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Abstract

Predicate abstraction has emerged to be a powerful technique for extracting finite-
state models from infinite-state systems, and has been recently shown to enhance the
effectiveness of the reachability computation techniques for hybrid systems. Given
a hybrid system with linear dynamics and a set of linear predicates, the verifier
performs an on-the-fly search of the finite discrete quotient whose states correspond
to the truth assignments to the input predicates. The success of this approach
depends on the choice of the predicates used for abstraction. In this paper, we
focus on identifying these predicates automatically by analyzing spurious counter-
examples generated by the search in the abstract state-space. We present the basic
techniques for discovering new predicates that will rule out closely related spurious
counter-examples, optimizations of these techniques, implementation of these in the
verification tool, and case studies demonstrating the promise of the approach.

1 Introduction

Inspired by the success of model checking in hardware verification and protocol analysis
[17,27], there has been increasing research on developing tools for automated verification of
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hybrid (mixed discrete-continuous) models of embedded controllers [1,7,9,13,21,25,32]. Model
checking requires the computation of the set of reachable states of a model, and in presence
of continuous dynamics, this is typically undecidable. Consequently, contemporary tools
for model checking of hybrid systems, such as CheckMate[13] and d/dt[9], approximate
the set of reachable states by polyhedra. We have recently shown that effectiveness of the
reachability computation for hybrid systems can be enhanced using predicate abstraction
[3]. Predicate abstraction is a powerful technique for extracting finite-state models from
complex, potentially infinite-state, discrete systems (see, for instance, [19,33]), and tools
such as Bandera [18], SLAM [10], and Feaver [28] have used it for analysis of C or Java
programs. The input to our verification tool consists of the concrete system modeled by a
hybrid automaton, the safety property to be verified, and a finite set of predicates over system
variables to be used for abstraction. For the sake of efficiency, we require that all invariants,
guards, and discrete updates of the hybrid automaton are specified by linear expressions, the
continuous dynamics is linear, possibly with bounded input, and the property as well as the
abstraction predicates are linear. An abstract state is a valid combination of truth values to
the predicates, and thus, corresponds to a polyhedral set of the concrete state-space. The
verifier performs an on-the-fly search of the abstract system by symbolic manipulation of
polyhedra.

The core of the verifier is the computation of the transitions between abstract states that
capture both discrete and continuous dynamics of the original system. Computing discrete
successors is relatively straightforward, and involves computing weakest preconditions, and
checking non-emptiness of intersection of polyhedral sets. For computing continuous succes-
sors of an abstract state A, we use a strategy inspired by the techniques used in CheckMate
and d/dt. However, while tools such as d/dt are designed to compute a “good” approxima-
tion of the continuous successors of A, we are interested in checking if this set intersects with
a new abstract state permitting many optimizations. Postulating the verification problem
for hybrid systems as a search problem in the abstract system has many benefits compared
to the traditional approach of computing approximations of reachable sets, and our experi-
ments indicate significant improvements in time and space requirements compared to a tool
such as d/dt.

The success of our scheme crucially depends on the choice of the predicates used for ab-
straction. In this paper, we focus on identifying such predicates automatically by analyzing
spurious counter-examples generated by the search in the abstract state-space. Counter-
example guided refinement of abstractions has been used in multiple contexts before, for
instance, to identify the relevant timing constraints in verification of timed automata [8],
to identify the relevant boolean predicates in verification of C programs [10], and to iden-
tify the relevant variables in symbolic model checking [16]. We present the basic techniques
for analyzing counter-examples, techniques for discovering new predicates that will rule out
spurious counter-examples, optimizations of these techniques, implementation of these in
our verifier, and case studies demonstrating the promise of the approach. Counter-example
guided abstraction refinement (CEGAR) for hybrid systems is being independently explored
by the hybrid systems group at CMU [14].
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The abstract counter-example consists of a sequence of abstract states leading from an initial
state to a state violating the property. The analysis problem is to check if the corresponding
sequence can be traversed in the concrete system. We perform a forward search from the
initial abstract state following the given counter-example. The analysis relies on techniques
for polyhedral approximations of the reachable sets under continuous dynamics. We also
implemented a local test that checks for feasibility of pairwise transitions, and this proves
to be effective in many cases. If the counter-example is found to be infeasible, then we wish
to identify new predicates that would rule out this sequence in the refined abstract space.
This reduces to the problem of finding predicates that separate two sets of polyhedra. We
present a greedy strategy for identifying such predicates. After discovering new predicates,
we include these to the set of predicates used before, and rerun the search in the refined
abstract state-space. We demonstrate the feasibility using three case studies. The first one
involves the analysis of a thermostat model, which we also use as running example throughout
this paper. The second one involves verification of a parametric version of Fischer’s protocol
for timing-based mutual exclusion, and the third analyzes a model of an adaptive cruise
controller. In each of these cases, we show how counter-example analysis can be effective in
discovering the predicates that are needed for establishing safety.

2 Predicate Abstraction for Linear Hybrid Systems

In this section, we briefly recap the definitions of predicate abstraction for linear hybrid
systems and the search strategy in the abstract space as outlined in [3]. The class of linear
hybrid systems is formally introduced, which are hybrid systems, where the continuous dy-
namics are linear with uncertain, bounded input and all guards, invariants and reset actions
are linear. Note that this class of hybrid systems is more general than the so-called linear
hybrid automata [26]. It should also be noted that the theory of abstraction and counter-
example analysis developed in this paper can be applied to more general classes. The focus
on linear hybrid systems here is purely due to implementation considerations.

2.1 Mathematical Model

We denote the set of all n-dimensional linear expressions l : Rn → R with Σn and the
set of all n-dimensional linear predicates π : Rn → B, where B := {0, 1}, with Ln. A
linear expression is of the form l(x) :=

∑n
i=1 aixi + an+1, and a linear predicate is of the

form π(x) :=
∑n

i=1 aixi + an+1 ∼ 0, where ∼∈ {≥, >} and ∀i ∈ {1, . . . , n + 1} : ai ∈ R.
Additionally, the set of finite sets of n-dimensional linear predicates is denoted by Cn, where
an element of Cn represents the conjunction of its elements.

Definition 1 (Linear Hybrid Systems) An n-dimensional linear hybrid system (LHS)
is a tuple H = (X , L, X0, I, f, T ) with the following components:
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• X ⊂ Rn is a convex polyhedron representing the continuous state-space.
• L is a finite set of locations. The state-space of H is X = L× X . Each state has the

form (l, x), where l ∈ L is the discrete part of the state, and x ∈ X is the continuous part.
• X0 ⊆ X is the set of initial states. It is assumed that for all locations l ∈ L, the set
{x ∈ X | (l, x) ∈ X0} is a convex polyhedron.

• I : L → Cn assigns to each location l ∈ L a finite set of linear predicates I(l) defining
the invariant conditions that constrain the value of the continuous part of the state while
the discrete location is l. The linear hybrid system can only stay in location l as long as
the continuous part of the state x satisfies I(l), i.e. ∀π ∈ I(l) : π(x) = 1. The notation
Il is used for the invariant set of location l, that is the set of all points x satisfying all
predicates in I(l). In other words, Il := {x ∈ X | ∀π ∈ I(l) : π(x) = 1}.

• f : L → (X × Rm → Rn) assigns to each location l ∈ L a continuous vector field f(l)
on the continuous state x ∈ X given an input u ∈ Rm. While at location l the evolution
of the continuous variable is governed by the differential equation ẋ = f(l)(x, u). The
continuous dynamics is restricted to hybrid systems with linear continuous dynamics and
uncertain, bounded input, that is, for every location l ∈ L, the vector field f(l) is linear,
i.e. f(l)(x, u) = Alx + Blu where Al is an n× n matrix, Bl is an n×m matrix, and the
input u ∈ U where U consists of piecewise continuous functions of the form u : T → U
such that U ⊂ Rm is a bounded convex set. It is assumed that the function f(l) is globally
Lipschitz in x and continuous in u. This assumption guarantees existence and uniqueness
of the solution of the differential equation.

• T ⊆ L × L × Cn × (Σn)n is a relation capturing discrete transition jumps between two
discrete locations. A transition (l, l′, g, r) ∈ T consists of an initial location l, a destination
location l′, a set of guard constraints g and a linear reset mapping r. From a state (l, x)
where all predicates in g are satisfied the linear hybrid system can jump to location l′

at which the continuous state x is reset to a new value r(x). The notation Gt ⊆ Il is
used to represent the guard set of a transition t = (l, l′, g, r) ∈ T which is the set of
points satisfying all linear predicates of g and the invariant of the location l, that is,
Gt := {x ∈ Il | ∀π ∈ g : π(x) = 1}.

The simple thermostat model of figure 1 is a linear hybrid system according to this definition.
All the guards and invariants of the system are linear predicates, the resets are linear,
and the continuous dynamics also follow the aforementioned constraints of linearity. The
thermostat model consists of three locations, that is L = {Heat, Cool, Check}. It contains
two continuous variables, namely a clock t ∈ R≥0 and a temperature T ∈ R≥0. In this
particular example the continuous state-space can be limited such that both the clock t and
the temperature T are within the interval [0, 100] without loss of accuracy of the analysis.
The continuous state thus is (t, T ) ∈ X = [0, 100]2.

