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Abstract. In this paper we demonstrate a potential extension of formal
verification methodology in order to deal with time-domain properties of
analog and mixed-signal circuits whose dynamic behavior is described by
differential algebraic equations. To model and analyze such circuits under
all possible input signals and all values of parameters, we build upon
two techniques developed in the context of hybrid (discrete-continuous)
control systems. First, we extend our algorithm for approximating sets of
reachable sets for dense-time continuous systems to deal with differential
algebraic equations (DAEs) and apply it to a biquad low-pass filter. To
analyze more complex circuits, we resort to bounded horizon verification.
We use optimal control techniques to check whether a ∆-Σ modulator,
modeled as a discrete-time hybrid automaton, admits an input sequence
of bounded length that drives it to saturation.

1 Introduction

Formal verification has become part of the development cycle of digital circuits.
Its advantage relative to more traditional simulation methods lies in its exhaus-
tiveness: It can guarantee that a system behaves correctly in the presence of
all its possible inputs, whose number can be infinite or too large to be cov-
ered by individual simulations. Of course, this advantage does not come for free
and verification algorithms are more complex and costly than simple simulation.
The extension of verification methodology to deal with analog and mixed-signal
circuits is far from being straightforward due to the following reason. Digital
circuits are modeled as discrete event dynamical systems (automata, transition
systems) where the inputs are sequences of binary values, and the behaviors of
the circuit induced by these inputs are binary sequences corresponding to paths
in the transition graph. Hence digital verification can be realized using graph
search algorithms. In contrast, the mathematical model of an analog circuit is
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that of a continuous dynamical system defined typically by differential algebraic
equations where inputs are real-valued signals defined over the real time axis,
and the behaviors they induce are trajectories in the continuous state space of
the system.

A typical verification task is to prove that a circuit behaves correctly for
all possible input signals and that none of them drives the system into a bad
state, for example a state where one of the components reaches saturation. Even
if we are satisfied with checking the circuit against a finite number of typical
input signals, something that can be done using numerical simulation, we still
have a problem because of the possible variations in system parameters which
are determined only after low-level synthesis is complete. To account for such
variations during high-level design, symbolic analysis methods that compute
symbolic expressions characterizing the behavior of a circuit have been developed
and successfully applied to linear or linearized circuits [14]. Extensions of these
methods to non-linear circuits are mainly based on simplification and reduction
to linear or weakly non-linear systems, which are often limited by accuracy
trade-offs (see, for example, [32, 31]). Consequently, numerical simulation with
a finite number of input signals is the commonly used validation tool, albeit its
inadequacy for systems with under-specified parameters.

In this paper we focus on verifying time-domain properties1 of analog and
mixed-signal circuits with dynamics described by a system of differential al-
gebraic equations with parameters. To analyze such a circuit under all possible
input signals and parameter values, we use techniques developed in the context of
hybrid (discrete-continuous) control systems (see the conference proceedings [17,
25, 2] for a sample of recent hybrid systems research). In particular we extend the
forward reachability analysis technique that we have developed for linear [5] and
non-linear [4] ordinary differential equations to deal with differential algebraic
equations. The case of mixed-signal circuits is investigated through the model-
ing and analysis of a ∆-Σ modulator, a widely used circuit, for which stability
analysis remains a challenging problem [29, 20, 12]. We tackle this problem using
the approach advocated in [8] for the verification discrete-time hybrid systems.
The idea is to formulate bounded horizon reachability as a hybrid constrained
optimization problem that can be solved by techniques such as mixed-integer lin-
ear programming (MILP), in the same sense that bounded verification of digital
systems can be reduced to solving a Boolean satisfiability (SAT) problem.

There have been several previous works on formal verification of analog cir-
cuits (see [22, 15, 19, 27] and references there in). The work closest to this paper
is [22, 19], in which an analog system is approximated by a discrete system in
which classical model-checking algorithms can be applied. The discrete system
is obtained by partitioning the state space into boxes (each of which corresponds
to a state of the discrete model). In [19] the transition relation is determined

1 Frequency-domain properties which are often used in analog design are outside the
scope of this paper. Properties used in digital verification, such as those specified in
temporal logic are, using this terminology, time-domain properties.



by reachability relation between the boxes which is approximated by simulating
trajectories from some test points in each box.

