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Abstract

In this paper we demonstrate a potential extension
of formal veri�cation methodology in order to deal
with analog and mixed-signal circuits. In particular,
we focus on verifying time-domain properties. The
time-dependent behavior of an analog circuit can be
described by a system of di�erential algebraic equa-
tions. To analyze such circuits under all possible in-
put signals and all values of parameters, we extend
the reachability analysis techniques developed in the
context of hybrid (discrete-continuous) control sys-
tems [4]. Moreover, these techniques can be readily
applied to the veri�cation of mixed-signal circuits since
hybrid systems can naturally be used as a mathemat-
ical model for such circuits.

1 Introduction

Formal veri�cation has become part of the develop-
ment cycle of digital circuits. Its advantage relative
to more traditional methods of simulation/testing lies
in its exhaustiveness: It can guarantee that a system
behaves correctly in the presenece of all its external
inputs, whose number can be in�nite or too large to
be covered by individual simulations. Of course, this
advantage does not come at no cost and veri�cation
algorithms are more complex and costly than simple
simulation. An extension of veri�cation methodology
in order to deal with analog and mixed-signal circuits
is far from being straightforward due to the following
reason. The mathematical model for digital circuits is
that of a discrete event dynamical systems (automata,
transition systems) where the inputs are sequence of
binary inputs, and the behavior of the circuit induced
by these inputs are binary sequences corresponding to
paths in the transition graph. Hence digital veri�ca-
tion can be realized using graph search algorithms. In
contrast, the mathematical model of an analog circuit
is that of a continuous dynamical system de�ned typ-
ically by di�erential algebraic equations where inputs
are real-valued signals de�ned over the real time axis,
and the behaviors they induce are trajectories in the
continuous state space of the system. A typical veri-
�cation task is to prove that the circuit behaves cor-
rectly for all possible input signals and that none of

them drives the system into a bad state, for example a
state where one of the components reaches saturation.
When restricting to a �nite number of input signals,
numerical simulation can be used to verify the behav-
ior of the circuit. However, simulation is suitable only
for previously sized circuits while many tasks in circuit
design require the ability to determine the in�uences
of element parameters on circuit performances. To
this end, symbolic analysis methods (which involves
computing a symbolic expression that describes the
behavior or characteristic of a circuit) have been de-
veloped and successfully applied to linear or linearized
circuits [9]. Extensions of symbolic methods to nonlin-
ear circuits are mainly based on simpli�cation and re-
duction to linear or weakly nonlinear systems, which is
often limited by accuracy trade-o�s (see e.g. [17, 16]).
In this paper we address the problem of veri�ca-

tion of analog and mixed-signal circuits. In particular,
we focus on verifying time-domain properties of cir-
cuits with parameter tolerances or under-speci�ed de-
sign parameters. The time-dependent behavior of an
analog circuit can be described by a system of di�eren-
tial algebraic equations. To analyze an analog circuit
under all possible input signals and values of parame-
ters, we extend the reachability analysis techniques for
ordinary di�erential equations, which have been de-
veloped in the context of hybrid (discrete-continuous)
control systems and implemented in the veri�cation
tool d/dt [4]. Moreover, these techniques can be read-
ily applied to the veri�cation of mixed-signal circuits
since hybrid systems can indeed be used as a mathe-
matical model for such circuits.
There have been several previous works on formal

veri�cation of analog circuits (see for example [10, 12,
14]). The work closest to this paper is [12], in which an
analog system is approximated by a discrete system for
which classical model-checking algorithms can be ap-
plied. The discrete system is obtained by partitioning
the state space into boxes (each of which corresponds
to a state of the discrete model). The transition re-
lation is then determined by reachability relation be-
tween the boxes which is approximated by simulating
trajectories from some test points in each box.
The rest of the paper is organized as follows. In

Section 2 we present our approach to the veri�cation of
nonlinear analog circuits. The approach is illustrated
by means of a low pass �lter circuit. In Section 3 we



show the application of the approach to mixed-signal
circuits by means of a ∆-Σ modulator circuit.