A state is denoted with (Heat, (2, 8)) representing t = 2 ∧ T = 8 while in location Heat.
The continuous dynamics of the clock t is ṫ = 1 in all locations. The thermostat is switched
on in the Heat location, so that the temperature increases by Ṫ = 2. The invariant in
the Heat location is T ≤ 10 ∧ t ≤ 3, that is, IHeat = {(t, T ) ∈ [0, 100]2 |T ≤ 10 ∧ t ≤ 3}.
The thermostat system, therefore, cannot remain in the Heat location when the temperature
exceeds ten or the clock exceeds three time-units. The control can switch to the Cool location,
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Ṫ = −T
ṫ = 1

T ≥ 5

Cool

Ṫ = 2
ṫ = 1

T ≤ 10 ∧ t ≤ 3

Heat

Ṫ = −T/2
ṫ = 1

t ≤ 1

Check
t ≥ 0.5 →

t := 0

t ≥ 2 →
t := 0

T ≥ 9

t := 0
T ≤ 6 →

Fig. 1. A simple hybrid system model of a thermostat

which models that the thermostat is switched off, when the guard T ≥ 9 is enabled. The guard
set G of this transition therefore is G = {(t, T ) ∈ [0, 100]2 | t ≤ 3∧ 9 ≤ T ≤ 10}. This means,
the switch from the Heat location to the Cool location can happen non-deterministically
at any time when the temperature T is in the interval [9, 10]. The control remains in the
Cool location, until the temperature is in the interval [5, 6], when it switches back to the
Heat location. This transition has a reset, which resets the clock t := 0. The third location,
Check, models a self-checking mode of the thermostat controller. The invariant in the Check

location guarantees that the control will return to the Heat location after at most one time-
unit. During this time, the temperature drops, but this happens slower than in the Cool

location. It is assumed that initially the thermostat is in its Heat location with t = 0 and
5 ≤ T ≤ 10. This example is used throughout this paper for illustrative purposes.

2.2 Transition System Semantics and Verification Problem

The semantics of a linear hybrid system can be formalized by describing its underlying
transition system. We first define the notion of transition systems and traces used throughout
this paper.

Definition 2 (Transition Systems) A transition system is a quadruple TS = (Q, Q0, Σ, δ)
with the following components:

• Q is a (possibly infinite) set of states;
• Q0 ⊆ Q is a (possibly infinite) set of initial states;
• Σ is a (possibly infinite) set of labels; and
• δ ⊆ Q× Σ×Q is a (possible infinite) relation capturing transitions.

A trace of a transition system TS = (Q,Q0, Σ, δ) is a sequence σ : N → Q, such that

σ(0) ∈ Q0, and ∀k ≥ 0∃t ∈ Σ : (σ(k), t, σ(k + 1)) ∈ δ. The notations q
t→ q′ and q →t q′ are

often used instead of (q, t, q′) ∈ δ.

The semantics of a linear hybrid system can now be formalized assuming an admissible
set U of input functions µ : T → U . The flow of the system ẋ(t) = Alx(t) + Blµ(t) in
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location l ∈ L can then be denoted by Φl(x, t, µ) for an input function µ ∈ U with initial
condition Φl(x, 0, µ) = x. The underlying transition system of a hybrid system H is TH =
(X,X ′

0, T∪T , δ) with X ′
0 := {(l, x) ∈ X0 |x ∈ Il}. For notational convenience, a transition

relation →⊆ X ×X between states of the transition system is defined as the union of two
relations →C ,→D⊆ X ×X. The relation →C describes transitions due to continuous flows,
whereas →D describes the transitions due to discrete jumps.

(l, x) →C (l, y) : ⇐⇒ ∃t ∈ T , µ ∈ U : Φl(x, t, µ) = y ∧ ∀t′ ∈ [0, t] : Φl(x, t′, µ) ∈ Il.

(l, x) →D (l′, y) : ⇐⇒ ∃(l, l′, g, r) ∈ T : x ∈ Gt ∧ y = r(x) ∧ y ∈ Il′ .

Some basic reachability notation is introduced next. The set of continuous successors of a
set of states (l, P ) where l ∈ L and P ⊆ X , denoted by PostC(l, P ), and the continuous
successors of a set of states S ⊆ X denoted by PostC(S) can be defined as: PostC(l, P ) :=
{(l, y) ∈ X | ∃x ∈ P : (l, x) →C (l, y)}; and PostC(S) := {(l, y) ∈ X | ∃(l, x) ∈ S : (l, x) →C

(l, y)}. Similarly, the set of discrete successors of (l, P ) and S, denoted by PostD(l, P ) and
PostD(S) respectively, can be defined as: PostD(l, P ) := {(l′, y) ∈ X | ∃x ∈ P : (l, x) →D

(l′, y)}; and PostD(S) := {(l′, y) ∈ X | ∃(l, x) ∈ S : (l, x) →D (l′, y)}. For the thermostat
example (see figure 1), and a set S with

S = {(Heat, (t, T )) ∈ X | 1.5 ≤ t ≤ 2.5 ∧ 8.5 ≤ T ≤ 9.5},
it can thus be computed that

PostD(S) = {(Cool, (t, T )) ∈ X | 1.5 ≤ t ≤ 2.5 ∧ 9 ≤ T ≤ 9.5} ∪
{(Check, (t, T )) ∈ X | t = 0 ∧ 8.5 ≤ T ≤ 9.5} and

PostC(S) =





(Heat, (t, T )) ∈ X | 1.5 ≤ t ≤ 3 ∧ 8.5 ≤ T ≤ 10∧
2(t− 2.5) + 8.5 ≤ T ≤ 2(t− 1.5) + 9.5





.

Safety properties of systems are usually specified by partitioning the set of all states into
safe and unsafe states. A system satisfies the safety properties if an unsafe state cannot be
reached. We proceed to formalize this notion for linear hybrid systems. A property can be
specified by a set of unsafe locations Lu ⊆ L and a convex set B ⊆ X of unsafe continuous
states. The property is said to hold for the hybrid system H iff there is no valid trace from an
initial state to some state in B while in an unsafe location. For the thermostat example, the
set of unsafe continuous states B is defined as the set of states when the temperature drops
below 4.5, that is: B = {(t, T ) ∈ [0, 100]2 |T ≤ 4.5}. The set of unsafe locations Lu is defined
as Lu = {Check}, as the invariant in location Cool provides that the system cannot reach B
in the Cool location. The Heat location is also not included in Lu, as the dynamics provide
that B will not be reached while in the Heat location unless the system starts initially in B.

Definition 3 (Verification problem) Given a hybrid system H = (X , L,X0, I, f, T ), the
set of reachable states Reach ⊆ X is defined as
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• Reach(0) := {(l, x) ∈ X0 | x ∈ Il};
• Reach(i+1) := PostC(Reach(i)) ∪ PostD(Reach(i))∀i ≥ 0; and
• Reach :=

⋃
i≥0 Reach

(i).

Given a set of unsafe locations Lu ⊆ L and a convex set B ⊆ X , the set of unsafe states BX

can be defined as BX := {(l, x) ∈ X | l ∈ Lu ∧ x ∈ B}. The verification problem then is:

Reach ∩ BX
?
= ∅.

In [1], it was shown that the verification problem for general hybrid systems is undecidable.
In many practical situations though, model checking of hybrid systems can be used to verify
certain properties of systems or to discover bugs in implementations.

2.3 Discrete Abstraction

In this section a discrete abstraction of a linear hybrid system H = (X , L, X0, I, f, T ) is
defined with respect to a given k-dimensional vector of n-dimensional linear predicates Π =
(π1, π2, . . . , πk) ∈ (Ln)k. The continuous state-space X ⊆ Rn can be partitioned into at most
2k states, corresponding to the 2k possible boolean truth evaluations of predicates in Π; hence,
the infinite state-space X of H is reduced to |L|2k states in the abstract system. From now
on, the hybrid system H is also referred to as the concrete system and its state-space X as
the concrete state-space.

Definition 4 (Abstract state-space) Given an n-dimensional linear hybrid system H =
(X , L, X0, f, I, T ) and a k-dimensional vector Π ∈ (Ln)k of n-dimensional linear predicates

an abstract state is defined as a tuple (l,~b), where l ∈ L and ~b ∈ Bk. The abstract state-
space for a k-dimensional vector of linear predicates therefore is QΠ := L× Bk.

Figure 2 illustrates the abstraction of the continuous state-space for the thermostat example
of figure 1. Ten predicates are used for the abstraction, namely:

Π = (t ≤ 0, t ≥ 0.5, t ≤ 1, t ≥ 2, t ≤ 3, T ≤ 4.5, T ≥ 5, T ≤ 6, T ≥ 9, T ≤ 10). (1)

For the sake of simplicity these predicates all involve only one continuous variable, that is
they correspond to hyperplanes parallel to some axis, though this is not necessary. Each box
or line on the right hand side of figure 1 corresponds to a vector ~b ∈ B10 for the predicates as
specified in equation 1. The abstract continuous state-space consists of 36 non-empty states,
which means that the size of the relevant abstract state-space QΠ is 3 · 36 = 108.

