t�!X Y g:The set Uq(X;Y ) consists of states from which it is possible to continue with the dynamicsfq and stay inside X until Y is reached (see Figure 7.3(b)).De�nition 27 (One-step Predecessor Operator)The one-step predecessor operator � : 2Q�X ! 2Q�X is de�ned for a setF = (q1; F1) [ : : : [ (qm; Fm)where m is the number of discrete states in Q as�(F) = f(q;x) j x q;1�!Fq _ (9t 9q0 2 Q 9x0 2 X x q;t�!Fq x0 ^ x0 2 Gqq0 ^ (q0;x0) 2 F)g:The intuition behind this de�nition is the following. A state (q;x) is in �(F) if either thereis an in�nite trajectory without switching starting from (q;x) and always staying in F , orthat it is possible to stay in F for some time and then make a transition to another state(q0;x0) which is still in F . Note that, due to (7.1), the continuous evolution can always be
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(a) (b)Figure 7.3: (a) Characterization of �1q (X): the trajectory from point x1 stays in X foreverwhile the trajectory from x2 leaves X after some time; therefore, x1 is in �1q (X) but x2 isnot. (b) Characterization of Uq(X;Y ): the trajectory from x2 stays in X until it reaches Ywhile the trajectory from x3 leaves X before, and hence x2 is in Uq(X;Y ) but x3 is not.

continued after a discrete transition is taken; hence, the condition x0 2 Hq0 can be omitted.
It is not hard to see that �(F) can be expressed via the operators Uq and �1q as�(F) = (q1; F 01) [ : : : [ (qm; F 0m)where for every q F 0q = �1q (Fq) [ [q0 6=q Uq(Fq; Gqq0 \ Fq0): (7.2)
Figure 7.4 sketches the computation of F 0q where the dynamics fq is the same as in the ex-ample of Figure 7.3.

x1
x2x3 Gqq0 \ Fq0

Fq

Figure 7.4: Computation of F 0q: points x1 and x2 are in F 0q since x1 2 �1q (Fq) and x2 2Uq(Fq; Gqq0 \ Fq0) (but x2 62 �1q (Fq)). Point x3 is in neither and hence it is not in F 0q.
Based on the one-step predecessor operator we obtain the following abstract algorithm forcomputing the maximal invariant set P�.



148 Switching Controller SynthesisAlgorithm 13 (Computing P�)P0 := F \H;repeat k = 0; 1; 2; : : :Pk+1 := Pk \ �(Pk);until Pk+1 = PkP� := Pk;
It is clear that the states in F but not in H are not admitted by the system, and it is thussu�cient to start with the set P0 = F \H. Algorithm 13 produces a decreasing sequencefPkg, and if the algorithm terminates it gives the �xed point P�.Lemma 10 (Property of Algorithm 13)For every k, (q;x) 2 Pk i� L(A; (q;x)) contains a trajectory remaining invariantly in Fwhich is either of logical length smaller than k and in�nite metric length, or else of logicallength not less than k.ProofThe proof concerning the length of trajectories is done by induction. For the base case, allstates in P0 admit empty trajectories of length zero and all states outside P0 (and outside F)do not admit such trajectories. Consider a state (q;x) in Pk. If (q;x) is in �(Pk�1), it caneither admit an in�nite trajectory remaining invariantly in Pk�1 (and thus in P0 = F), ormake one transition to Pk�1 and then (k�1) transitions from there. On the other direction,if (q;x) 62 �(P k�1), then it cannot make a transition to Pk�1 nor an in�nite trajectory, andhence it can make at most (k � 1) transitions. This proves Lemma 10.
The set P� contains all the states for which there exist switching controllers that can preventthe system from going out of F . We restrict the automaton A to P� as follows.Theorem 5 The automaton A� = (X ; Q; f;H�; G�) where for every q, q0 H�q = fx j (q;x) 2P�g and G�qq0 = Gqq0 \H�q \H�q0 is the solution of the safety controller synthesis problem.ProofBy Lemma 10, the set P� is the set of all states which admit either a trajectory inside Fof �nite logical length whose last interval is in�nite or a trajectory of in�nite logical length,which (for strongly non-Zeno hybrid automata) implies an in�nite metric length. This showsthat A� is a non-blocking automaton whose trajectories always stay in F .In addition, in each iteration Algorithm 13 computes Pk+1 by removing from Pk the statesfrom which leaving Pk is unavoidable. We then deduce that all the trajectories from X nPkleave F after at most k transitions; as a result, any automaton larger than A� will containstates outside P� from which the system goes out of F after a �nite amount of time. We



7.3 From Abstract to E�ective Algorithm 149next conclude that A� is the largest automaton whose trajectories can be extended to in�nitywithout leaving F .
7.2.2 Switching ControllerA switching controller can be derived from A� by de�ning a feed-back map s : Q�X ! 2Qas s(q;x) = fq0 j (q0 = q ^ x 2 H�q ) _ (q0 6= q ^ x 2 G�qq0)g: (7.3)Notice that, unlike in continuous systems, the feed-back control depends not only on thecontinuous state but also on the discrete state of the system.This switching controller is non-deterministic since the sets H�q and G�qq0 might not intersectwith each other only on their boundaries, and hence in some parts of the state space thechoice between continuing with dynamics q and switching to q0 is not speci�ed. This issimilar to the notion of \least restrictive supervisor" [102], that is, for all (q;x) 2 Q � X ,all other switching controllers that keep the system inside F have the feed-back maps whichare contained in s.A deterministic controller can be obtained by reducing H� and G� so that the feed-back mapbecomes a function s : Q�X ! Q. In general, there is no \canonical" reduction preferableover the others, and we consider it an implementation issue.
Let us review what has been resolved so far. We have presented an abstract solution to thesafety controller synthesis problem which consists in restricting the automaton A to the setP� characterized as the maximal �xed point of the equation P = F \ �(P). This solutioncan be useful if one is able to e�ectively implement Algorithm 13 whose main ingredientis the � operator. The following section is concerned with the problem of computing thisoperator.
7.3 From Abstract to E�ective AlgorithmFrom now on we restrict the continuous dynamics to be linear of the form fq(x) = Aqx forevery q 2 Q.
Given a set F = f(q; Fq) j q 2 Q ^ Fq � Xg, our goal is to compute the set �(F). Wederive from (7.2) Algorithm 14 for characterizing �(F).The algorithm uses the operators Uq and �1q which, like the successor and predecessor oper-ators in the veri�cation algorithms, cannot, in general, be exactly computed. Our approachto an e�ective synthesis algorithm is to use our reachability techniques to under-approximatethese operators. It should be noted that for synthesis problems under-approximations are