2 Veri�cation of nonlinear ana-

log circuits

2.1 Approach

Mathematically, the behavior of a nonlinear analog cir-
cuit can be described by a set of di�erential algebraic
equations (DAE):

F (x(t), ẋ(t), u(t), p) = 0 (1)

where x : R+ → Rn denotes the state variables (inter-
nal voltages, currents, and outputs), p ∈ P ⊂ Rk is the
parameter vector, and u : R+ → U is the input signal.
We assume a set U of admissible input signals con-
sisting of piecewise continuous functions taking values
in a bounded and convex set U ⊆ Rl. In this model
the input is uncertain, which allows to model external
disturbance and noise. A parameter can be a resis-
tor value, a transistor saturation current, etc. The
equations (1) result from applying Kirchho�'s laws to
the whole circuit and the characteristics equations to
the basic elements. Such circuit equations can be au-
tomatically generated, and among existing techniques
to do so the Modi�ed Nodal Analysis (MNA) [8] is the
most frequently used.
To verify time-domain properties of the circuit, such

as the transient behavior, one needs to characterize the
set of solutions of (1) under all possible inputs u(t) and
all parameter values p. For safety properties (stating
that the circuit never reaches a bad state), it su�ces to
compute the set of states reachable by all trajectories
of the system. Let us formally de�ne the reachable set
notion.
We denote by γ(t, x0, u(·), p) the solution of (1) with

the initial condition x(0) = x0 under the input signal
u(·) ∈ U and a parameter p ∈ P . Given a set of initial
conditions X0 and T > 0, the reachable set from Z0

during the time interval [0, T ] is de�ned as:

R(T,X0) = {γ(t, x0, u(·), p) | t ∈ [0, T ] ∧ x0 ∈ X0

∧ u(·) ∈ U ∧ p ∈ P}.

Note that, unlike in simulation, reachability compu-
tations can handle uncertainty in initial conditions.
Reachability techniques for ordinary di�erential equa-
tions (ODE) have been developed in the context of hy-
brid systems veri�cation and control (see for example
[1] and references therein). However, an extension of
these techniques to DAEs is not easy since DAEs di�er
from ODEs both in theoretical and numerical proper-
ties, which is classi�ed by the index concept (for an
introduction see [7]). The coupled system of ODEs

and nonlinear equations as in (2) and (3) means that
the solution has to lie on a manifold. The di�erential
index of (1) is the minimal number of di�erentiations
required to solve for the derivatives ẏ. The DAEs orig-
inating from practical electronic circuits are usually of
index 1 or 2, and it is known that the problem of nu-
merically solving the DAEs with index 2 or higher is
ill-posed.
In this work, we assume that the circuit equations

are DAEs of index 1. In particular, we shall study the
equivalent semi-explicit form of (1):

ẋ(t) = f(x(t), y(t), u(t), p) (2)

0 = g(x(t), y(t), u(t), p) (3)

Note that the implicit DAE system (1) can be trivially
transformed into the above form as follows: ẋ(t) = z(t)
and 0 = F (x(t), z(t), u(t), p).
If the Jacobian gy(x, y) = ∂g/∂y is invertible in a

neighborhood of the solution, then by di�erentiating
the algebraic equation we obtain

ẏ = −g−1
y gxf (4)

In this case, the DAE system is of index 1. In a simpler
case, where ∂F/∂ẋ in (1) is regular and the algebraic
equation (3) disappears, (1) is simply an ODE system
(i.e. of index 0).
In the following we focus on the problem of com-

puting reachable sets of DAEs with index 1. A trivial
way to do so is to transform it into an ODE composed
of (2) and (4) using the above-described di�erentia-
tion and then apply the existing techniques for ODEs.
However, the drawback of this approach is that the
solution may drift away from the algebraic constraint.
To remedy this, we can retain all the original equa-
tions and their derivatives and interprete the DAE as
an ODE on the manifold de�ned by (3). Geometric
integration using projection is a standard approach
for numerical simulation of ODEs on manifolds [11].
In the sequel we show how to combine this idea with
reachability methods for ODEs to compute the reach-
able set of ODEs on manifolds.
We consider an ODE on a manifold1:

ż(t) = h(z(t)) (5)

0 = g(z(t)) (6)

To compute the reachable set, as mentioned earlier,
we employ the projection idea to avoid the drift o�
phenomenon, and the di�erential part is handled by a
reachability method for ODEs. Let M be the mani-
fold de�ned by (6). We denote by Φ the reachability
operator that takes as input a set Z and a time step

1For simplicity of presentation, u and p are not included,

but the analysis can be generalized to systems with inputs and

parameters.



r > 0 and returns the reachable set from Z by the
ODE during the interval [0, r]. The idea is to compute
the reachable set of the ODE (5) for each time step and
project it on the manifoldM, as shown in Algorithm 1
where Z0 is the set of initial conditions and ΠM is the
operator of projecting a set on M. For the compu-