For each vector ~b ∈ Bk for a vector of linear predicates Π the set of states of the continuous
state-space that it represents can be computed given the following definition. For example,
the vector (0, 1, 0, 1, 1, 0, 1, 0, 0, 1) represents the set of predicates t > 0, t ≥ 0.5, t > 1, t ≥
2, t ≤ 3, T > 4.5, T ≥ 5, T > 6, T < 9, and T ≤ 10 given the vector of predicates Π as
specified in equation (1), which represents the continuous state-space {(t, T ) ∈ R2 | 2 ≤ t ≤
3 ∧ 6 < T < 9}.
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Fig. 2. Discrete abstraction of the continuous state-space for the thermostat model

Definition 5 (Concretization function) A concretization function CΠ for a vector
of linear predicates Π = (π1, . . . , πk) ∈ (Ln)k with CΠ : Bk → 2R

n
is defined as follows:

CΠ(~b) := {x ∈ Rn | ∀i ∈ {1, . . . , k} : πi(x) = bi}. A vector ~b ∈ Bk is said to be consistent

with respect to a vector of linear predicates Π ∈ (Ln)k, iff CΠ(~b) 6= ∅. An abstract state

(l,~b) ∈ QΠ is said to be consistent with respect to a vector of linear predicates Π, iff ~b is
consistent with respect to Π.

As mentioned before, the set of abstract states has at most size |L|2k for k linear predicates.
However, the set of consistent abstract states is actually much smaller due to the fact that
many predicates are redundant, that is they may be parallel, or do not cross inside the
relevant continuous state-space X . Figure 2 provides such an example. The abstract state-
space consists only of 108 consistent abstract states, although there are 3·210 = 3072 possible
abstract states.

The implementation of the verification tool is based on the fact that abstract states in
the continuous state-space form a convex partition of the continuous state-space, which is
formulated in the following lemma, and can be proven easily.

Lemma 1 Given a set of linear predicates Π ∈ (Ln)k and a convex polyhedron X , then for

any ~b ∈ Bk CΠ(~b) and CΠ(~b) ∩ X represent convex polyhedra.

The following definition formalizes the discrete transition system of a hybrid system using
predicate abstraction.

Definition 6 (Discrete Abstraction) An abstract system given a linear hybrid system
H = (X , L, X0, f, I, T ) with respect to a vector of linear predicates Π is defined as the tran-
sition system HΠ = (Q,Q0, ΣT , δ) where

• the state-space of HΠ is Q = QΠ;
• the set of initial states are those abstract states that overlap with concrete initial abstract

states and the relevant invariant: Q0 = {(l,~b) ∈ QΠ | ∃x ∈ CΠ(~b) ∩ Il : (l, x) ∈ X0};
• the set of labels of the transition system ΣT is the union of the transition function T
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denoting transitions due to discrete switches and the symbol C denoting transitions due to
continuous flow, i.e. ΣT = T∪{C}; and

• the transition relation δ ⊆ QΠ×ΣT ×QΠ between states of the transition system includes
both transitions due to discrete switches and due to continuous flow. It thus can be defined
using the following two cases:

(l,~b)
Π→C (l, ~b′) : ⇐⇒ ∃t ∈ T , µ ∈ U , x ∈ CΠ(~b) : Φl(x, t, µ) ∈ CΠ(~b′) ∧

∀t′ ∈ [0, t] : Φl(x, t′, µ) ∈ I(l).

(l,~b)
Π→t (l′, ~b′) : ⇐⇒ t = (l, l′, g, r) ∈ T ∧ ∃x ∈ CΠ(~b) : x ∈ g ∧

r(x) ∈ CΠ(~b′) ∧ r(x) ∈ I(l′).

For notational convenience, the abstract transition relation
Π→⊆ QΠ × QΠ is defined as

the union of the following two relations
Π→D,

Π→C⊆ QΠ × QΠ. The relation
Π→D represents

transitions in the abstract state-space due to discrete jumps:

(l,~b)
Π→D (l′, ~b′) : ⇐⇒ ∃t = (l, l′, g, r) ∈ T, x ∈ CΠ(~b) ∩ Gt : r(x) ∈ CΠ(~b′) ∩ Il′ .

The successors of an abstract state (l,~b) ∈ QΠ and a set of abstract states S ⊆ QΠ by discrete

jumps and by continuous flows, denoted respectively by PostΠ
D(l,~b), PostΠ

D(S), PostΠ
C(l,~b),

and PostΠ
C(S) can be defined as:

PostΠ
D(l,~b) := {(l′, ~b′) ∈ QΠ | (l,~b) Π→D (l′, ~b′)},

PostΠ
D(S) := {(l′, ~b′) ∈ QΠ | ∃(l,~b) ∈ S : (l,~b)

Π→D (l′, ~b′)},
PostΠ

C(l,~b) := {(l, ~b′) ∈ QΠ | (l,~b) Π→C (l, ~b′)}, and

PostΠ
C(S) := {(l, ~b′) ∈ QΠ | ∃(l,~b) ∈ S : (l,~b)

Π→C (l, ~b′)}.

Consider the abstract state 1 < t < 2∧9 ≤ T ≤ 10 in location Heat for the thermostat model
of figure 1, which is represented by the abstract state (l,~b) = (Heat, (0, 1, 0, 0, 1, 0, 1, 0, 1, 1))

given Π as specified in equation (1). In this case, the following holds: PostΠ
D(l,~b) = {(Cool,~b)},

and PostΠ
C(l,~b) = {(l,~b), (l, (0, 1, 0, 1, 1, 0, 1, 0, 1, 1))}, where (0, 1, 0, 1, 1, 0, 1, 0, 1, 1) repre-

sents 2 ≤ t ≤ 3 ∧ 9 ≤ T ≤ 10. The verification problem in the abstract state-space can then
be stated as described in the following definition:

Definition 7 (Abstract verification problem) Given a linear hybrid system H =
(X , L, X0, I, f, T ) and a vector of linear predicates Π, the set of reachable abstract states
ReachΠ is defined as:

• Reach
(0)
Π := Q0;

• Reach
(i+1)
Π := PostΠ

D(Reach
(i)
Π ) ∪ PostΠ

C(Reach
(i)
Π )∀i ≥ 0; and

• ReachΠ :=
⋃

i≥0 Reach
(i)
Π .
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Given a set of unsafe locations Lu ⊆ L and a convex set B ⊆ X , the set BΠ is defined as

BΠ := {(l,~b) ∈ QΠ | l ∈ Lu ∧CΠ(~b)∩B 6= ∅}. The verification problem is: ReachΠ ∩BΠ
?
= ∅.

It can be proven that predicate abstraction of linear hybrid systems computes an over-
approximation of the set of reachable states of the concrete system. This is formalized in the
following lemma which is proven in [30]:

Lemma 2 Given a linear hybrid system H = (X , L, X0, I, f, T ) and a vector of linear pred-

icates Π, the following holds: Reach ⊆ {(l, x) ∈ X | ∃(l,~b) ∈ ReachΠ : x ∈ CΠ(~b) ∩ Il}.

2.4 Searching the Abstract State-Space

We implemented an on-the-fly search of the abstract state-space. The search in the abstract
state-space can be performed in a variety of ways. Our goal is to make the discovery of
counter-examples in the abstract state-space given a reachability property as fast as possible.
In the case that the property is true we need to search the entire reachable abstract sub-space.
We perform a DFS, which usually does not find a shortest counter-example possible. On the
other hand, it only stores the current trace of abstract states from an initial abstract state
on a stack. In case we find an abstract state that violates the property, the stack contents
represent the counter-example. This is generally much more memory efficient than BFS.

We give a priority to computing discrete successors rather than continuous successors, as
this is generally much faster. Computing discrete successors is relatively straightforward,
and involves computing weakest preconditions, and checking non-emptiness of intersection
of polyhedral sets. For computing continuous successors of an abstract state A, we compute
the polyhedral slices of states reachable at fixed times r, 2r, 3r, . . . for a suitably chosen r,
and then, compute the convex-hull of all these polyhedra to over-approximate the set of all
states reachable from A. We are only interested in checking if this set intersects with a new
abstract state. This approach has many benefits compared to the traditional approach of
computing approximations of reachable sets, one of them being the fact that the expensive
operation of computing continuous successors is applied only to abstract states, and not to
intermediate polyhedra of unpredictable shapes and complexities. In [4] we proved soundness
of our search algorithm:

Theorem 1 If the search algorithm terminates and reports that the abstract system is safe,
then the corresponding concrete system is also safe.

We include various optimization techniques in the search strategy. In the following, we de-
scribe one optimization that is being exploited during the counter-example analysis. For each
concrete counter-example in the concrete hybrid system, there exists an equivalent counter-
example that has the additional constraint that there are no two consecutive transitions due
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to continuous flow. This is due to the additivity of flows of hybrid systems, namely

(l, x) →C (l, x′) ∧ (l, x′) →C (l, x′′) ⇒ (l, x) →C (l, x′′).