150 Switching Controller SynthesisAlgorithm 14 (Computing �(F))P := ;;for all q 2 Q fX := �1q (Fq);for all q0 6= q fX := X [ Uq(Fq; Gqq0 \ Fq0);gP := P [ (q;X);greturn P
required since one needs to guarantee that the computed maximal invariant set is a subsetof the exact set P�.We begin with the until operator. Let us rephrase the meaning of this operator in terms ofreachable sets of hybrid automata. The set Uq(X;Y ) is simply the set of states from whichthe system can reach Y while remaining inX. Thus, Uq(X;Y ) can be characterized as the setof continuous-predecessors of (q; Y ), i.e. �c(q; Y ), with X as the staying condition at q. Notethat computing continuous-predecessors is equivalent to computing continuous-successors ofthe reverse dynamics: _x = �Aqx.We proceed with the operator �1q . Let X be the complement of X. It is not hard to see thatthe set �1q (X) can be obtained by removing from X the states from which the continuousdynamics fq leads the system to X. In other words, one needs �rst to compute the set ofpredecessors of X by the dynamics fq, i.e. �(X) where � denotes the predecessor operatorof continuous systems. Then, �1q (X) = X n�(X).We conclude from the formulation of � using the predecessor operators that we can over-approximate it by orthogonal polyhedra using the machinery for linear continuous and hybridsystems, developed in Chapters 4 and 6.
ExampleLet us now illustrate the above computations with an example where the sets X and Y arerectangles de�ned as X = [�0:1; 0:1]� [�0:03; 0:1];Y = [0:02; 0:06]� [�0:05;�0:02];and the linear dynamics fq is de�ned by the matrix

Aq = � �0:5 4:0�3:0 �0:5 � :
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Figure 7.5: Under-approximation of Uq(X;Y ): all the trajectories from points in the orthog-onal polyhedron remain in the rectangle X until they reach the rectangle Y .

Figure 7.6: Under-approximation of �1q (X): all the trajectories from points in the orthogonalpolyhedron can stay in the rectangle X forever.
The results obtained for the approximation of Uq(X;Y ) and �1q (X) are depicted in Fig-ures 7.5 and 7.6, respectively. In Figure 7.5, the set X is the big rectangle and Y is the smallone underneath X. The linear dynamics is a sink, similar to the example of Figure 7.4, andits trajectories spiral clockwise to the origin. The orthogonal polyhedra lying between thestair-like lines in the �gures are the under-approximations of Uq(X;Y ) and �1q (X).
Plugging the approximate algorithm for � into Algorithm 13, we obtain a sequence f ePkg oforthogonal polyhedra such that ePk � Pk for every k. The computed solution eP� is guaran-teed to be included in P�, and hence the restricted automaton eA� with respect to eP� satis�esthe same properties as A� except, of course, being maximal. This gives an e�ective solutionto the controller synthesis problem for hybrid automata with linear continuous dynamics.
Recall that we have also developed a reachability technique for continuous dynamics of theform _x = Ax + u where u is the input and takes values in a convex set U (see Section 4.5of Chapter 4). Combining this with the computation procedure described above, one is ableto solve the safety controller synthesis problem for systems with continuous disturbances, asthe example in Section 7.6.2 will illustrate.



152 Switching Controller Synthesis7.4 Uncontrollable Switching
In the framework described so far, we assumed that all discrete transitions are controllable,i.e. generated by the controller. However, in practice the environment in which physical sys-tems work is often uncontrollable and can induce some of the switching in a non-deterministicway. For instance, human interaction (such as an operator pushing a button) or a discretechange in a physical process (such as a collision) can be modeled as uncontrolled transitions.In addition, such transitions are very useful to describe the passage from one region of thestate space to another when piecewise-linear systems are used to approximate non-lineardynamics.Here we discuss an extension of the synthesis algorithm to hybrid automata with uncon-trollable switching. In this setting, it is important to distinguish non-determinism of thecontroller, which corresponds to the design choices, from non-determinism of the environ-ment, which reects our imprecise knowledge about the latter's actions. Therefore, thetransitions of our systems are now labeled as controllable and non-controllable.In the model to be considered we assume that the controller has no dominion over the actionsof the environment, i.e. if an uncontrollable transition and a controllable one are enabled at agiven state, the former has higher priority. The synthesis problem is formulated as �nding acontroller by restricting the controllable actions such that the controlled system always stayswithin a given set F regardless of the environment's behavior. We show now how to adaptthe � operator to take uncontrollability into account.
When all transitions are controllable, in order to stay in F the controller's strategy might beto wait some time t > 0 and then take a transition. However, in the presence of uncontrollabletransitions, one should consider the possibility that at some time t0 < t the environmentmight take a transition that will lead the system outside F .In order to incorporate uncontrollable transitions, we augment the model with a set T u �Q�Q of uncontrollable transitions. We observe that if (q; q0) is in T u, then from any state(q;x) such that x 2 Gqq0 the environment can enforce a transition to (q0;x), and if (q0;x) 62 Fthis will make the system violate the safety speci�cation. From this observation, we modifythe � operator as follows.Let F = (q1; F1)[ : : :[ (qm; Fm). The computation of F 0 = �(F) = (q1; F 01)[ : : :[ (qm; F 0m)is done in two steps:

1. Compute �F = (q1; �F1) [ : : : [ (qm; �Fm) by letting�Fq = Fq n [(q;q0)2TuGqq0 \ F q0
where F q0 is the complement of Fq0 . By doing this, we remove from F all states (q;x)from which the environment can lead the system to some (q0;x) outside F .



7.5 Anti-Zeno Synthesis 1532. For every q 2 Q compute F 0q as follows:F 0q = �1q ( �Fq) [ [(q;q0 62Tu)Uq( �Fq; Gqq0 \ �Fq0): (7.4)
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Figure 7.7: The operator � for systems with uncontrollable switching.
Figure 7.7 illustrates the above modi�cation. In the left �gure, (q; q0) is the only outgoingtransition from q, and this transition is controllable. It is easy to see that points x1, x2 andx3 are all in F 0q since the trajectories from them either stay invariantly in Fq or stay thereuntil Gqq0 \ Fq0 is reached. We now add to the system an uncontrollable transition (q; q00)as shown in the right �gure. The shaded rectangle consists of points inside Fq from whichthe environment can force a transiton to q00 and take the system outside F . Hence �Fq is theresult of removing this rectangle from Fq. Consequently, points like x2 and x3 are no longerin F 0q.With the characterization of the operator �(F) given in (7.4), the extension of our synthesisalgorithm to systems with uncontrollable switching is straightforward.
7.5 Anti-Zeno SynthesisWe have developed an e�ective synthesis algorithm for strongly non-Zeno hybrid automata,i.e. automata whose all state cycles are non-Zeno. Whenever the input automaton does notsatisfy this condition, Algorithm 13 might produce wrong results where P� contains statesfrom which bad behaviors can be avoided only due to Zeno behaviors. To remedy this, weneed to transform a-priori every hybrid automaton into a non-Zeno one.An obvious method for doing this is to eliminate the Zeno cycles by reducing the guardsof the transitions involved in the cycles. The problem with this approach is that there arein�nitely many di�erent ways to `separate' the guards, and the results might depend on thechoice we have made. For some choices of guard reduction, the maximal invariant set will



154 Switching Controller Synthesisbe empty while for other choices there is a way to control the system. Making the rightchoice requires knowledge about the qualitative behavior of the continuous dynamics. As analternative, we propose a systematic method for transforming any hybrid automaton into astrongly non-Zeno automaton at the price of increasing the dimensionality of the system byone, and adding non-identity resets to the transitions.The idea is very simple: we force the automaton to spend a certain positive amount of timeat every discrete state by adding a clock variable c (a variable with _c = 1 at any discretestate), resetting it to zero at every transition, and adding the condition c � dqq0 (dqq0 is apositive constant) to every transition guard Gqq0 (see Figure 7.8 for an example). In fact,it is su�cient to have one transition which resets c and one transition which is guardedby c � d in any cycle of the automaton where d > 0. This idea is similar to the useof dwell-time switching logics [91] in switching control to suppress \chattering", i.e. veryfast switching. Another well-known method to avoid this phenomenon is called hysteresisswitching logic [91, 104].