Algorithm 1 Computation of R(T,Z0)
R0 = Z0

for k = 0, 2, . . . , bT/rc do
R̂k+1 = Φ(r, Rk)
Rk+1 = ΠM(R̂k+1)

end for

tation of Φ, we use the method implemented in the
tool d/dt [4, 3]. Basically, this method approximates
the reachable set of an ODE on a step-by-step basis
using polyhedra. For an a�ne system, given a convex
polyhedron R, the set R′ of states reachable from R at
time r can be computed as the convex hull of the points
reachable at time r from the vertices of R. Then, the
set of states reachable during the whole time interval
[0, r] is approximated by the convex hull conv(R∪R′)
which is enlarged by an appropriate amount to ensure
conservative approximation. If the ODE is nonlinear,
it is �rst approximated by a piecewise a�ne system
(using interpolation over a simplicial partition of the
state space) and then the method for a�ne ODEs can
be applied. This method was also extended to hybrid
systems, i.e. systems with di�erent continuous mode
whose dynamics are described by ODEs and switch-
ing between modes is described by discrete transitions
(see [2] for a detailed description of the model).
We proceed to discuss the computation of the pro-

jection operator ΠM. Since the sets R̂k in Algorithm 1
are represented by convex polyhedra, ΠM can be com-
puted by solving a constrained optimization problem.
More concretely, let V (R̂k) = {v1, . . . , vm} denote the
set of vertices of R̂k. For each vertex vi in V (R̂k),
we de�ne: vi

M = arg minz |z − vi| subject to g(z)=0,
where | · | is the Euclidian norm. Then, ΠM(R̂k) =
conv{v1

M, . . . , vm
M}. We notice that if (6) is linear,

ΠM can be easily computed using linear algebra. It is
clear that ΠM(R̂k) does not always lie entirely on M
but its distance toM can be made as small as desired.
Indeed, we can prove that, as in the case of numerical
simulation, the projection does not change the conver-
gence order of the computation method for Φ, which
is quadratic. The algorithm is illustrated by Figure 1.

We now brie�y discuss some computational issues.
Reachability computation, while allowing to analyze
all possible behaviors of a system, is much more expen-
sive than simulation, and complexity reduction meth-
ods are necessary for scalability purposes. Nonlinear-
ities in analog circuits are often restricted to the de-

Figure 1: Combining projection and reachability com-
putations for ODEs

vice models. As an example, in Chua's circuit, to ob-
serve oscillations, it is not necessary to use an exact
arctan shape for the voltage-current characteristics of
the nonlinear resistor and it can be approximated by
a piecewise linear function. The approximation of a
complex function by a piecewise simpler one, which
we call `hybridization', can be used in this context
as a means of complexity reduction. On the other
hand, discontinuities are present in many circuit ele-
ment characteristics, but they are often `smoothened'
to avoid numerical instability, and hence the use of
piecewice continuous functions sometimes allows bet-
ter modeling. We shall use this hybridization idea in
the example that follows.

2.2 Example: A Biquad lowpass �lter

Figure 2: Lowpass �lter

We now illustrate the approach with a second order
biquad low pass �lter circuit, shown in Figure 2. This
example is taken from [12]. The circuit equations are
as follows:

u̇C1 =
uC2 + uo − uC1

C1R2

u̇C2 =
Ui − uC2 − uo

C2R1
− uC2 + uo − uC1

C2R2
(7)

uo − Vmax tanh(
(uC2 − uo)Ve

Vmax
) + Uom = 0 (8)

Uom = V(i0) (9)

io = −C2 u̇C2



The algebraic constraints (8-9) come from the char-
acteristics of the operational ampli�er where uo is
the output voltage and Uom corresponds to the out-
put voltage decrease caused by the output current io.
In this circuit, Ui (input voltage), Ve, Vmax (maxi-
mal source voltage) are parameters. Denoting x =
(uC1, uC2) and y = uo, the circuit equations can be
put in the semi-explicit form (2-4). Assuming that the
Jacobian gy(x, y) has bounded inverse in a neighbor-
hood of the solution (which can indeed be veri�ed for
a concrete circuit), by di�erentiating (8) the DAE can
then be transformed into an ODE on a manifold as
in (5-6) with state variables z = (uC1, uC2, uo).
As mentioned earlier, to reduce the complexity of

reachability computation, we shall use piecewise lin-
ear approximation. First, the nonlinear characteristics
Uom = V(io) which is

V(io) = K1io + 0.5
√

K1i2o − 2K2ioIs + K1I2
s + K2

−0.5
√

K1i2o + 2K2ioIs + K1I2
s + K2.

can be approximated by a piecewise a�ne function of
the form:

V(io) =

 K1io + K3 if io ≤ Is

0 if − Is < io < Is

K1io −K3 if io ≥ Is

Therefore, the original system is approximated by a
hybrid system with 3 continuous modes. The condi-
tions for staying with a mode and for switching be-
tween modes are determined by the value interval of io.
For example in order to stay with the continuous mode
corresponding to (10) the state variables (uC1, uC2, uo)
should satisfy: io = −C2 u̇C2 ≤ Is, which together

with (7) gives −Ui − uC2 − uo
R1

−uC2 + uo − uC1
R2

≤ Is.