The rest of the paper is organized as follows. In Section 2 we present our
approach to the verification of non-linear analog circuits using reachability com-
putation for differential algebraic equations. The approach is then illustrated
with a low-pass filter circuit. In Section 3 we formulate the bounded horizon
verification problem for a mixed-signal ∆-Σ modulator and solve it using an
MILP solver. Some discussions and future research directions close the paper.

2 Verification of Non-Linear Analog Circuits

2.1 Approach

Mathematically, the behavior of a non-linear analog circuit can be described by
a set of differential algebraic equations (DAE):

F (x(t), ẋ(t), u(t), p) = 0, (1)

where x ∈ Rn denotes the state variables (internal voltages, currents, and out-
puts), ẋ denotes their time derivatives, p ∈ P ⊂ Rm is the parameter vector, and
u : R+ → U is the input signal. We assume a set U of admissible input signals
consisting of piecewise-continuous functions taking values in a bounded and con-
vex set U ⊂ Rl. In this model the input is uncertain, which allows one to model
external disturbance and noise. A parameter can be a resistor value, a transistor
saturation current, etc. The equations (1) result from applying Kirchhoff laws to
the whole circuit and the characteristics equations to the basic elements. Such
circuit equations can be automatically generated by techniques such as Modified
Nodal Analysis (MNA) [13].

To verify time-domain properties of the circuit, such as those related to the
transient behavior, one needs to characterize the set of solutions of (1) under
all possible inputs u(·) and all parameter values p. For reachability properties
(the circuit never reaches a bad state), it suffices to compute the set of states
reachable by all possible trajectories of the system that we define formally below.

We denote by γ(t, x0, u(·), p) the value at time t of the solution of (1) with
the initial condition x(0) = x0 under the input signal u(·) ∈ U and a parameter
p ∈ P . Given a set of initial conditions X0 and T > 0, the reachable set from
X0 during the time interval [0, T ] is defined as:

Φ(X0, T ) = {γ(t, x0, u(·), p) | t ∈ [0, T ] ∧ x0 ∈ X0

∧ u(·) ∈ U ∧ p ∈ P}.

Note that, unlike simulation, reachability computations can also handle uncer-
tainty in initial conditions. The extension of reachability techniques for ordinary
differential equations (ODEs) to handle DAEs is not straightforward since these
classes of equations differ in both theoretical and numerical properties, and this
is captured by the index concept (for an introduction see [9]). The differential



index of (1) is the minimal number of differentiations required to solve for the
derivatives ẋ. In general the problem of numerically solving DAEs with index
2 or higher is ill-posed [7]. DAEs that model practical electronic circuits are
typically of index 1 or 2 and in this work we focus on the former. In particular,
we will study the equivalent semi-explicit form of (1):

ẋ(t) = f(x(t), y(t), p), (2)
0 = g(x(t), y(t), p). (3)

Note that the implicit DAE system (1) can be trivially transformed into the
above form as follows: By letting z(t) = ẋ(t), y = (z, u) and substituting in
(1) we obtain 0 = F (x(t), y(t), p). Thus the resulting system in the above semi-
explicit form is: ẋ(t) = z(t) and 0 = F (x(t), y(t), p).

Coupling the ODE (2) with the non-linear equation (3) means that the solu-
tion of (2) has to lie on the manifold defined by (3). If the Jacobian gy(x, y) =
∂g/∂y is invertible in a neighborhood of the solution, then by differentiating the
algebraic equation we obtain

ẏ = −g−1
y gxf, (4)

and in this case, the DAE system is of index 1. In a simpler case, where ∂F/∂ẋ
in (1) is regular, the algebraic equation (3) disappears, and (1) is a DAE of index
0, i.e. an ODE [9].

A trivial way to compute reachable sets for index 1 DAEs is to transform it
into an ODE composed of (2) and (4) using the above-described differentiation
and then apply the existing techniques for ODEs. However, the drawback of this
approach is that the solution may drift away from the algebraic constraint. We
will retain the algebraic constraint (3) and interpret the original DAE as the
ODE, composed of (2) and (4), on the manifold defined by (3). We will combine
the commonly-used technique of geometric integration using projection [11], with
our reachability algorithm, to compute the reachable set.