x 2 H2x 2 H1 _x = f2(x)
q2x 2 G21

x 2 G12
q1

_x = f1(x) ^ c � d12=c := 0

^ c � d21=c := 0Figure 7.8: Transforming an automaton into a strongly non-Zeno one using a clock c.
This construction guarantees that the guards are separated and the augmented automatonis strongly non-Zeno. However, this solution clearly eliminates some behaviors that are pos-sible in the original automaton. Putting positive lower-bounds on inter-transition times alsoadds some realism to the model of some physical systems which require some time to switchfrom one mode to another. The appropriate choice of dqq0 might come from such realisticconsiderations or can be based on knowledge of the continuous dynamics. In any case, tuningdqq0 seems to be much simpler than separating the guards of the original system. In additionto increasing the system dimensionality, the price of adding a clock is that the synthesisalgorithm should be modi�ed to account for clock resetting. The rest of this section is con-cerned with this modi�cation.
We begin by giving a formal de�nition of hybrid automata augmented with a clock.De�nition 28 (Hybrid Automaton with Anti-Zeno Clock)Let Ao = fX o; Qo; fo;Ho; Go; Rog be a hybrid automaton where Roqq0 are the identity for allq, q0 2 Qo. The automaton A = fX ; Q; f;H;G;Rg constructed from Ao by adding a clock isde�ned as follows.



7.5 Anti-Zeno Synthesis 155� The continuous state space is X = X o � [0;1).� The discrete state space is Q = Qo.� The vector �elds fq = (foq ; 1) for every q 2 Q.� The staying conditions Hq = Hoq � [0;1) for every q 2 Q.� For all q, q0 2 Q, Gqq0 = Goqq0 � [dqq0 ;1) where dqq0 > 0.� For all q, q0 2 Q, Rqq0(x1; : : : ; xn�1; xn) = (x1; : : : ; xn�1; 0). In other words, Rqq0leaves the �rst (n� 1) continuous variables intact and resets xn (the clock) to 0.Every safety synthesis problem on Ao characterized by a set Fo = f(q; F oq ) j q 2 Qg istransformed to a problem on A with F = f(q; F oq � [0;1)) j q 2 Qg.Geometrically speaking, all the sets Hq, Gqq0 , and Fq of the augmented automaton A are theprisms extending in�nitely in the positive direction of the axis xn from the correspondingsets of Ao (see Figure 7.9).

d x1

x2 X
ba Xo

Figure 7.9: Construction of X = Xo� [d;1) where Xo = [a; b] in one dimension (the jaggedlines mean that the set extends in�nitely).
To deal with the resets in the clock values, we modify slightly the � operator (the newde�nition holds for arbitrary resets and not only for those described in De�nition 28).Let R�1qq0 : 2X ! 2X be the inverse map of Rqq0 de�ned asR�1qq0(X) = fx0 j 9x 2 X x = Rqq0(x0)g:Then, the � operator can be modi�ed to handle the resets as follows:�(F) = f(q; �1q (Fq) [ [q0 6=qUq(Fq; Gqq0 \R�1qq0(Fq0))) j q 2 Qg: (7.5)
The modi�cation is made to the second argument of the operator Uq. Intuitively, we needto guarantee that the system stays in F after every reset Rqq0 . The computation of theuntil operator is done backwards as described in Section 7.3 but this time starting with theinitial set Gqq0 \R�1qq0(Fq0). It remains now to compute the map R�1qq0 .



156 Switching Controller SynthesisComputing R�1qq0The inverse reset map R�1qq0 for the hybrid automaton A of De�nition 28 is characterized as
R�1qq0(X) = f(x1; :::; xn) j xn � 0 ^ (x1; ::; xn�1; 0) 2 Xg:

The condition xn � 0 is due to the fact that the clock can have only non-negative values. Tocompute R�1qq0(X), we intersect the set X with the hyper-plane P0 = f(x1; :::; xn) j xn = 0gand build over the resulting set a prism extending in�nitely in the positive direction of theaxis xn (see Figure 7.10 for an example).
x2

0 x1bP0 a
X

R�1qq0(X)

Figure 7.10: Computing R�1qq0(X): the set X is drawn in dotted lines. First, we intersect Xwith P0, which gives the line segment ab. Then, R�1qq0(X) is the shaded prism with the baseab.
Before proceeding, we illustrate the computation of the set Y = Uq(Fq; Gqq0 \R�1qq0(Fq0)) witha simple example shown in Figure 7.11 where the dynamics fq is constant. In the �rst step,we compute R�1qq0(Fq0) and then intersect it with the set Gqq0 (see Figure 7.11-(2)). Next,we compute Y as the set of continuous-predecessors of Gqq0 \ R�1qq0(Fq0) with Fq as stayingconditions (see Figure 7.11-(3)).Let us give an intuition behind this result. Indeed, the point y is not in Y because thetrajectory from it stays in the set Fq for less than dqq0 time. On the other hand, from anypoint in Y , such as x, the system can reach a point x0 in the guard Gqq0 after staying in Fqfor at least dqq0 time. From x0 the system makes the transition to q0 and, by clock resetting,jumps to a point x00 in Fq0 as shown in Figure 7.11-(1).
Having computed an under-approximation eP� of the maximal invariant set P� of the aug-mented automaton A, we restrict A to eP� using Lemma 5 and derive a switching controlleras in (7.3). The clock will be part of the controller, and the controller observes the state ofthe system and the value of the clock, switches according to the switching rule and resetsthe clock while doing so.
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Figure 7.11: Computing Y = Uq(Fq; Gqq0 \R�1qq0(Fq0)) for an automaton with anti-Zeno clock:(1) the sets Fq0 (the shaded prism) and Gqq0 (the dotted prism based on [a; b]); (2) the setR�1qq0(Fq0) and its intersection with Gqq0 (the darker prism based on [a; h]); (3) the sets Fq(the prism based on [c; d]) and Y (the shaded region).
7.6 ExamplesWe have implemented the synthesis algorithms described above into d/dt and we now illus-trate the behavior of the algorithms on two examples. Note that the results are obtained ina fully automatic manner once the model has been written.
7.6.1 Two spiral systemThe �rst example is a system with two discrete states where the goal is to stay within a setF = [�0:65; 0:35]� [�0:35; 0:68]. The dynamics are de�ned byA1 = � 0:05 �0:52:0 0:05 � ; A2 = � 0:05 �2:00:5 0:05 �
The continuous dynamics in both discrete states are characterized as `sources' and theirtrajectories are diverging spirals. Therefore the only way to keep the system within F is toswitch between two discrete states. The initial transition guards are:G12 = [�0:2;�0:01]� [�0:2; 0:01]; G21 = [0:01; 0:32]� [�0:01; 0:1]:One can see that the guards do not intersect with each other, and the system is thus stronglynon-Zeno. The synthesis algorithm terminates after three iterations, and the running timeis 75s (with run-time visualization) on a Sun Ultra Sparc-10. Figure 7.12 depicts the setsFq and Gqq0 \ Fq0 obtained in each iteration (the latter set lies inside the former). Thesesets are used as initial sets to compute Uq in the next iteration (all the sets �1q (Fq) are
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q1 q2
Figure 7.12: The phase portrait of the two spiral system and the evolution of F1 and G12\F2(left) and of F2 and G21 \ F1 (right) within 3 iterations. The �nal results show for eachdiscrete state the safe set where the system can spiral and then make a transition to the safeset of the other discrete state.