We are hence searching only for counter-examples in the abstract system that do not have
two consecutive transitions due to continuous flow. By enforcing this additional constraint
we eliminate some spurious counter-examples that could have been found otherwise in the
abstract transition system. The spurious counter-examples that are eliminated are due to

the fact that (l,~b)
Π→C (l, ~b′) and (l, ~b′) Π→C (l, ~b′′) does not imply that (l,~b)

Π→C (l, ~b′′). Hence,

we are in fact not computing the whole relation
Π→C as it was defined above, but only a part

of it without compromising the conservativeness of our approach. As shown in [4], the ten
predicates specified in equation (1) can be used to prove safety of the thermostat controller.
The search discovers 35 reachable abstract states. For the sake of brevity we omit the details
of the reachability analysis and various other optimization techniques in this paper. A more
detailed description can be found in [6].

3 Counter-Example Analysis

The success of the predicate abstraction scheme as outlined in the previous section crucially
depends on the choice of the predicates used for abstraction. This and the following section
describe methods to identify such predicates automatically by analyzing spurious counter-
examples generated by the search in the abstract state-space. Counter-example guided re-
finement of abstractions has been used in multiple contexts before, for instance, to identify
the relevant timing constraints in verification of timed automata [8], to identify the rel-
evant boolean predicates in verification of C programs [10], and to identify the relevant
variables in symbolic model checking [16]. In the following the basic techniques for analyzing
counter-examples and techniques for discovering new predicates that will rule out spurious
counter-examples are presented.

3.1 Forward Analysis

An abstract counter-example consists of a sequence of abstract states and transitions leading
from an initial state to a state violating the property. The analysis problem, then, is to
check if the corresponding sequence of locations and continuous states can be traversed in
the concrete system. This analysis problem is solved by a forward search from the initial
abstract state following the given counter-example in the abstract state-space. The analysis
relies on techniques for polyhedral approximations of the reachable sets under continuous
dynamics. We first define the notion of abstract paths.

Definition 8 (Abstract path) An abstract path p of length n ≥ 0 in the abstract state-
space given by the vector of predicates Π is a pair (~a,~t) ∈ (QΠ)n+1 × (ΣT )n, such that:

11



Check, 0 ≤ t < 0.5, 6 < T < 9

Check, 0.5 ≤ t ≤ 1, T ≤ 4.5

Heat, 0 ≤ t < 0.5, 5 ≤ T ≤ 6

Heat, 2 ≤ t ≤ 3, 6 < T < 9

Fig. 3. An abstract path for the thermostat model of figure 1 using only those predicates mentioned
in the model description

~a = (a0, . . . , an) and ~t = (t0, . . . , tn−1) with ti ∈ ΣT , a0 = (l0, ~b0) ∈ Q0, and ∀0 ≤ i ≤
n− 1 : ai

Π→ti ai+1. The set of abstract paths of length n given by the vector of predicates Π
is denoted by PΠ

n .

Consider figure 3 which illustrates an abstract path of length 3 for the thermostat example of
figure 1 in the abstract state-space defined by the predicates mentioned in the model. That
is, the abstract state-space is partitioned according to all predicates mentioned in equation
(1) except t ≤ 0. The abstract path in figure 3 contains three transitions, two of which are
due to continuous flow and graphically represented by a dashed edge, and one transition due
to a discrete switch drawn by a solid edge.

Given a linear hybrid system H, a set of unsafe locations Lu and a set of unsafe continuous
states B ⊆ X , it can now be formally defined what a counter-example in the abstract state-
space is.

Definition 9 (Counter-example) A counter-example of length n is an abstract path p =

(~a,~t) = ((a0, . . . , an), (t0 , . . . , tn−1)) of length n, such that an = (ln, ~bn) is a violation of the

property to be proven; that is, ln ∈ Lu ∧ CΠ(~bn) ∩ B 6= ∅. The sequence of abstract states
~a = (a0, . . . , an) of a counter-example p = (~a,~t) is called an unlabeled counter-example.

Consider again the abstract path in figure 3. As the path ends in an abstract state with a
continuous state-space T ≤ 4.5, which is unsafe, while in the unsafe location Check ∈ Lu,
this path is therefore a counter-example in the abstract state-space defined by the predicates
mentioned in the model. However, as mentioned earlier, the thermostat model is safe. The
compressed set of predicates considered here is not enough though to prove the thermostat
model safe. As the thermostat system is safe, it is clear that this counter-example has to be
spurious, which will be shown subsequently.

12



The counter-example analysis problem is twofold. The first objective is to check whether a
counter-example in the abstract state-space corresponds to a counter-example in the concrete
state-space. In case that this analysis finds that this particular counter-example cannot be
traversed in the concrete system, the analysis procedure should identify one or more new
predicates that would rule out closely related counter-examples in the refined abstract state-
space. The refined abstract state-space is defined by adding these predicates to the previous
set of predicates used in the abstract state-space search. We would like some guarantee
of convergence that the same counter-example is not discovered repeatedly. The notion of
refinement between abstract paths is defined to formalize the concept of closely related
abstract paths. First, the notion of refinement is defined for vectors of predicates.

Definition 10 (Refinement of a vector of predicates) A vector of predicates Π′ =
(π′1, . . . , π

′
k′) ∈ (Ln)k′ refines another vector of predicates Π = (π1, . . . , πk) ∈ (Ln)k, iff

∀1 ≤ i ≤ k ∃j ∈ {1, . . . , k′} : πi = π′j.

From now on, when the thermostat model is used for illustrative purposes in this paper two
vectors of predicates will be considered. The vector of predicates as defined in equation (1)
is denoted by Π, whereas Π̂ denotes only those predicates that are mentioned in the model
of the thermostat example in figure 1 itself. Therefore, Π̂ contains all predicates in Π except
for t ≤ 0. Thus, Π is a refinement of Π̂ according to the above definition. Next, the notion
of refinement is defined for abstract states. An abstract state is considered a refinement of
another abstract state, if the two have the same locations, and the concretization of the
former is covered by the latter.

Definition 11 (Refinement of abstract states) An abstract state a′ = (l′, ~b′) ∈ QΠ′ for

the vector of predicates Π′ refines another abstract state a = (l,~b) ∈ QΠ for the vector of

predicates Π, iff l = l′ and CΠ′(~b′) ⊆ CΠ(~b).

The abstract state t = 0∧5 ≤ T ≤ 6 in the location Heat location for the vector of predicates
Π is a refinement of 0 ≤ t < 0.5∧5 ≤ T ≤ 6 in the same location for the vector of predicates
Π̂. The previous two definitions of refinement are now combined to define refinements of
abstract paths. It is required that each abstract state on the path is refined while following
the same transitions. Formally, it is defined as follows:

Definition 12 (Refinement of abstract paths) An abstract path p′ = (~a′, ~t′) =
((a′0, . . . , a

′
n), (t′0, . . . , t′n−1)) ∈ PΠ′

n for a vector of predicates Π′ refines another abstract path

p = (~a,~t) = ((a0, . . . , an), (t0, . . . , tn−1)) ∈ PΠ
n for a vector of predicates Π, with ai = (li, ~bi)

and a′i = (l′i, ~b
′
i), iff Π′ refines Π, ∀0 ≤ i ≤ n : a′i refines ai, and ∀0 ≤ i ≤ n− 1 : t′i = ti.

During the counter-example analysis specialized Pre : QΠ × ΣT × QΠ → 2X and Post :
2X ×ΣT ×QΠ → 2X functions are defined that will either only consider a particular abstract
state or the concretely reachable state-space rather than the whole continuous state-space X .
The computation of these takes into consideration the concretization of the abstract state,
as well as the invariants and guards of the system. The functions Pre : QΠ×ΣT ×QΠ → 2X
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and Post : 2X × ΣT ×QΠ → 2X with a = (l,~b) and a′ = (l′, ~b′) are defined as:

Pre(a, t, a′) =





{
x ∈ CΠ(~b) ∩ Gt | r(x) ∈ CΠ(~b′) ∩ Il′

}
: t = (l, l′, g, r);





x ∈ CΠ(~b) ∩ Il | ∃τ ∈ T , µ ∈ U :

Φl(x, τ, µ) ∈ CΠ(~b′) ∩ Il∧
∀τ ′ ∈ [0, τ ] : Φl(x, τ ′, µ) ∈ Il





: t = C.

Post(X, t, a′) =





Post








x ∈ CΠ(~b′) ∩ Il′ |
∃y ∈ Gt ∩X : x = r(y)





, C, a′


 :

t =

(l, l′, g, r);



x ∈ CΠ(~b′) ∩ Il′ | ∃τ ∈ T ,

∃y ∈ X, µ ∈ U : Φl′(y, τ, µ) = x∧
∀τ ′ ∈ [0, τ ] : Φl′(y, τ ′, µ) ∈ Il′





: t = C.