2.2 Computing Reachable Sets of ODEs on Manifolds

We summarize below the approach we have developed over the years for reach-
ability computation of ODEs and hybrid automata. We start with an algorithm
for linear ODEs of the form ẋ(t) = Ax(t), first presented in [5] and implemented
in the tool d/dt [6]. Many other techniques for computing reachable sets can be
found in the hybrid systems literature. In particular, those developed indepen-
dently by Chutinan and Krogh and implemented in the tool CheckMate [10] are
very similar to ours. We use γ(t, x0) for the solution and Φ(X0, T ) for the states
of the solutions at any t ∈ T starting from any x0 ∈ X0. Basically we compute
a polyhedral over-approximation of the reachable states on a step-by-step basis
as in numerical integration, that is, we compute a sequence of polyhedra that
over-approximates the sequence

Φ(X0, r), Φ(Φ(X0, r), r) . . .



Given a convex polyhedron R, the set R′ of states reachable from R at time r
can be computed as the convex hull of the points reachable at time r from the
vertices of R. Then, the set of states reachable during the whole time interval
[0, r] is approximated by the convex hull conv(R ∪ R′) which is enlarged by an
appropriate amount to ensure conservative approximation.2

This basic algorithm is then extended in various directions. When the system
admits an input and is of the form ẋ(t) = Ax(t) + bu(t), the computation can
still be done by applying optimization techniques to find “extremal” values for u
that push the set “outwards” [30]. Another important extension handles systems
that admit mode switching and are modeled by hybrid automata [1], automata
that have a distinct differential equation in each state, depending on the values
of the continuous state variables. As long as the automaton remains in the same
discrete state, the reachability computation proceeds as for simple ODEs but
when the reachable polyhedron intersects the switching surface, it needs to be
split and parts of it undergo reachability computation under the new dynamics.
We will come back to this in the next section and the reader is referred to [5, 6]
for more details.

The analysis of hybrid automata with under-specified inputs is part of the
more recent methodology [4] for analyzing non-linear systems of the form ẋ(t) =
f(x(t)) + bu(t) using a piecewise-affine approximation. This method is based on
partitioning the state space into simplices and assigning a distinct discrete state
to each of them. The dynamics at each state is specified by an affine function
obtained by interpolation on the values of f on the vertices the corresponding
simplex. This approximation is conservative since the interpolation error is in-
cluded in the model as an input. In addition, if the derivative ẋ is a C2 function,
the reachable set approximation error is quadratic in the size of the underlying
simplicial partition.

Before proceeding let us remark that the potential contribution of ideas com-
ing from hybrid systems to the design of analog circuits is not restricted to verifi-
cation. In particular, the modeling of non-linear systems by piecewise-linear ones,
called hybridization in [4, 3], offers an alternative modeling style that was often
avoided because it does not fit into the analytical and numerical framework of
continuous systems. On the contrary, many discontinuous phenomena that could
have been modeled naturally as discrete transitions, are often “smoothened” to
avoid numerical instability. Hybrid modeling and analysis can treat such phe-
nomena directly.

We can now return to ODEs on a manifolds and combine reachability with
projection. For the sake of clarity we omit u and p and work with

ẋ(t) = f(x(t)), (5)
0 = g(x(t)). (6)

The following algorithmic scheme, illustrated in Figure 1, computes an approx-
imation of the reachable states where Φ is the reachability operator and ΠM
denotes projection onto the manifold M defined by (6).
2 Note that this part of the algorithm is not needed for discrete-time systems.