7.6 Examples 159empty since the continuous dynamics are diverging). One can see from the �gures that thesafe sets become smaller after each iteration until they remain unchanged and the algorithmterminates.
7.6.2 Thermostat with Delay and DisturbancesConsider a thermostat with two modes (on and o�). The continuous variable x1 models thetemperature and the input u models uncontrolled disturbances. The dynamics of the modes`on' and `o�' are described by the di�erential equations_x1 = �x1 + u;and _x1 = �x1 + 4 + uwhere u ranges inside the interval [�0:5; 0:5].We augment the system with an additional clock variable x2 as in De�nition 28. We choosedqq0 = 0:5 for every transition, which means that the thermostat stays in each mode at least0:5 time. We let the staying conditions and initial guards be the whole continuous statespace. The hybrid automaton of the thermostat with delay and disturbances appears inFigure 7.13. ono�

_x2 = 1 _x2 = 1q1
x2 � 0:5=x2 := 0
x2 � 0:5=x2 := 0

_x1 = �x1 + u _x1 = �x1 + 4 + u
q2

Figure 7.13: The hybrid automaton of the thermostat.
Our goal is to keep the temperature x1 within the interval [1:5; 3:6], and hence we start withF = fq1; q2g � [1:5; 3:6]� [0:5;1). The synthesis algorithm is performed on the augmentedsystem and converges after three iterations. The results are shown in Figure 7.14 and therunning time is 18s (with run-time visualization) on a Sun Ultra Sparc-10. By intersectingthe two dimensional safe sets with x2 = 0 we obtain the safe sets for x1: [2:48365; 3:5] atdiscrete state `on' and [1:5; 3:15736] at `o�'.From the computed safe sets, we can de�ne a deterministic switching controller which turnsthe thermostat on when x1 = �12 ^ x2 � 0:5 and turns the thermostat o� when x1 =�21 ^ x2 � 0:5 for any �12 and �21 satisfying2:48365 < �12 < �21 < 3:15736:The automaton of the thermostat with the controller can be viewed in Figure 7.15.
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x2
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x1(o�) (on)Figure 7.14: The safe sets of the thermostat.
o� on

_x2 = 1q1 _x2 = 1q2x2 � 0:5=x2 := 0

x2 � 0:5=x2 := 0x1 = �12 ^

x1 = �21 ^
_x1 = �x1 + u _x1 = �x1 + 4 + u

Figure 7.15: The hybrid automaton of the thermostat with the controller.
7.7 Summary and Related WorkIn this chapter we have developed a simple framework for studying control by switching.We have proposed an e�ective algorithm for synthesizing switching controllers for hybridautomata with linear continuous dynamics subject to safety requirements, making use of theapproximate reachability techniques. We have also presented an adaptation of the algorithmfor systems with uncontrollable switching and a method to guarantee non-Zenoness of anysynthesized system.In the rest of this chapter we present some related work on controller synthesis for hybridsystems.Controller synthesis for discrete systems is well-known in computer science (see, for exam-ple, the surveys in [15, 85]) as well as in control theory (supervisory control of discrete-eventsystems [102]). The �rst extension toward hybrid systems appeared in the work of Wong-Toiand Ho�mann [119], which can be characterized as indirect: they transform a timed automa-ton into a �nite automaton (by using the �nite partition of the state space, known as theregion graph [5]). Algorithm 13, presented in this chapter, is based on the direct algorithmsuggested in [85, 16] for timed automata. In that work, due to the special properties of timedautomata, the exact computation of winning states and of a controller is guaranteed to ter-minate. These results were extended recently to the synthesis of time-optimal controllers fortimed automata [13].Another class of hybrid systems with simple continuous dynamics for which an exact con-



7.7 Summary and Related Work 161troller synthesis algorithm always terminates are the initialized rectangular hybrid automata,studied by Henzinger et al. [60, 58]. For other classes of hybrid systems with constant deriva-tives, synthesis procedures are not guaranteed to terminate, although the � operator can beexactly computed by using linear algebra. An exact synthesis algorithm for `linear' hybridautomata, which also considers non-Zenoness, was given in [118] and implemented in HyTech.Earlier work on controller synthesis for eventuality for such systems was reported in [110].Outside the world of hybrid systems with trivial continuous dynamics, results have been hardto come by due to the di�culties discussed in Chapter 3. Recent work in [81, 112], using agame-theoretic approach, is very close in spirit to ours. The authors try to solve the controllersynthesis problem for arbitrary continuous dynamics with time-varying piecewise continuouscontrol and disturbance inputs, using an abstract algorithm similar to Algorithm 13. The� operator is characterized using Hamilton-Jacobi partial di�erential equations. Techniquesto solve such equations were investigated in [112, 89]. However, numerical solutions can becomplicated, and no evidence has been given so far of the computational advantages of thispoint of view. In [106] it has been shown that the synthesis problem for the sub-class of linearsystems where the matrices are either diagonal or nilpotent is solvable by using computeralgebra.In addition, the synthesis problem has been studied in the discrete-event supervisory controlframework by various authors (see [67, 76] and references from there). Since the continuousdynamics treated by these authors are non-trivial, they look for approximating automata [90,36] rather than exact �nite state abstraction as in [119]. In [67], the problem of extracting adiscrete-event system from the continuous part of the system has been investigated. Once theDES has been extracted, discrete-event supervision techniques can be applied to synthesizea controller.
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Chapter 8
The Tool d/dt
In this chapter we describe d/dt , an experimental tool for the veri�cation and synthesis ofhybrid systems. It is a C++ implementation of the algorithms presented in the previouschapters. We present �rst the modules of the implementation and then the main features ofthe tool.
8.1 ImplementationThe modules of the implementation are summarized in Figure 8.1. The parts enclosed in thesolid boxes are the modules that we implemented and the others are the software packages weuse. The veri�cation and synthesis algorithms are described in the previous chapters; herewe present only the geometric manipulation, numerical integration and interface modules.
8.1.1 Geometric AlgorithmsOne important component of our veri�cation and synthesis algorithms are procedures formanipulating convex and orthogonal polyhedra. Besides common geometric operations(Boolean operations, membership testing, etc..), for which we can use available softwarepackages, some orthogonal approximation operations speci�c to our approach need to beimplemented. We begin by presenting the data structures for polyhedra.
Data Structure for Convex and Orthogonal PolyhedraSince we are interested in analyzing the system only in a bounded subset of the state space,called the analysis set, all polyhedra of interest are bounded. Every bounded convex poly-hedron P can be represented either by the convex hull of a �nite number of vertices or bythe intersection of a �nite number of half-spaces. Given either form, the other can be com-puted using standard algorithms. Since both forms are needed for di�erent operations and,165
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Figure 8.1: The modules of the tool.
moreover, the duality computation is expensive, our data structure for convex polyhedramaintains both forms, which means that the trade-o� between memory and computationtime was made in favor of the latter. An n-dimensional vertex is encoded as a real (orrational) vector, vertex, of size n whose elements are the coordinates of the vertex. Ann-dimensional half-space is encoded as a real (or rational) vector, halfspace, of size (n+1)whose the �rst n elements represent the normal to the half-space and the last one representsthe o�set, i.e. the distance from the half-space to the origin if the normal is an unit vec-tor. Rationals are used to avoid precision problems in certain cases. The basic C-like datastructure for a convex polyhedron is as follows.Convex-polyhedron fint n, nbvertices, nbhalfspaces;vertex *V;halfspace *H;g