The counter-example analysis algorithm is presented in Algorithm 1. The set R0 is the part
of the initial state-space X0 that is covered by the abstract state (l, ~b0). Then, the concretely
reachable state-space of each abstract state of the counter-example of length n in the abstract
state-space is computed. This process is illustrated in figure 4. For each 1 ≤ i ≤ n the analysis
computes Ri as the reachable region after i transitions according to the counter-example. It
is hence clear that if Ri = ∅ for some i then the counter-example is spurious. The shaded
sub-spaces in figure 4 represent the concretely reachable regions Ri.

Algorithm 1 Analyzing a counter-example p ∈ PΠ
n

R0 = CΠ(~b0) ∩ {x ∈ Il0|(l0, x) ∈ X0}
for 1 ≤ i ≤ n do

Ri = Post(Ri−1, ti−1, ai)
if Ri = ∅ then

return “Counter-example is spurious!”
end if

end for
return “Counter-example is concrete!”

Following algorithm 1 for the counter-example in figure 3 for the thermostat model of figure
1, the concretely reachable sub-spaces of the abstract states following this particular counter-

example are computed. The first abstract state a0 = (l0, ~b0) in the counter-example represents
the continuous state-space 0 ≤ t < 0.5 ∧ 5 ≤ T ≤ 6 while in location Heat. Given the
constraints on the initial sets however, only t = 0 ∧ 5 ≤ T ≤ 6 are concretely possible in
a0. Thus, the following holds: R0 = {(Heat, (0, T )) ∈ X | 5 ≤ T ≤ 6}. Consider now the
continuous transition that leads from a0 to a1, which is 2 ≤ t ≤ 3 ∧ 6 < T < 9 in the
continuous state-space while in location Heat. It is thus evident that a1 cannot be reached
from R0, that is R1 = ∅. This proves that the counter-example of figure 3 is indeed spurious.
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a0 = (l0, ~b0) a1 = (l1, ~b1) a2 = (l2, ~b2) a3 = (l3, ~b3)
Π→C

Π→D
Π→C

Fig. 4. A counter-example of length 3. For each abstract state ai = (li, ~bi) the concrete continuous
state-space CΠ(~bi) that it represents is illustrated.

In case that the analysis finds that the counter-example is spurious, the counter-example is
then used to find new predicates. These new predicates should be added to the current set of
predicates used in the predicate abstraction model checker, in order to disallow closely related
counter-examples to reappear. Consider a counter-example p ∈ PΠ

n , such that Rk+1 = ∅ and
Rk 6= ∅ for 0 ≤ k < n. The transition tk of the counter-example p is called the failing
transition. Then the following lemma can be proven (see [30]):

Lemma 3 Given a counter-example p = (~a,~t) = ((a0, . . . , an), (t0, . . . , tn−1)) ∈ PΠ
n where tk

is the failing transition, the following holds: Rk ∩ Pre(ak, tk, ak+1) = ∅.

New predicates are supposed to be added to the vector Π, so that the refined vector Π′ does
not allow a refined (unlabeled) counter-example of p to reappear. Consider a strategy that
adds predicates to the set Π that correspond to a separation of Rk from Pre(ak, tk, ak+1) for
the failing transition tk. This means that the analysis is looking for a refined set of predicates
Π′ of Π, such that every refined abstract state intersects at most with one of the two sets
Rk and Pre(ak, tk, ak+1). A notion of separation is defined in terms of polyhedral sets, since
the set of reachable states is approximated by polyhedral slices in the implementation of the
tool. It should be noted here that under-approximations of the reachable sets of states are
used during the analysis of counter-examples while over-approximations of the reachable sets
of states are used during the search in the abstract state-space.

Definition 13 (Separating predicates) Assume that P = {P1, . . . , Pn} and Q =
{Q1, . . . , Qm} denote two disjoint sets of convex polyhedra. The union of all polyhedra in
P and Q are respectively denoted by

⋃P and
⋃Q. A finite vector of linear predicates

Π = (π1, π2, . . . , πk) separates P and Q iff for all ~b ∈ Bk, at least one of the two sets

(CΠ(~b) ∩ X ∩ ⋃P) and (CΠ(~b) ∩ X ∩ ⋃Q) is empty.

The predicates in Π are called separating predicates. Note that such a vector Π always exists, 1

but it is not unique.

Theorem 2 Assume a counter-example p ∈ PΠ
n for a vector of predicates Π such that tk

is the failing transition. If Π′ refines Π and additionally contains predicates corresponding
to a separation of Rk from Pre(ak, tk, ak+1), and a refined counter-example p′ ∈ PΠ′

n of p is

1 It is easy to see that the analysis can simply take the linear constraints of all polyhedra from P or
from Q to determine Π. However, as the size of the refined abstract state-space grows exponentially
with the number of new predicates, it is advantageous to try to include as few predicates as possible.
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→ti−1 →ti
ai = (li, ~bi) ai+1 = (li+1, ~bi+1)ai−1 = (li−1, ~bi−1)

Post

Pre

Fig. 5. The abstract state ai is locally infeasible

found, then there exists a failing transition tj in p′, such that j < k.

As a single counter-example p is of finite length, the above theorem guarantees that after
a finite number of iterations, a refinement of p will not be possible anymore. The proof is
omitted for the sake of brevity and can be found in [30].

3.2 Locally Infeasible Abstract States

This section presents a second counter-example analysis algorithm. The purpose of this
algorithm is to check a counter-example quickly for a common cause of spurious counter-
examples. It is also shown that this analysis produces new predicates with stronger implica-
tions for subsequent searches in the refined abstract state-space.

Definition 14 For a path p = (~a,~t) ∈ PΠ
n+1 given the vector of predicates Π, with ~a =

(a0, . . . , an+1) = ((l0, ~b0), . . . , (ln+1, ~bn+1)) and ~t = (t0, . . . , tn), an abstract state ai for 1 ≤
i ≤ n is called locally infeasible, iff Post(CΠ( ~bi−1) ∩ X , ti−1, ai) ∩ Pre(ai, ti, ai+1) = ∅.

The definition of locally infeasible abstract states is illustrated in figure 5. The figure shows
a locally infeasible abstract state ai. Although the Pre of ai+1 and the Post of ai−1 intersect,
they do not intersect within ai. Therefore, this abstract counter-example does not correspond
to a concrete counter-example. The detection of locally infeasible abstract states can be im-
plemented in a straight-forward fashion. In addition, new predicates can easily be computed
that will disallow refined counter-examples. If a state ai is locally infeasible, then the analysis
can use the fact that the implemented optimization technique guarantees that either ti−1 or
ti is a discrete transition. If ti−1 is discrete, one reasonable choice is to use the predicates cor-
responding to the constraints of the polyhedral sets representing Post(CΠ( ~bi−1)∩X , ti−1, ai)
in the refined search. Otherwise, a possible approach is to use the predicates corresponding
to Pre(ai, ti, ai+1) in the refined search. This strategy of picking new predicates is denoted
with LocalStrategy 2 from now on.

Consider the thermostat example of figure 1 for a vector of predicates Π = (t ≤ 1, t ≤ 3, T ≥
5, T ≤ 6). A possible path in this abstract state-space is to start in the abstract state a0

with continuous state-space 0 ≤ t ≤ 1 ∧ 5 ≤ T ≤ 6 while in location Heat, then enter the

2 It is preferred to use predicates computed on the basis of discrete transitions, as these can be
computed more easily and more exactly.

16



abstract state a1 with 1 < t ≤ 3 ∧ 5 ≤ T ≤ 6 in location Heat following a transition tc due
to continuous flow, and end up in the abstract state a2 with 0 ≤ t ≤ 1 ∧ 5 ≤ T ≤ 6 in
location Check following a transition td due to a discrete switch. The following shows that
the abstract state a1 is locally infeasible:

Post(a0, tc, a1) = {(Heat, (t, T )) ∈ X | 1 < t ≤ 1.5, 5 ≤ T ≤ 6, T ≥ 2(t− 1) + 5};
Pre(a1, td, a2) = {(Heat, (t, T )) ∈ X | 2 ≤ t ≤ 3, 5 ≤ T ≤ 6};

thus, Post(a0, tc, a1)∩Pre(a1, td, a2) = ∅ which implies that a1 is indeed locally infeasible.
Using LocalStrategy as described above, we add the predicate t ≥ 2 to the vector of
predicates, as this is the only new predicate in Pre(a1, td, a2). This implies that the guard
condition of this transition is important for the verification of this particular safety property.

The following theorem can now be proven about using the strategy LocalStrategy in case
a locally infeasible abstract state is found. The theorem formalizes that this strategy guar-
antees that a refinement of the (unlabeled) counter-example will not be found in subsequent
searches.

Theorem 3 Assume a counter-example p ∈ PΠ
n for a vector of predicates Π, such that there

is a locally infeasible abstract state ai in p. A search in the refined abstract state-space given
by the strategy LocalStrategy to find new predicates will not find a counter-example that is
a refinement of p.