Algorithm 1 Computation of Φ(X0, .) with time step r.
R0 = X0

repeat k = 0, 1, . . . ,

R̂k+1 = Φ(Rk, r)

Rk+1 = ΠM(R̂k+1)

until Rk+1 =
Sk

i=1 Ri

The projection of a point x ∈ Rn onto the manifold M is computed as

ΠM(x) = arg min
x̄
|x− x̄| subject to g(x̄) = 0,

where | · | is the Euclidean norm. In the special case where g is linear, this
optimization problem can be easily solved using linear algebra. The projection
of a convex polyhedron R̂ = conv(v1, . . . vm) is approximated as the convex hull
of the projected vertices, R = conv(v̄1, . . . v̄m). Although R does not always lie
entirely on M, its distance to M can be made as small as desired. Indeed, we
can prove that the convergence order of this approximate reachability method
for DAEs is that of the reachability method for ODEs used to compute Φ, which
is quadratic [6, 4]. To see this consider a point x ∈ M and its successor x̂ =
Φ({x}, r) computed by Φ. The distance between x̂ and M is bounded by the
local error of the method for computing Φ. Hence, the distance between ΠM(x̂)
and the exact successor of x is of the same order.

Fig. 1. Combining projection and reachability computations for ODEs.

2.3 Example: a Biquad Low-pass Filter

We now illustrate the approach with a second order biquad low-pass filter circuit,
shown in Figure 2. This example is taken from [19]. The circuit equations are as



Fig. 2. A low-pass filter.

follows:

u̇C1 =
uC2 + uo − uC1

C1R2
, (7)

u̇C2 =
Ui − uC2 − uo

C2R1
− uC2 + uo − uC1

C2R2
, (8)

uo − Vmax tanh(
(uC2 − uo)Ve

Vmax
) + Uom = 0, (9)

io = −C2 u̇C2, (10)
Uom = V(i0), (11)

V(io) = K1io + 0.5
√

K1i2o − 2K2ioIs + K1I2
s + K2

− 0.5
√

K1i2o + 2K2ioIs + K1I2
s + K2. (12)

The state variables are (uC1, uC2), the voltages across the capacitors C1 and
C2 (the reference directions of which are indicated by the + and − signs in
Figure 2). The algebraic constraints (9-12) come from the characteristics of the
operational amplifier where uo is the output voltage and Uom corresponds to
the output voltage decrease caused by the output current io. In this circuit,
Ui (input voltage), Vmax (maximal source voltage), Ve, Is, C1, C2, R1, and R2

are parameters. Denoting x = (uC1, uC2) and y = uo, the circuit equations
can be put in the semi-explicit form (2-3). Assuming that the Jacobian gy(x, y)
has bounded inverse in a neighborhood of the solution (which can indeed be
verified for a concrete circuit), by differentiating (9) the circuit equations can be
transformed into a non-linear ODE on a manifold as in (5-6) with state variables
z = (uC1, uC2, uo).

As mentioned earlier, to reduce the complexity of reachability computation,
we will use the hybridization idea. First, the non-linear characteristics Uom =
V(io) in equation (11) can be approximated by a piecewise-affine function of the
form:

V(io) =

K1io + K3 if io ≤ Is,
0 if − Is < io < Is,
K1io −K3 if io ≥ Is.

(13)



Therefore, the original system is approximated by a hybrid automaton with
3 discrete states (modes). The conditions for staying in a mode and for switching
between modes are determined by the value interval of io. For example, in order
to stay in the mode corresponding to the first equation of (13) the state vari-
ables (uC1, uC2, uo) should satisfy io ≤ Is. Using (10) this condition becomes:
−C2 u̇C2 ≤ Is, which together with (8) gives

−Ui − uC2 − uo

R1
− uC2 + uo − uC1

R2
≤ Is.

Note that the hyperbolic tangent function in (9) is retained because it can
be observed from simulation results that this non-linearity is important for the
accuracy of the model. In general, the designer’s knowledge of the the circuit
can help to choose appropriate simplifications and approximations. As a result,
the continuous dynamics of each mode is defined by a DAE which remains non-
linear and is transformed automatically to a piecewise-affine dynamics using the
hybridization technique of [4].

The property to verify is the absence of overshoots. For the highly damped
case (where C1 = 0.5e − 8, C2 = 2e − 8, and R1 = R2 = 1e6), Figure 3 shows
the projection of the reachable set on uC1 and uC2. The initial set is defined by
a box: uC1 ∈ [−0.3, 0.3], uC2 ∈ [−0.3, 0.3] and uo ∈ [−0.2, 0.2]. From the figure,
one can see that uC1 indeed remains in the range [−2, 2]. This computation took
d/dt 3 minutes until termination. We are currently working on making this
process more systematic and efficient. In particular we investigate the automatic
transformation of circuit equations into ODEs on a manifold.