8.1 Implementation 167Concerning orthogonal polyhedra, as we have already seen, a bounded orthogonal polyhe-dron can be represented by a �nite number of extreme vertices (see Section 3.2 of Chapter 3).Thus, the data structure for orthogonal polyhedra is simply a list of extreme vertices as shownbelow.
Orthogonal-polyhedron fint n, nbvertices;vertex *V;g
In all the implemented algorithms, basic data types (rational, array, dictionary, etc..) areprovided by LEDA1 library [88].
Convex and Orthogonal Polyhedron OperationsFor operations on convex polyhedra, we use two libraries: Qhull [19] and a new imple-mentation of Halbwachs's library [51]. Although Qhull does not provide ready polyhedraloperations (and some auxiliary programs were thus implemented to �t the needs), the moti-vation of this choice is that convex hull is the most frequently used operator and the generaldimensional convex-hull algorithm implemented in Qhull is one of the fastest available. Inaddition, Qhull provides an e�cient algorithm for half-space intersection, a crucial elementin our computations.The `new Polka' library implemented by B. Jeannet [63], using exact arithmetic, is muchless time-e�cient than Qhull, but its advantage is the ability to deal with degeneracies forwhich Qhull, using oating point arithmetic, may fail due to precision problems. In order toobtain a good compromise between time usage and accuracy, we combine these two librariesas follows: the algorithms of Qhull are used whenever possible and those of `new Polka' fordegenerate cases.
To manipulate orthogonal polyhedra, we use the library Cubes, implemented by O. Bournez [25],which provides algorithms for Boolean operations, inclusion test, convex decomposition, andface detection.
Orthogonal ApproximationsOur veri�cation and synthesis algorithms make use of four orthogonal approximation op-erators grido, gridu, uo, and uu to over- and under-approximate convex polyhedra andintersections of convex and orthogonal polyhedra. In the sequel we describe how these op-erators are implemented.1Library of E�cient Data types and Algorithms.



168 The Tool d/dtThe Operators grido and griduWe describe �rst an algorithm for computing grido. For a clear understanding, let us recallthe de�nition of this operator. Let G� be the uniform underlying grid over which our orthogo-nal polyhedra are de�ned. Given a convex polyhedron C, grido(C) is the smallest orthogonalpolyhedron G de�ned on G� such that grido(C) � C. We have shown that grido(C) is theunion of all the elementary hyper-cubes of the grid whose intersection with C is not empty.Let V be the set of vertices of the polyhedron C. We denote for all i 2 f1; : : : ; ngli = minfbvic� j v 2 V g; ui = maxf(bvic+ 1)� j v 2 V gwhere bvic is the integer part of vi=�. We de�ne the bounding box Bb of C on the grid G�as Bb = [l1; u1]� : : :� [ln; un].

Figure 8.2: Re�nement using the Binary Space Partition principle.
The key idea of the algorithm is the following. Using the principle of Binary Space Partitionfrom computational geometry (see [44] for an introduction to this method), we split thebounding box Bb into sub-boxes and then re�ne recursively those sub-boxes which intersectC until they become elementary hyper-cubes of the grid (see Figure 8.3).We denote by bsp the function that takes as input a box b and returns a list of 2n sub-boxes.Note that the vertices of the sub-boxes must be grid points. Let len(b) be the maximal sidelength of the box b. The pseudo-code of the recursive re�nement algorithm for computinggrido(C) is sketched below. The algorithm starts with the bounding box Bb of the inputpolyhedron C.Algorithm 15 (Computing grido(C))refine(b: box) fif (b \ C 6= ;) fif (len(b) � �) G := G [ b;else fLb := bsp(b);for all (bi 2 Lb) f refine(bi); gggreturn G;g



8.1 Implementation 169Essentially, the re�nement algorithm works as follows. If the box b intersects C, we distin-guish the following two cases:� If b is bigger than elementary hyper-cubes of the grid G�, then it is split into sub-boxesand each of these boxes is recursively re�ned.� If b is an elementary hyper-cube of G�, then it is added to G.

C

b1

BbFigure 8.3: Illustration of the computation grido(C).
As an example, consider a two-dimensional convex polyhedron shown in Figure 8.3. Aftersuccessive re�nements of the bounding box Bb we obtain the box b1 whose sub-boxes becomeelementary hyper-cubes, and three shaded ones are added into G.
It is clear that e�cient box-polyhedron intersection detection is crucial to the performanceof the algorithm since the number of boxes encountered can be large. A straightforward wayis to compute the intersection using standard convex polyhedron intersection algorithms.Nevertheless, the expense of �nding geometric intersections makes it quite costly. To reducethe number of intersections we combine several tests exploiting the geometry of boxes, whichare commonly used for interference detection in computer graphics [46, 77, 97].
The algorithm can be easily adapted to grids where a di�erent constant �i is used for everydimension and therefore elementary hyper-cubes become hyper-rectangles. Depending onthe geometric form of the input polyhedron C, the use of such grids can improve signi�-cantly the performance of the algorithm.
We turn now to the operator gridu. Given a convex polyhedron C, gridu(C) is the largestorthogonal polyhedron de�ned on the grid G� that is included in C. It is not hard to seethat gridu(C) can be computed in a similar way, but only the sub-boxes that are entirelyinside C will be added to G. The algorithm for gridu is as follows.



170 The Tool d/dtAlgorithm 16 (Computing gridu(C))refine(b: box) fif (b � C) f G := G [ b; gelse fif (b \ C 6= ; ^ len(b) > �) fLb := bsp(b);for all (bi 2 Lb) f refine(bi); gggreturn G;g
Algorithm 16 requires the additional inclusion test, which is trivial since testing whether abox is included in a convex polyhedron amounts to testing whether all the vertices of theformer are inside the latter.
Remarks

� The approximation accuracy can be �ne-tuned by de�ning a tolerance � 2 N and onlythe boxes whose size is greater than �� need to be re�ned. This can help to increasetime-e�ciency, but the approximations are no longer tight.
� An alternative method to compute orthogonal approximations is to use linear pro-gramming to �nd the largest hyper-rectangle inscribed in the polyhedron C and do itrecursively [21]. This method is time costly in case the input polyhedron C is `narrow',i.e. its bounding box has very di�erent side lengths. The reason is that the volumeof hyper-rectangles inscribed in C is small compared to that of C, which results in alarge number of linear programming problems to solve. We have also implemented thismethod into d/dt , and the choice between this and the algorithm based on re�nementis a user-de�ned parameter.

The Operators uo and uuWe discuss only the computation of uo (uu is similar). Recall that given a convex polyhedronC and an orthogonal polyhedron G, CuoG is the smallest orthogonal polyhedron Go de�nedon the grid of G such that Go � C \ G. The polyhedron Go is thus the union of all theelementary hyper-cubes in G which intersect with C.A naive implementation consists in testing all the elementary hyper-cubes in G. This canbe very expensive in case G contains many hyper-cubes. A more e�cient implementationconsists in decomposing G into non-overlapping hyper-rectangles and then applying there�nement procedure, as is done for grido and gridu.