It can also be shown that a search in a refined abstract state-space for a counter-example
with a locally infeasible abstract state cannot discover a refined counter-example for a certain
class of linear hybrid systems. For this result it is required that the linear hybrid system have
at most one transition between any pair of locations. Additionally, it is required that the
hybrid system have no self-transition, that is there is no transition with the same source and
target location. A more formal description of this result can be found in [5].

4 Computing separating predicates

The previous sections describe two counter-example analysis algorithms. If the counter-
example is found to be infeasible, then the analysis should identify one or more new predicates
that would rule out this sequence in the refined abstract space. This reduces to the problem
of finding one or more predicates that separate two sets of polyhedra. This section presents
a greedy strategy for identifying the separating predicates. After discovering new predicates,
these predicates can then be added to the set of predicates used before, and the search can
then be rerun in the refined abstract state-space defined by the enriched predicate set.
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4.1 Separating two disjoint convex polyhedra

Let P and Q be two disjoint convex polyhedra. To separate them, the distance between P
and Q is defined as follows: d(P,Q) = inf{d(p, q) | p ∈ P ∧ q ∈ Q}, where d(·, ·) denotes
the Euclidean distance. Since P and Q are disjoint, d(P,Q) is positive. Let p∗ ∈ P and
q∗ ∈ Q be points that realize the distance d(P, Q), in other words, they form a pair of
closest points. Denote by s(p∗, q∗) the line segment with extreme points p∗ and q∗. The half-
space H which is normal to s(p∗, q∗) and has q∗ as a supporting point can be written as:
H = {x | 〈p∗ − q∗, x〉 ≥ 〈p∗ − q∗, q∗〉}. The complement of H is denoted by H.

Lemma 4 The polyhedron Q is contained in H and the polyhedron P is contained in H.

As a remark, lemma 4 also holds for any half-space which is normal to s(p∗, q∗) and passes
through an arbitrary point in s(p∗, q∗). Hence, any such half-space can be used to define
a separating predicate. To compute d(P, Q) as well as p∗ and q∗, there exist efficient algo-
rithms [12] which take time O(KP + KQ) where KP and KQ are the number of vertices of
P and Q. 3

4.2 Separating two disjoint sets of convex polyhedra

This section proceeds with the problem of finding a set Π of separating predicates for two
sets of convex polyhedra P1 and P2. In order to keep the size of the abstract state space as
small as possible, the analysis tries to find Π with the smallest number of predicates. Many
related polyhedral separation problems have been considered in the literature (see [22,23,34]
and references therein). However, the solutions proposed in these works are only for two and
three dimensional polyhedra. On the other hand, even in low dimensions most separation
problems were shown to be intractably hard. In three dimensions the problem of finding a
minimum facet-separator for two polyhedral solids is NP-complete [20]. Therefore, in this
work the objective is not to find an optimal solution but to develop some heuristics which
are effective on the problem of separating reachable sets of hybrid systems for abstraction
refinement purposes.

The solution is based on the following observation. Given two set of polyhedra P1 and P2, if
the convex hulls of P1 and P2 are disjoint, then one can apply the method presented in the
previous section to find a separating predicate. If the convex hulls intersect, it is clear that P1

and P2 cannot be separated by a single hyperplane. The main idea is to divide P1 and P2 into
subsets of polyhedra such that their convex hulls do not intersect allowing to find a separating
predicate. The procedure of subdivision can be performed in a hierarchical way. Initially, all
polyhedra in P1 and P2 are recursively subdivided until the convex hulls are pairwise disjoint.
Moreover, for efficiency purposes, instead of convex hulls, approximations by non-axis-aligned

3 The problem of finding a separating predicate for two disjoint polyhedra can also be formulated
as a linear programming problem and thus solved in polynomial time.
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Fig. 6. Illustrating the greedy algorithm that separates sets of polyhedra

bounding boxes are used which are easier to compute and test for overlaps (see figure 6).
The figure shows a case where subdividing based on non-axis-aligned bounding boxes the
sets P = {P1, P2, P3} and Q = {Q1, Q2, Q3} respectively into {P1, P2}, {P3} and {Q1, Q2},
{Q3} allows to find two separating predicates π1 and π2. One way of computing tight fitting
bounding boxes is to align the axes of the box in the directions along which the vertices of
the polyhedra tend to lie. From the vertices of the polyhedra the matrix of covariance can
be determined and its largest eigenvectors can be taken to define the orientation of the box.

The method for computing separating predicates is summarized in algorithm 2.H(π) denotes
the half-space defined by predicate π. Given a set P of polyhedra, chull(P) and bbox(P) are
respectively the convex hull and a non-axis-aligned bounding box of P as described above.
The set S(P , π) = {s ∈ P | s ⊆ H(π)} is the largest subset of P lying entirely inside H(π),
and Int(P , π) = {s ∩ H(π) | s ∈ P ∧ s ∩ H(π) 6= ∅} is the intersection of

⋃P with H(π).
The core of the algorithm is a procedure, called sep, which computes a separating predicate
for two disjoint polyhedra using the method presented in section 4.1. Two sets of polyhedra
P1 and P2 are said to be separable if conv{P1} ∩ conv{P2} = ∅ where conv is a convex-
approximation operation which, as stated above, can be chull or bbox. In the algorithm the
notation separable(P1,P2) indicates that P1 and P2 are separable.

As one can see from line 4, a greedy strategy is used to choose separating predicates, that is
the predicate that can separate the largest number of polyhedra is selected. An alternative
selection criterion is to maximize the volume of separable polyhedra. The goal of line 5 is to
exclude the subsets of

⋃P1 and
⋃P2 that the selected predicate πm can separate. Indeed,

if one of the sets Int(P1, πm) and Int(P2, πm) is empty, then either P1 or P2 lies entirely
outside the half-space H(πm). This means that the predicate πm can separate a part of one
set from the other, and the algorithm only needs to continue with the remaining part.

One factor that determines the number of separating predicates is the subdivision in line
2. The way the algorithm subdivides the sets P1 with view of avoiding interference of the
resulting subsets with P2 is as follows. First, it tries to split P1 into two subsets such that
one contains all the polyhedra entirely outside conv(P2). If this subset is empty, then P1 is
split with respect to a hyperplane which is perpendicular to the longest side of bbox(P1) and
passes through its centroid. Another option for the normal of the splitting hyperplane is the
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Algorithm 2 Separating(P1,P2)

1: If separable(P1,P2), compute π = sep(chull{P1}, chull{P2}) and return π.
2: Divide P1 and P2 into subsets P11, P12 and P21, P22, respectively.
3: Compute separating predicates for pairs of one set and a subset of the other:

Πt = {π = sep(chull{Pi}, chull{Pjk}) | separable(Pi,Pjk), 1 ≤ i 6= j, k ≤ 2}.

If Πt 6= ∅, go to line 4; otherwise, continue with pairs of subsets:

Πt = {π = sep(chull{P1i}, chull{P2j}) | separable(P1i,P2k), 1 ≤ i, j ≤ 2}.

If Πt = ∅, repeat the algorithm for all pairs (P1i,P2j), 1 ≤ i, j ≤ 2.
4: Pick πm ∈ Πt that maximizes |S(P1, π)|+ |S(P2,¬π)|.
5: Compute the two pairs (Int(P1, πm), Int(P2, πm)), (Int(P1,¬πm), Int(P2,¬πm)). For

each pair, if both sets are non-empty, repeat the algorithm for the pair.

line passing through the two most distant points. 4 It is not easy to know which option is
better (in terms of number of resulting predicates), and often the first one is preferred since
the splitting hyperplane is easier to compute. Finally, the following lemma can be used to
achieve better efficiency.

Lemma 5 If a set of predicates Π separates the boundaries of P1 and P2 then it separates
P1 and P2.

To prove the lemma, it is remarked that Π separates P1 and P2 iff any line segment between
a point in P1 and another point in P2 intersects with the hyperplane of at least one predicate
in Π. Hence, if Π separates the boundaries of P1 and P2, then it separates P1 and P2 since any
line segment connecting points in the interior of two disjoint sets must cross the boundaries
of both sets.

Using lemma 5, only some boundary layers of P1 and P2 can be considered instead of the
whole sets, which allows to obtain tighter convex approximations and thus requires less
splitting. To extract a boundary layer for P1 and P2, begin by triangulating the two sets.
Let B be the bounding box of P1∪P2. The subset G of B \ (

⋃P1∪⋃P2) that has a common
boundary with both P1 and P2 is called the separation space. The boundary layers P ′1 and
P ′2 are chosen as the sets of simplices in the triangulations of P1 and P2 which are adjacent
to the separation space G. Intuitively, the hyperplanes of Π form a separating surface inside
G; therefore, it suffices to use algorithm 2 to separate P ′1 and P ′2.

4 These ideas are inspired by collision detection techniques in robotics and computer graphics [29].
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4.3 The Thermostat Example

This section demonstrates the global counter-example analysis algorithm as well as the pro-
cedure to separate two disjoint sets of polyhedra using the thermostat example as described
in figure 1. For purposes of illustration, the verification is started with the predicates men-
tioned in the model Π̂; that means, we are considering all predicates mentioned in equation
(1) except t ≤ 0, which is not sufficient to prove safety.