Fig. 3. The reachable set for the filter projected on variables uC1 and uC2.



3 Verification of Mixed-Signal Circuits

3.1 Optimal Control based Verification Approach

Mixed-signal circuits that exhibit both logical and continuous behaviors can be
naturally modeled as hybrid automata and verified using the reachability tech-
niques described in the previous section. However, as it also happens in digital
verification, reachability algorithms may explode in time and space before ter-
mination and less exhaustive methods should sometimes be used. One popular
approach is to restrict the verification to behaviors of bounded length and ask
whether the set of such behaviors contains one that violates the property in
question. A positive answer demonstrates a “bug” in the system while a nega-
tive one is generally not a proof of correctness unless the length bound is very
large. Bounded horizon reachability for digital systems is typically formulated
as Boolean satisfiability. For dynamical systems over a continuous state space,
bounded horizon problems were used in the context of optimal control, where
one looks for a finite input signal that induces a behavior which is optimal ac-
cording to some performance criterion. In discrete-time, this problem reduces to
a finite-dimensional optimization of a continuous function subject to continuous
constraints (see a unified treatment of the discrete and continuous case in [23]).
The application of these ideas to the verification of hybrid systems has been
advocated by Bemporad and Morari [8]. In verification the input is interpreted
as a disturbance and the search for a bad behavior becomes a search for the
worst input sequence with respect to the property in question (see also [30] for
the applicability of optimal control to reachability-based verification). The dis-
crete part of the system makes the optimization problem hybrid, and one of the
popular methods for solving it is mixed integer-linear programming (MILP).

In this section we focus on circuits that can be modeled by a discrete-time
hybrid system of the form:

F (x(k), x(k + 1), u(k), δ(k), p) = 0, k ∈ N, (14)

where δ(k) ∈ {0, 1}s is a binary vector of dimension s describing the logical part
of the dynamics. For convenience, we will use notation similar to the continuous-
time case. We use x(k) = γ(k, x(0), u(·)) to denote the state at time k of the
solution of (14) with initial state x(0) ∈ X0 and input u(·) ∈ U which is a
sequence ranging over a closed bounded set U ⊂ Rl (i.e., u(·) = (u(k))k∈N).

To prove safety over a finite horizon N ∈ N we compute a set of worst
trajectories whose safety implies the safety of all the other trajectories. The
formulation of verification as an optimal control problem is done via an objective
function J such that J(x) is positive iff x is outside the safe set. Then for each
k ≤ N , we maximize J for the trajectory x(t) with t = 0, . . . , k by solving the



following constrained optimization problem:

max J(x(k)), (15)
s.t. F (x(t), x(t + 1), u(t), δ(t), p) = 0, (16)

u(t) ∈ U , t ∈ {0, 1, . . . , k − 1}, (17)
x(0) ∈ X0. (18)

We then check whether the worst trajectories obtained satisfy J(x(k)) ≤ 0 for
all k ≤ N , meaning that the property is true over horizon N . We illustrate this
approach through the stability analysis of a ∆-Σ modulator.

3.2 The ∆-Σ Modulation: Principles and Hybrid Modeling

We describe briefly the principles of ∆-Σ modulation, a very popular technique
for analog to digital conversion. Basically, a ∆-Σ modulator processes an analog
input through four steps [29]: (1) Anti-aliasing in order to be sure that the signal
bandwidth lies within a given range [−fb, fb]; (2) Oversampling or sampling at
a frequency greater than the Nyquist rate 2× fb; (3) Noise shaping so that the
quantization error is “pushed” toward high frequencies outside the bandwidth
of interest; (4) Quantization, typically on few bits. In the following examples
quantization is done on one bit. We use an input-output plot of a simple model,

Fig. 4. A first order ∆-Σ modulator and an example of an input-output plot.

shown in Figure 4, to explain intuitively how ∆-Σ modulation works. When



the input sinusoid is positive and its value is less than 1, the output takes the
+1 value more often and the quantization error which is the difference between
the input and the output of the quantizer is fed back with negative gain and
“accumulated” in the integrator 1

z−1 . Then, when the accumulated error reaches
a certain threshold, the quantizer switches the value of the output to −1 for some
time, which reduces the mean of the quantization error. This model is called a
first order ∆-Σ modulator since it uses a first order filter to process noise.