8.2 Functionalities 1718.1.2 Numerical IntegrationFor numerical integration, we use CVODE [34], a software package for solving initial valueproblems for ordinary di�erential equations. The main attractive feature of CVODE is thatit can deal with both sti� and non-sti� systems. CVODE implements two linear multi-step methods, namely variable-coe�cient Adams and BDF (Backward Di�erentiation For-mula) [62]. The former is used for non-sti� problems and the latter for sti� ones. Bothmethods, being implicit, require solving non-linear systems, and to this end CVODE em-ploys a variety of linear solvers and thus allows e�cient solutions to a large class of problems.
8.1.3 InterfaceVisualization is an increasingly important component in the design of a software packagesince it helps the user to easily interpret the results obtained. However, writing e�cient3D animation programs integrated into a computation tool is a highly professional andtime-demanding task. Moreover, the computation time needed to obtain good visualizationquality is considerable and sometimes exceeds the computation time of the reachability algo-rithms. The solution we adopt here is to develop only some simple OpenGL [116] programs(omitting advanced visualization features), which allow the user to display the results duringthe execution and provide an option to generate data in the input formats of other standardviewers. The interface programs, which manage the input and output as well as optionalsettings, are implemented using the Windows library of LEDA [88].
8.2 FunctionalitiesThe current version of the tool handles hybrid automata in which� Continuous dynamics are linear of the form f(x) = Ax + u where u is the input andranges inside a convex polyhedron.� All the staying conditions and transition guards are speci�ed as convex polyhedra.In the current version of d/dt , the face lifting algorithm (which has been implementedseparately) and the treatment of resets have not yet been integrated. Adding these featuresis straightforward and can be done without modifying the current modules.We present �rst the input languague and then the functionalities of the tool.
8.2.1 Input LanguageThe input hybrid automaton and the speci�cation are described in a model �le (.hyb). Thespeci�cation is given in form of a polyhedron which represents the bad set or the safe set.Parameters and formulas referring to them can be used to describe the system. The input



172 The Tool d/dtlanguage is simple and can be easily understood through an example. The textual descrip-tion of a 2-state hybrid automaton is shown below.
dimension : 2; /* dimension of the system */
parameters :a0 = �0:32,a1 = �0:28,b0 = �0:1,b1 = 0:0,eps1 = 0:05,eps2 = 0:02,l2 = 0:29,L1 = 0:52;badset : type rectangle0:62 0:67,�0:1 0:1;initloc : 0;initset : type griddy�0:2 0:2,0:2 0:2,�0:2 0:6,0:2 0:6;location : 0;matrixA :0:0 �6:0,[�l2� (a0=(1 + a0)) � L1 � cos(b0=(1 + a0))] 0:0;inputset : type convex vert0:0 [(b0=(1 + a0)) � (�l2� (a0=(1 + a0)) � L1 � cos(b0=(1 + a0)))];stayset : type rectangle�0:15 1:0,�1:0 1:0;transition :label to1 :if in guard : type rectangle[�(�eps1 + (b0� b1))=(a0� a1)] [�(eps1 + (b0� b1))=(a0� a1)],[eps2=(a0� a1)] [�eps2=(a0� a1)];goto 1;
location : 1;matrixA :



8.2 Functionalities 173�2:0 �3:0,3:0 �2:0;inputset : type convex vert0:5 0:5, /* vertex (0:5; 0:5) */0:5 1:0,1:0 0:5;stayset : type rectangle�1:0 �0:02,�1:0 1:0;transition :label to0 :if in guard : type convex halfsp1:0 2:0 �0:02, /* x[0] + 2x[1] � �0:02 */�1:5 0:8 �1:5,�1:0 1:0 1:5,�1:0 0:5 �1:0;goto 0;;limits: /* the analysis set de�ned by a set of inequalities */x[0] >= �1:0 andx[0] <= 1:0 andx[1] >= �1:0 andx[1] <= 1:0
Convex polyhedra can be speci�ed using two formats: a list of vertices (convex vert) anda list of half-spaces (convex halfsp). In case a polyhedron is a hyper-rectangle, it can bede�ned simply by intervals. While the staying and guard sets must be convex polyhedra,the initial set can be orthogonal. Orthogonal polyhedra are speci�ed by lists of extremevertices following the keyword griddy. The analysis set (limits) can be speci�ed either asa conjunction of inequalities, like in the example, or as a convex polyhedron. The grammarof the input language is detailed in [38].
Computation ParametersSince approximations are used in our algorithms, the tuning of some computation parameterscan be useful to �nd a good compromise between computation time and accuracy. The toolallows for computation parameters to be de�ned textually in a parameter �le (.par) orthrough the graphical interface. If they are not de�ned, default parameters will be used.Here we outline only some important parameters (see [38] for more details).� Time step: the choice of the time step for each discrete state depends on the desiredaccuracy and also on the matrices of the continuous dynamics. It must be chosenaccording to Theorem 2 in Chapter 4.



174 The Tool d/dt� Grid size: errors in orthogonal approximations depend on the granularity of the grid.By reducing the grid size one can achieve better approximations at the price of morecomputation time.� Convex-hull approximation option: this option is used only for reachability and veri-�cation purposes. In order to speed up the computation in the continuous phase, theuser has an option to over-approximate orthogonal initial sets by their convex hull (seeSection 6.3 of Chapter 6). This, however, reduces the approximation accuracy.It is clear that prior knowledge of continuous dynamics will facilitate the �ne-tuning ofcomputation parameters in order to achieve the maximal computational e�ciency.
8.2.2 Function ModesAn overview of the functionalities of the tool is shown in Figure 8.4. Given a model �le andoptionally a parameter �le, the tool can work in the following three modes:1. Reachability: this mode performs forward reachability analysis from the initial set. Theoutput is an over-approximation of the reachable set.2. Safety Veri�cation: using forward reachability analysis, this mode can check whetherthe system starting from the initial set can reach the bad set. The output is a yes/noanswer accompanied by a set of bad states that the system has reached, in case theanswer is yes.3. Safety Controller Synthesis: by computing an under-approximation of the maximalinvariant set, this mode can synthesize a switching controller so that the system alwaysremains inside the safe set. The output is the under-approximation of the maximalinvariant set and the synthesized automaton.The analysis results are stored in .res �les in form of a sequence of sets of states (q; P )where q is a discrete state and P is a polyhedron.
8.2.3 Graphical User InterfaceThe goal of the graphical interface is to ease the use of the tool and facilitate interactiveanalysis. It consists of a menu bar and a window where the results are displayed. The menubar has �ve sub-menus: Input, Preferences, Run, View, and OOGL-Save. The user selectsthe model �le to work with through the Input menu and the type of analysis (reachability,veri�cation, synthesis) to perform through the Run menu. During the analysis of a system,the main computation parameters can be changed via the Preferences menu. The toolo�ers the possibility to display the results from the output �les (.res) using the View menu.This is useful when the user might wish to skip run-time visualization in order to reducecomputation time. The OOGL-Save menu is used to transform results stored in output �les
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Figure 8.4: The functionalities of the tool.