The first iteration of the algorithm produces a spurious counter-example of length 7 after 11
abstract states have been discovered by the search of the abstract state-space. The separation
routine suggests the following four linear predicate to refine the abstract state-space:

0.979265*T + 0.202584*t <= 9.34423

0.872555*T + 0.488515*t <= 8.16961

0.428587*T + 0.9035 *t <= 4.11184

-0.0680518*T + 0.997682*t <= -0.439659

Please notice the last suggested predicate and its similarity to the predicate t ≤ 0 considering
the normal range 5 ≤ T ≤ 10. The model designer may have been able to use this suggested
set of predicates to refine the abstract state space by adding the predicate t ≤ 0. Following the
example, after refining the predicates with the help of these four predicates, the system still
finds a spurious counter-example, and suggests four more predicates. In a third round, the
system generates eleven more predicates after discovering another spurious counter-example,
one of which is 0.0139043*T + 0.999903*t <= 0.152558. The total set of 28 predicates
is then in the following iteration enough to prove the thermostat example safe. The search
in the abstract state-space finds 358 reachable abstract states. This compares to the ten
predicates of equation (1) that are sufficient to prove safety while discovering 35 reachable
abstract states.

5 Implementation Issues

This section presents algorithms for the validation analysis of counter-examples encountered
during the search of the abstract state-space as presented in the preceding sections and a
greedy polyhedral separation routine to discover new predicates. The algorithms as presented
earlier in this paper are inspired by similar techniques used for the analysis of counter-
examples encountered during program abstraction of discrete computer models.

However, computationally, it is often not possible to compute the Post-sets corresponding
to the statement Ri = Post(Ri−1, ti−1, ai) in algorithm 1 exactly, and approximations are
needed. Similarly, the Pre- and Post-sets used in the definition of locally infeasible abstract
states cannot be computed precisely, but rather need to be approximated. This section
explores the implementation issues that arise due to this constraint which is a significant
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additional constraint on the computation method.

Since the discrete program abstraction methods can compute these sets of reachable states
exactly, they have a significant advantage in picking new predicates based on such a counter-
example analysis. This is one reason why the idea of a second analysis algorithm (the local
feasibility checker) has not surfaced in previous program abstraction methodologies. It is
worth mentioning here that the previously mentioned CEGAR algorithm implementation for
hybrid systems also provides a similar local feasibility check [15]. The authors describe certain
advantages of considering fragments of a counter-example compared to the whole counter-
example. Fragments are sub-paths of unspecified length of the original counter-example.
Thus, the here presented local feasibility check can be seen as a particular fragment. How-
ever, the authors only provide an experimental description why fragments can be interesting
to consider in this approximation-based counter-example analysis methodology without pro-
viding a formal comparison of the expected relative strength of predicates as described earlier
in this paper.

First, consider the order of the analysis algorithms. Since the local feasibility checker provides
a fast and reliable way to eliminate a common spurious counter-example pattern, it is clearly
advantageous to perform this algorithm first. The algorithm should only raise a flag, if the
counter-example to be analyzed is clearly spurious. Therefore, the implementation actually
computes over-approximations of the reachable Pre- and Post-sets that are due to continuous
flow. 5 Using an over-approximated polyhedral set computation, one can guarantee that a
problem will only be detected if the counter-example is indeed spurious.

In order to keep the approximation tight in this analysis check, the implementation actually
uses by default a 5-times smaller time-step than was used during the search of the abstract
state-space. However, this finer precision factor can be changed by the user as a parameter
to the verification tool. Again, a tradeoff between precision on the one hand and space and
time considerations on the other has to be made.

Now, consider the forward analysis algorithm as presented in section 3.1. In contrast to
the local feasibility checking algorithm, this analysis algorithm actually has two main con-
tributions: Firstly, it should flag a problem if a spurious counter-example is found. In this
case, it should also provide the greedy separation routine of section 4 with sets of polyhedra
to be separated. Secondly, however, if the abstract counter-example corresponds to a con-
crete counter-example, it should be able to provide a witness trace in the concrete hybrid
system model proving the validity of the counter-example and a witness trace of the viola-
tion of the property at hand. Since the polyhedral sets need to be approximated, it cannot
be guaranteed that an abstract counter-example is identified as spurious if and only if it
really is spurious. Given these requirements, it is thus clear that the forward search anal-
ysis algorithm needs to compute under-approximations of the reachable sets of states (for

5 It should be noted, that it is possible to compute exact polyhedral sets for transitions due to
discrete jumps. As mentioned earlier, it is guaranteed that at least one of the two considered
transitions for the local feasibility check is due to a discrete jump.
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transitions due to continuous flow). One way of implementing such an under-approximated
analysis algorithm is to keep track only of particular slices of the reachable sets of states.
The algorithm 3 presents such an approach and should be understood as one possible imple-
mentation of algorithm 1. An alternative would be to implement a procedure that computes
under-approximated flow-pipes between the slices.

Algorithm 3 Under-approximation analysis of a counter-example

R0 = {P ⊆ X|P = CΠ(~b0) ∩ {x ∈ Il0|(l0, x) ∈ X0}}
for all 1 ≤ i ≤ n do

if ti−1 is discrete then
Ri =

⋃
P∈Ri−1

{Post(P, ti−1, ai)} \ {∅}
else
Ri =

⋃
P∈Ri−1

{Post(P, k · r, ai)|k ≥ 1} \ {∅}
end if
if Ri = ∅ then

return“Counter-example is probably spurious!”
end if

end for
return“Counter-example corresponds to a concrete trace!”

The algorithm computes for each abstract state a set of polyhedral slices Ri representing
an under-approximation of the forward analysis as described in algorithm 1. The initial set
R0 of polyhedra is initialized by exactly one polyhedron representing the initial states of the
initial abstract state mentioned in the counter-example. For the following abstract states on
the counter-example, the set of under-approximated polyhedra is computed as follows. If the
transition is discrete, the algorithm computes the image of the enabled states for each poly-
hedron in the set Ri−1. However, if the transition is continuous, the algorithm computes for
each polyhedron in the set Ri−1 the slices at time r, 2r, 3r, . . .. These slices can be computed
exactly. Therefore, the set of these polyhedra constitutes an under-approximation of the
reachable set of states. This analysis algorithm then checks whether any Ri is empty, which
signals that the performed under-approximation could not produce a witness trace. This
means that the counter-example may be spurious without guaranteeing this result. However,
if the analysis algorithm finds that all sets including Rn are non-empty, it has thus found
proof that this counter-example corresponds to a counter-example in the concrete hybrid
system.

There are certain optimizations that can be helpful in this analysis algorithm. First of all,
the search in the abstract state-space finds the first possible time instance τ that an abstract
state can be reached by continuous flow from another one. This information can now be used
to reduce the amount of computations necessary in the analysis algorithm. The algorithm
needs to only compute the slices at time k · r for k ≥ τ

r
since it is known that previous

slices will definitely not intersect the next abstract state. Secondly, for the computation to
be feasible, one can prescribe a limit on the number of slices that one wants to consider for
continuous time flow at each instance of continuous flow. This parameter is also under user
control in the implementation of the tool.
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Fig. 7. Computing a concrete witness trace for a non-spurious abstract counter-example

The following two sections discuss the implemented procedures that govern the two possible
outcomes of algorithm 3. First, the outcome is considered that the counter-example is found
to correspond to a concrete one. Following that the computation of sets of polyhedra to be
separated is discussed in case the counter-example is found to probably be spurious.

5.1 Computing Witness Traces

If algorithm 3 finds that the abstract counter-example corresponds to a concrete trace, a
follow-up algorithm should be able to find a set of initial states and a sequence of concrete
transitions that constitute a witness trace. This witness trace can then be used as a simulation
guide in the original system to verify the existence of a counter-example. It should be noted
that the approach described here is currently the only verification algorithm for hybrid
systems that computes a concrete witness trace in the original system. The methodology
presented here uses a slightly modified version of algorithm 3. Instead of simply saving the set
of polyhedral slices at each step of the algorithm, the algorithm actually saves full traces up to
that point. Each trace consists of a sequence of polyhedral slices and an appropriate transition
information between successive polyhedra. This information is either the appropriate discrete
switch or the exact time that the next slice has been computed.

Assuming that algorithm 3 finds that the counter-example actually does correspond to a
concrete trace, it is then clear that the algorithm has found a sequence of locations and
polyhedra and corresponding transition information of the form (l0, p0) →t0 (l1, p1) →t1

. . . →tn−1 (ln, pn) with li ∈ L and pi ⊆ CΠ(~bi) ∩ X for all 0 ≤ i ≤ n. It is thus clear
that there is a state in p0 while in location l0 that can end up in the set of unsafe states by
taking the transitions →t0 ,→t1 , . . . ,→tn−1 . However, not all states in p0 will end in an unsafe
state following these transitions. To compute a witness trace, the algorithm takes a complete
trace, and starting from the last polyhedron pn computes successively the Pre-sets given the
applicable transition that leads to the previous polyhedron. It thus computes subsets ri of
the polyhedra pi, and it is guaranteed that all states in r0 following the transitions will end
up in an unsafe state inside rn = pn. This procedure is illustrated in figure 7.