We now describe a hybrid model of a third-order ∆-Σ modulator (shown in
Figure 5), generated using the standard MATLAB delsig toolbox [28] which pro-
vides practical models used by designers. Higher order ∆-Σ modulators achieve

Fig. 5. A model of a third-order modulator with integrators that may saturate.

better performance but induce stability problems [12]. A modulator is said to
be stable if its integrators values remain bounded under a bounded input. This
property is of a great importance since integrator saturation can deteriorate cir-
cuit performance. Stability analysis for such circuits is still a challenging research
problem [12] due to the presence of two sources of non-linearities: saturation and
quantization.

The circuit is modeled as a discrete-time hybrid automaton. When none of
the integrators saturates, the dynamics of the system can be represented in the
following state-space form:

x(k + 1) = Ax(k) + bu(k)− sign(y(k))a, (19)
y(k) = c3x3(k) + b4u(k), (20)

where matrix A, vectors a and b are constants depending on the various gains
of the model, x(k) ∈ R3 represents the integrator states, u(k) ∈ R is the in-
put and y(k) ∈ R is the input to the quantizer. The output of the quantizer
v(k) = sign(y(k)) is the only discrete state variable and as long as it remains
constant, the dynamics is continuous and affine. Figure 6 gives the usual graph
representation of the corresponding hybrid automaton. Note that the discrete



state variable can be made Boolean by letting δ(k) = sign(y(k))+1
2 which trans-

forms (19-20) to the general form of (14).

Fig. 6. A hybrid automaton model of the ∆-Σ modulator.

3.3 Stability Analysis: Formulation and Results

The stability property of the modulator is stated as follows: For a given bounded
set X0 ⊂ R3 of initial states and a range of input values U = [umin, umax], the
system is stable if and only if for any x(0) ∈ X0 and any sequence u(·) ∈ U the
sequence γ(k, x(0), u(·)) is bounded, that is, there exists a bounded set S such
that

∀k ∈ N ∀x(0) ∈ X0 ∀u(·) ∈ U : γ(k, x(0), u(·)) ∈ S.

In the following, we apply the method described in Section 3.1 to check this prop-
erty over a horizon N where the safe set S is the rectangular set [−xsat

1 , xsat
1 ]×

[−xsat
2 , xsat

2 ]× [−xsat
3 , xsat

3 ], the set of states where no integrator saturates. Since
we want x to remain inside S, we define the objective function J as:

J(x(k)) = max
i=1,2,3

(|xi(k)| − xsat
i ).

Solving this optimization problem means finding an input sequence that drives
the integrators as close as possible to their saturation limits. By symmetry it can
be easily shown that if γ(·, x(0), u(·)) is a sequence obtained from x(0) with input
u(·), then we have γ(k, x(0), u(·)) = −γ(k,−x(0),−u(·)) for all k. Thus, if X0 and
U are symmetric sets with respect to the origin, maximizing |xi(k)| is the same as
maximizing xi(k); hence, we can define J as: J(x(k)) = maxi=1,2,3(xi(k)−xsat

i ).
We transform this problem into 3 MILP problems (one for each i) by rewriting

the function F , given by (19-20), as a set of linear constraints over real and binary
variables. To get rid of the sign function, we use the standard “big-M” trick.
Given bounds m < 0 and M > 0 on y(k), we introduce two new constraints for



all k:

y(k) ≤ δ(k)M, (21)
y(k) > (1− δ(k))m. (22)

Thus, it holds that δ(k) = 1 ⇔ y(k) ≥ 0, and we can replace sign(y(k)) in (19)
by 2δ(k)− 1. With the above definitions and constraints, the problem (15-18) is
put in MILP form.