Figure 8.5: The menu bar of the tool.



176 The Tool d/dtinto OOGL2 format data, which can be then input to GeomView [96], an interactive viewerwith many attractive 3D features. A snapshot of the graphical interface can be viewed inFigure 8.5.
8.3 Summary and Related WorkWe have presented the overall structure of the experimental tool d/dt for automatically an-alyzing hybrid systems. We were able so far to treat rather easily continuous systems in upto 6 dimensions and recently a 3-dimensional hybrid system with 7 discrete states [9]. Thetool is still under development, and there is an ongoing e�ort to add new features and toimprove the implementation in order to increase its applicability. We have analyzed usingd/dt many academic examples and several examples inspired by real-life applications. Weare also currently investigating more applications in automotive control, robotics, and pro-cess control.
It is not easy to compare our tool to other tools in the domain for the following reasons.The hybrid systems research is still young, and hence it is not always possible to understandexactly the functionalities of some innovative tools from the papers which describe them.Moreover, due to the complexity of the problem and the approximate nature of the solution,it is still hard to de�ne performance measures and to compare tools according to standardbenchmarks. Here we discuss only the relationship between d/dt and three tools for theanalysis of hybrid systems with non-trivial continuous dynamics, of which we are aware.The �rst di�erence between these tools and d/dt is that they do not support controllersynthesis.� CheckMate [31, 30]CheckMate is a veri�cation tool, developed by Chutinan and Krogh, for threshold-event-driven hybrid systems where continuous dynamics are de�ned by general ODEs.The input system is modeled using Simulink block diagrams and then converted intoa hybrid automaton with the following restrictions: all the guard sets Gqq0 lie on theboundary of the staying sets Hq, which are convex polyhedra; the reset maps are theidentity, i.e. there is no jump in the continuous variables at discrete transitions. Un-like our tool, CheckMate takes the indirect approach, that is, it computes a �nite-stateabstraction of the original system using approximate reachability analysis and then ap-plies standard veri�cation algorithms to the resulting discrete model to verify ACTLspeci�cations3. As mentioned in Chapter 4, the reachability algorithm used by Check-Mate for linear continuous dynamics is similar to and potentially more e�cient thanours, but it is not easy to extend to systems with uncertain input. One attractive fea-ture of CheckMate is its interface for Matlab/Simulink, a commonly used formalism forspecifying and simulating continuous and hybrid systems. The most complex example2OOGL stands for Object Oriented Graphics Language.3ACTL is a restriction of CTL (computation tree logic) [32] which allows only universal formulas.



8.3 Summary and Related Work 177reportedly treated using CheckMate is the batch evaporator, which is modeled as ahybrid automata with 3 continuous variables and 5 discrete states where continuousdynamics are non-linear.� HyperTech [59]HyTech [56], developed by Henzinger, Ho and Wong-Toi, was the most popular toolfor verifying systems with piecewise-constant continuous dynamics. HyperTech is anattempt to extend HyTech to systems with arbitrary di�erential equations. However,the tool treats only simple discrete dynamics, i.e. the resets are either arbitrary set-valued maps or the identity. The design philosophy of HyperTech is to use existinginterval arithmetic packages in order to over-approximate reachable sets. Concretely,the typical computation step of HyperTech in the continuous phase starts with a hyper-rectangle F (a product of intervals) and uses the numerical integration of the intervalarithmetic package to over-approximate the reachable states at time r by a hyper-rectangle F 0. Then, the reachable set within the interval [0; r], i.e. �[0;r](F ), is approx-imated by a hyper-rectangle F 00 containing both F and F 0. In [59] the authors do notdetail how F 00 can be guaranteed to be an over-approximation of �[0;r](F ). The reach-able states accumulated over the execution are stored as a union of hyper-rectangles.The most complex example treated using HyperTech in [59] is an air-tra�c conictresolution system modeled as an automaton with 3 discrete states and 3 continuousvariables whose dynamics are non-linear.� VeriShift [24]VeriShift is a tool, developed by Botchkarev and Tripakis, for hybrid automata withlinear di�erential inclusions. The basic hybrid automaton model treated by Ver-iShift is similar to ours, and the tool can accept systems of communicating hybridautomata. VeriShift is designed to perform bounded time veri�cation. To over-approximate continuous-successors, VeriShift employs the ellipsoidal techniques, de-veloped by Kurzhanski and Varaiya [72]. To treat discrete transitions, new methodsfor over-approximating unions of ellipsoids and intersections of ellipsoids and convexpolyhedra are proposed. Input models should be written in C++ code, which is notalways trivial for users not having a computer science background. A recent exampletreated by VeriShift is a train-gate system [23] which consists of three 4-state commu-nicating automata sharing one continuous variable.Note that in all the abovementioned tools reachable sets are represented in a non-canonicalway (as unions of convex polyhedra/hyper-rectangles/ellipsoids), which limits their applica-bility to high dimensional systems. The tool d/dt has been designed with generality in mind,and hence the problem of representing polyhedra of arbitrary dimension has been tackledand solved before the development of the rest of the algorithms. Therefore, one positive fea-ture of d/dt is that it extends easily to more general systems (in terms of the dimensionalityand the complexity of dynamics).
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Chapter 9
Conclusions
9.1 ContributionsHybrid systems which combine continuous and discrete dynamics have been considered inthis thesis. We have presented a practical framework for algorithmic analysis of hybridsystems, using the commonly accepted hybrid automaton model. The main contributions ofthe thesis are summarized as follows.� Formal Veri�cation:The lack of methods for computing reachable sets of continuous dynamics has beenthe main obstacle towards an algorithmic veri�cation methodology for hybrid systems.This motivated us to tackle �rst the reachability problem of continuous systems. Un-like the conventional approaches which attempt to �nd exact solutions and are thuslimited by undecidability of most non-trivial systems, our approach is based on an ef-�cient method for representing sets and a combination of techniques from simulation,computational geometry, optimization, and optimal control. We have developed twoe�ective approximate reachability techniques for continuous systems: one is special-ized for linear systems and extended to systems with uncertain input; the other can beapplied for general non-linear systems.Next, we have shown how these techniques can be adapted for hybrid systems anddeveloped a safety veri�cation algorithm which can work for a broad class of hybridsystems (with arbitrary continuous dynamics and rather general switching behavior).The main advantage of our veri�cation algorithm over other existing algorithms is itseasy application for high dimensional systems due to the canonical representation ofreachable sets. In addition, with this representation our algorithm terminates in manycases while other algorithms do not.� Controller Synthesis:We have considered the problem of synthesizing switching controllers for hybrid sys-tems with respect to a safety speci�cation. A safety speci�cation is speci�ed as a subset179