The figure shows an abstract counter-example with four abstract states (l0, ~b0), (l1, ~b1), (l2, ~b2)

and (l3, ~b3) with (li, ~bi) →ti (li+1, ~bi+1) for i ∈ {0, 1, 2}. Only the continuous state-space is

shown in figure 7, and a particular trace as computed by algorithm 3 is given as pi ⊆ CΠ(~bi)
for i ∈ {0, 1, 2, 3}. The computation of a witness trace first sets r3 = p3, and then computes
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r2 ⊆ p2 as the Pre-set of r3 given the transition t2. It is guaranteed that r2 is not empty.
Analogously, the algorithm then computes r1 ⊆ p1 and r0 ⊆ p0. Any state in r0 can then be
used to prove the validity of the discovered abstract counter-example in the concrete system.

It is worth emphasizing that while most hybrid systems verification tools can produce a
counter-example trace if the property to be verified is violated, it is however also the case
that these traces represent over-approximations and need not necessarily reflect a counter-
example in the concrete system. The approach outlined here is the only hybrid systems
verification tool that computes a guaranteed concrete counter-example. This can be useful
in applications such as automated test vector generation as proposed in [35].

5.2 Separating Sets of Polyhedra

The previous section described how to compute a witness trace if algorithm 3 determines
that the abstract counter-example corresponds to a concrete trace. This section elaborates
on the case that the algorithm determines that the abstract counter-example is spurious. As
discussed earlier, the algorithm actually computes an under-approximation of the reachable
sets of states following the counter-example. As discussed in section 4, the separation of
polyhedra uses the last set of reachable polyhedra Rk that is not empty, and separates this
set from the set of states that correspond to the Pre of the following abstract state sk+1.

The implementation uses various heuristics to generate good separation predicates. Initially,
the algorithm computes an over-approximation of the Pre-set with an user-specified finer pre-
cision than used in the abstract search. It should be noted that since an over-approximation
of the Pre-set is computed, it is not guaranteed that it will be disjoint from the set of reach-
able states Rk. If Rk, however, does intersect with this over-approximation, the separation
routine will not be able to compute any separation predicates. In this case, the algorithm
re-computes the Pre-set; however, this time it computes an under-approximation. This guar-
antees that the two sets will be disjoint and can thus be separated using the greedy algorithm
as presented in section 4. However, it should be understood that the predicates are based
on under-approximated reachable sets of states that will be used in an abstract state-space
search based on over-approximations.

6 Case Studies

We presented foundations for automated verification of safety properties of hybrid systems
by combining the ideas of counter-example guided predicate abstraction and polyhedral ap-
proximation of reachable sets of linear continuous dynamics. The presented counter-example
analysis tool extends previous work on predicate abstraction of hybrid systems [3]. Our cur-
rent prototype implementation of the predicate abstraction model checking and the counter-
example analysis tool are both implemented in C++ using library functions of the hybrid
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Fig. 8. The two processes for the mutual exclusion example

systems reachability tool d/dt [9]. We implemented a translation procedure from Charon [2]
source code to the predicate abstraction input language which is based on the d/dt input
language. Our tool uses the polyhedral libraries CDD [24] and QHull [11]. We have imple-
mented the global analysis algorithm, the local feasibility check, as well as the computation
of separating predicates as part of the counter-example analysis tool.

6.1 Fischer’s Mutual Exclusion

We first look at an example of mutual exclusion which uses time-based synchronization in a
multi-process system. We want to implement a protocol that allows a shared resource to be
used exclusively by at most one of two processes at any given time. The state machines for
the two processes are shown in figure 8. The example is small enough to be used effectively
for an illustration of our approach.

The variable turn is used to establish right of access in the model. The system starts with
turn = 0 and both agents are in their respective Idle locations. Once process i ∈ {1, 2}
moves to its respective Request location, it takes at most ∆ time-units to assign i to turn,
establishing its wish to access the shared resource, and switch to its Check location. The
process is required to stay in its Check location for at least δ time-units before it can test the
value of turn. If turn still holds the value i it will access the shared resource; otherwise it
does not access the resource this time and moves back to its Idle location. The constraints
ẋ = 0 and ẏ = 0 are omitted in the respective Idle and Check locations in the figure in order
not to clutter the presentation. Similar case studies have been studied in various contexts
and with slightly different models, as, for example, in [31].

The possible execution traces depend on the two positive parameters ∆ and δ. If the pa-
rameters are such that ∆ ≥ δ is true, we can find a counter-example that proves the two
processes may access the shared resource at the same time. On the other hand, if δ > ∆,
then the system preserves mutual exclusive use of the shared resource.

We use this example to illustrate the use of the local feasibility check of counter-examples
for the case that δ > ∆. Consider the abstract system defined by the predicates used in the
description of the 2-process Fischer’s mutual exclusion protocol. These are: x ≥ δ, y ≥ δ, x ≤
∆, y ≤ ∆, δ > ∆, ∆ > 0, δ > 0, x ≥ 0 and y ≥ 0. The search in the abstract state-space finds
a counter-example of length nine. The third abstract state a3 in the counter-example has
both processes in their respective Request locations, turn = 0, and 0 ≤ x ≤ ∆, 0 ≤ y ≤ ∆.
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The following state a4 can be reached by a discrete transition td, and the first process is now
in its Check location, while turn = 1 and 0 ≤ x ≤ ∆, 0 ≤ y ≤ ∆. The fifth abstract state
a5 can then be reached by a continuous transition tc, so that the locations and the turn

variable are unchanged, but now we have x > δ ∧ 0 ≤ y ≤ ∆. It can be shown that a4 is
locally infeasible:

Pre(a4, tc, a5) =





((Check, Request), (turn, x, y, ∆, δ)) ∈ X |
turn = 1 ∧ 0 ≤ y < x ≤ ∆ < δ





and

Post(a3, td, a4) =





((Check, Request), (turn, x, y, ∆, δ)) ∈ X |
turn = 1 ∧ 0 ≤ x ≤ y ≤ ∆ < δ ∧ 0 < ∆





;

hence, it follows that Post(a3, td, a4) ∩ Pre(a4, tc, a5) = ∅. Using LocalStrategy we include
the only one new predicate x ≤ y to the set of predicates. In the next iteration with this
refinement of the abstract state-space, we obtain a symmetrical locally infeasible counter-
example. The strategy LocalStrategy then suggests the symmetric predicate y ≤ x. The
subsequent reachability analysis finds 54 reachable abstract states in the refined abstract
state-space, which all maintain the mutual exclusion property.

6.2 Coordinated Adaptive Cruise Control

We have also successfully applied our predicate abstraction technique to verify a model of the
Coordinated Adaptive Cruise Control mode of a vehicle-to-vehicle coordination system. This
case study is provided by the PATH project (see http://www-path.eecs.berkeley.edu).
We first briefly describe the model omitting a more detailed discussion for the sake of brevity.
The goal of this mode is to maintain the car at some desired speed vd while avoiding collision
with a car in front. Let x and v denote the position and velocity of the car. Let xl, vl and
al denote respectively the position, velocity and acceleration of the car in front. Since we
want to prove that no collision happens regardless of the behavior of the car in front, this
car is treated as disturbance, more precisely, the derivative of its acceleration is modeled as
uncertain input ranging in [dalmin, dalmax].

The closed-loop system can be modeled as a hybrid automaton with 5 continuous variables
and 8 locations.The invariants of the locations and the transition guards are specified by
the operation regions and switching conditions of the controller together with the bounds
on the speed and acceleration. In order to prove that the controller can guarantee that no
collision between the cars can happen, we specify an unsafe set as xl−x ≤ 0 in all locations.
To define initial predicates, in addition to the constraints of the invariants and guards, we
use the predicate of the bad set allowing to distinguish safe and unsafe states and predicates
representing the initial set. Assuming that the follower car is faster than the preceding car,
and a too small initial separation of the two cars, the tool finds a counter-example that
corresponds to a real trace in the concrete system. On the other hand, if the two cars start
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with a large enough initial separation, the combined verification approach enabled us to
prove safety of the abstract system which implies safety of the concrete system.

7 Conclusions

This paper described algorithms for the validation analysis of abstract counter-examples
in the concrete hybrid system. If this validation analysis finds that the abstract counter-
example does in fact represent a valid counter-example in the concrete system, a concrete
witness trace is computed that can be used by the user as an input to a simulation engine.
This approach is currently the only tool that computes a guaranteed witness trace, and it
can be used in various applications such as automated test vector generation.

If the validation analysis determines that the abstract counter-example is spurious, this
paper also describes methods to identify appropriate new predicates to be used in subsequent
abstract state-space explorations. The success of the abstract search crucially depends on the
choice of the predicates and the methods described in this paper produce such predicates.
We also defined a notion of refinement of abstract states and abstract paths that provides
valuable insight into the quality of such computed predicates.
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