We used the efficient solver MOSEK [26] to solve the resulting MILP problem
for various bounds on initial states x(0) and input signals u over a finite horizon
N ranging from 1 to 30. The results are shown in Figure 7, where the curves
depict the maximal obtained value of x1(N) as a function of N (note that for each
N the maximum might be obtained by another input sequence). The qualitative
behavior exhibited by x2 and x3 is similar. From these plots one can see, for
example, that for x(0) ∈ [−0.1, 0.1]3 and any constant sequence u(k) = c ∈
[−0.5, 0.5] for all N the maximal value of x1(N) never leaves the safe set S
and, moreover, it converges quite fast towards a constant value, which shows
that the ∆-Σ modulator is stable up to N = 30 and most likely forever after.
This also holds for x(0) ∈ [−0.01, 0.01]3 and any u(k) ∈ [−0.1, 0.1] but not for
u(k) ∈ [−0.5, 0.5]. Note furthermore that the bad input signals the we found
are generally non-trivial, and could not have been found easily by simulation
with initial states and input values that are simply on the boundaries of their
domains.

Fig. 7. The curves show sup x1(N) as a function of the horizon N for various bounds
on initial states x(0) and input signals u.

3.4 Reachability versus Optimal Control.

Safety verification of piecewise affine hybrid systems can also be achieved by
computing a so-called robustly positively invariant set (RPI), which has already
been used in the context of ∆-Σ modulators [21, 16]. An RPI set Ω is such that



if x(k) ∈ Ω then x(k + 1) ∈ Ω regardless of u(k). Indeed, if such a bounded
set containing X0 is found, the boundedness of x[k] is guaranteed. It is easy
to see that the reachable set is an RPI set and therefore, we can prove the
stability of the ∆-Σ circuit by computing (or over-approximating) the reachable
set using a discrete-time version of the algorithm of Section 2. Nevertheless, two
characteristics of the ∆-Σ modulator render the reachability computation very
expensive:

– Switching between modes is very frequent, which makes the reachable set
highly non convex admitting an exponentially growing number of polyhedra.

– The fundamental instability introduced by the integrators makes the sys-
tem particularly sensitive. Hence, while the use of over-approximations of
the reachable set (such as using convex hull) can reduce the computational
complexity, the results are often too coarse to prove the property.

One can observe similar phenomena in a recent application of reachability tech-
niques to the same circuit (but under more restricted input signals) reported in
[18]. The optimization procedure just described is not immune to these problems
although it can reach larger horizons (the computation for horizon 30 took more
than two hours on a 2.4GHz machine). On the other hand, efficient algorithms
for computing RPI sets, such as those described in [21], require the affine modes
to be stable and thus cannot be used for this example. Indeed, the instability of
the integrators (the A matrix) implies the instability of each mode of the affine
system and the stability of the modulator relies only on switches between the
modes.

4 Conclusion and Future Work

We have presented a framework for modeling and verification of analog and
mixed-signal circuits using hybrid system techniques. These results are much
more modest, both in terms of rigor (approximate computation, non guaranteed
termination) and of size (systems with few state variables) than the state-of-the-
art in digital hardware verification, but this is not surprising given the inherent
complexity of the problems and the current practices in the domain. Fortunately,
the accumulated experience in hybrid systems will be useful in accelerating the
progress in analog verification, especially by avoiding dead ends that have already
been explored.

Some innovative ideas are needed in order to extend the scope of our tech-
niques to larger systems. As in discrete verification, abstraction and model re-
duction techniques are necessary in order to facilitate compositional reasoning.
Although the circuit structure may give hints for useful decompositions, the na-
ture of interaction between analog devices will probably not make this task easy.
Another research direction would be to develop reachability techniques that take
into account some more refined constraints on the input signals such as bounds
on their frequency or on their average value. Current reachability algorithm for



systems with input are essentially “breadth-first” and are not adapted for ex-
cluding individual input signals that violate such constraints. Additional work
that will be needed in order to integrate formal methods in the design pro-
cess includes the automatic translation from circuit descriptions (such as those
expressed in VHDL-AMS) to hybrid automata, as well as the definition of an
expressive formalism for specifying properties of analog signals. First steps in
this direction are reported in [24].
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