180 Conclusionsof the state space within which the system must remain. We have presented an abstractsynthesis algorithm based on the calculation of the maximal invariant set. The useful-ness of this approach depends on the ability to e�ectively implement the � operator,the main ingredient of the synthesis algorithm. We have shown how our reachabil-ity techniques can be used for this purpose and provided an e�ective and automaticprocedure for synthesizing controllers. Furthermore, we have extended this procedureto systems with uncontrolled switching coming from the environment. We have alsoproposed a simple method for ensuring non-Zenoness of any synthesized system.� Tool:Another, not less important, goal of this thesis is to develop a working tool for analyzinghybrid systems. Many veri�cation and synthesis algorithms have been proposed, butso far not many tools exist. We have implemented most of the algorithms presentedin this thesis in the tool d/dt . The current version of the tool deals with hybridsystems with linear di�erential inclusions and provides automatic safety veri�cationand controller synthesis. Some e�ort has been made to develop a graphical interfacewhich helps the user to gain insight into the analysis and facilitates user intervention.Besides numerous academic examples used to evaluate the implementation, we havesuccessfully applied the tool to verify some practical systems.
9.2 Future Research DirectionsThere are many promising research directions to pursue.� Formal Veri�cation:Much work can be done to improve the face lifting technique. The main drawback ofthis technique is the accumulation of over-approximation error. We have proposed amethod to remedy this. However, further investigations should be made to devise amore clever approximation scheme by exploiting the qualitative behavior of the system.On the other hand, the current implementation of face lifting uses linked lists andmatrices to encode orthogonal polyhedra. A new implementation using the canonicalrepresentation will increase signi�cantly the e�ciency of the algorithm.The performance of our veri�cation algorithm can be improved in numerous ways.Experiments with many examples showed that most of the computation time is spentfor geometric operations especially in high dimensions. We are currently exploringmore e�cient orthogonal approximation algorithms combining diverse techniques fromcomputational geometry. Enhancing the implementation of some operations of theCubes library is another way to make geometric manipulations more time-e�cient.In addition, we have highlighted in Chapter 6 how search order can inuence compu-tation time, and we need thus to �nd the search strategies suitable for each probleminstance. This could be done using qualitative reasoning. Since our veri�cation al-gorithm can be readily used for simulation purposes, a method to reduce the search



9.2 Future Research Directions 181space is to de�ne search order during the execution based on the information obtainedby some simulations. In addition, prior simulation results can also suggest ways to doveri�cation more e�ciently.In this thesis we have concentrated on the complexity of the system rather than of theproperties. Methods for verifying more general temporal logic speci�cations are also asubject of future research.� Controller Synthesis:We consider the following extensions of the synthesis results presented in this thesis:{ Synthesis for eventuality: the dual synthesis problem of safety, eventuality, isconcerned with �nding the set of states from which the controller can enforce thesystem into a target set in �nite time and �nite number of switchings and com-pute the strategy for these states. Adapting our techniques for this performancecriterion is rather straightforward.{ Hybrid game automata: we have extended the synthesis algorithm to hybridautomata with uncontrollable switching which the controller cannot govern. Thenext extension is to more general hybrid games where the controller and theenvironment can have joint moves, as is done in [16] for timed automata. Thesynthesis of controllers in this setting can be solved at the price of adding aquanti�er to the one-step predecessor operator.{ Di�erential games: we believe that our techniques can be adapted to constructstrategies for linear di�erential games of the form _x = Ax+Bu+Cv where u isa control input and v represents uncontrolled disturbance. One way to solve thisproblem is to discretize u and hence restrict the control to be piecewise-constant.This reduces the synthesis problem to the problem of mode switching solved inChapter 7.More ambitiously, our synthesis algorithm could be generalized for systems with non-linear continuous dynamics. This requires a method for under-approximating reachablesets, and hence an extension of face lifting or a new technique needs to be investigated.� Tool:The current version of the tool is not yet as general purpose as we would like. Manyfeatures can be added, such as the integration of the face lifting algorithm. As veri-�cation is often expensive, we are considering an extension of the tool to include theanalysis in a `simulation' fashion, that is, reachability is performed from only somesubsets of the initial set. Although this analysis does not give a formal proof that thesystem is safe, it provides more reliable results than traditional simulation techniques.Besides the improvements on the algorithmic level, the graphical interface needs tobe enhanced to allow more interactive analysis. This feature should not be underesti-mated since it facilitates better understanding of the behavior of the model and canserve for diagnostics purposes.



182 ConclusionsClearly there is signi�cant work that needs to be completed. Experimentation is notonly a way to assess the methods and tools, but also a source of inspiration. Thetool is currently under testing with examples taken from tra�c control, engine control,robotics, and chemical process control, and more improvements can be made based onthe accumulated experience. Recent results seem encouraging, and we feel hopeful thatthe techniques developed in this thesis will eventually be applied to real-life problems.
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R�ESUM�E : Les syst�emes hybrides sont des syst�emes qui combinent des dynamiques dis-cr�etes et continues. Cette th�ese propose des techniques algorithmiques de v�eri�cation et desynth�ese pour ces syst�emes. Le manque de m�ethodes pour calculer les ensembles atteignablespar des dynamiques continues est l'obstacle principal vers une m�ethodologie algorithmiquede v�eri�cation. Nous d�eveloppons deux techniques d'atteignabilit�e approximatives pour lessyst�emes continus bas�ees sur une m�ethode e�cace pour repr�esenter des ensembles et une com-binaison des techniques de la simulation, de la g�eom�etrie algorithmique, de l'optimisation etde la commande optimale. La premi�ere technique est sp�ecialis�ee pour les syst�emes lin�eaireset �etendue aux syst�emes avec entr�ee incertaine. La seconde peut être appliqu�ee aux syst�emesnon-lin�eaires. En appliquant ces techniques nous d�eveloppons un algorithme de v�eri�cationdes propri�et�es de sûret�e pour des syst�emes hybrides avec des dynamiques continues et dis-cr�etes g�en�erales. Nous �etudions ensuite le probl�eme de la synth�ese de contrôleurs de sûret�epour les syst�emes hybrides. Nous pr�esentons un algorithme de synth�ese des contrôleurspar commutation bas�e sur le calcul de l'ensemble d'invariance maximal et les techniquesd'analyse d'atteignabilit�e. Nous d�ecrivons l'outil d/dt qui permets la v�eri�cation et la syn-th�ese automatique pour les syst�emes hybrides avec des inclusions di��erentielles lin�eaires.Nous avons appliqu�e avec succ�es l'outil pour analyser quelques syst�emes pratiques.
ABSTRACT: This thesis proposes a practical framework for the veri�cation and synthesisof hybrid systems, that is, systems combining continuous and discrete dynamics. The lack ofmethods for computing reachable sets of continuous dynamics has been the main obstacle to-wards an algorithmic veri�cation methodology for hybrid systems. We develop two e�ectiveapproximate reachability techniques for continuous systems based on an e�cient represen-tation of sets and a combination of techniques from simulation, computational geometry,optimization, and optimal control. One is specialized for linear systems and extended tosystems with uncertain input, and the other can be applied for non-linear systems. Usingthese reachability techniques we develop a safety veri�cation algorithm which can work for abroad class of hybrid systems with arbitrary continuous dynamics and rather general switch-ing behavior. We next study the problem of synthesizing switching controllers for hybridsystems with respect to a safety property. We present an e�ective synthesis algorithm basedon the calculation of the maximal invariant set and the approximate reachability techniques.Finally, we describe the tool d/dt which provides automatic safety veri�cation and controllersynthesis for hybrid systems with linear di�erential inclusions. Besides numerous academicexamples, we have successfully applied the tool to verify some practical systems.Keywords: Hybrid automata, di�erential equations, reachability analysis, formal veri�ca-tion, controller synthesis.
MOTS-CL�ES : Automates hybrides, �equations di��erentielles, analyse d'atteignabilit�e, v�eri-�cation formelle, synth�ese de contrôleurs.
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