Note that the hyperbolic tangent function in (8) is
retained. The property to verify is the absence of
overshoots. For the highly damped case (where C1 =
0.5e−8 and C2 = 2e−8), Figure 3 shows the projection
of the reachable set on uc1 and uC2. The initial set is
de�ned by a box: uC1 ∈ [−0.3, 0.3], uC2 ∈ [−0.3, 0.3]
and uo ∈ [−0.2, 0.2]. From the �gure, one can see that
uC1 indeed remains in the range [−2, 2].

3 Application to mixed-signal

circuits

In this section we illustrate the application of hybrid
systems to the modeling and analysis of mixed signal
circuit by mean of an example of a ∆-Σ modulator.

∆-Σ modulation is a family of analog to digital con-
verters (ADC) which gained a particular interest dur-
ing the last two decades thanks to their high perfor-
mance. However, stability analysis of such circuits re-
mains a challenging problem.

Figure 3: Reachable set projected on variables uC1

and uC2

3.1 ∆-Σ modulation: principle

Basically, a ∆-Σ modulator processes an analog input
through four steps [5]: (1) dithering in order to be
sure that the signal bandwith lies within a given range
[−fb, fb]; (2) oversampling or sampling at a frequency
greater than the Nyquist rate 2×fb; (3) noise shaping
so that the quantization error is `pushed' toward high
frequencies outside the bandwidth of frequencies of in-
terest; (4) quantization typically on a few bits. In the
following examples, quantization is done on one bit.
We use an input-output plot of a simple model, shown

Figure 4: First order ∆-Σ modulator and example of
inpout-output plot

in Figure 4 to explain intuitively how ∆-Σ modulation
works. When the input sinusoid is positive, less than
1, the output takes the +1 value and the quantiza-
tion error, which is the di�erence between the input



and the output of the quantizer, is fed back with neg-
ative gain and `accumulated' in the integrator 1

z−1 .
This way, when the accumulated error reaches a cer-
tain threshold, it forces the modulator to output the
value −1 for a certain time, thus reducing the mean
of the quantization error. This model is called a �rst
order ∆-Σ modulator since it uses a �rst order �lter
to process noise.

3.2 Hybrid modeling and analysis

We now study the model of a third-order ∆-Σ mod-
ulator (see Figure 5). This model is provided by the
MATLAB Delta-Sigma toolbox [15].

Figure 5: Model of a third-order modulator. Satura-
tion blocks model saturation of the integrators

Higher order ∆-Σ modulators achieve better perfor-
mance but induce stability issues [13]. A ∆-Σ modu-
lator is said to be stable if under a bounded input,
the states of its integrators remain bounded. This
property is of great importance since integrators are
naturally saturated blocks and saturation can deteri-
orate the circuit performance. Stability analysis for
such systems is di�cult due to the presence of two
sources of nonlinearities: saturation and quantization.
We show how these phenomena can be naturally mod-
eled using hybrid automata.
We �rst notice that the modulator model under

study works in discretized time (its hybrid nature lies
in the fact that the input and the states of the in-
tegrators are in a continuous domain), and we shall
therefore derive a discrete-time hybrid model. The
continuous-time reachability techniques described in
previous sections can be straightforwardly adapted to
such hybrid models.
When the quantizer output remains constant and

none of the integrators saturates, an a�ne state-space
form of the system can be obtained:

x(n + 1) = Ax(n) + bu(n)− a

y(n) = c3x3(n) + b4

Where x(n) ∈ R3 represents the integrator states,
u(n) ∈ R is the input, y(n) ∈ R is the output. The
matrix A, the vectors a and b are constant depending
on the various gains of the model, and u(n) ∈ R is the

input. Then saturation in the ith integrator is modeled
as:

sat(xi(n)) =

 xsat
i if xn

i > xsat
i

xi(n) if |xi(n)| ≤ xsat
i

−xsat
i if xi(n) < −xsat

i

where xsat
i > 0 is the saturation value. The output

v(n) is v(n) = sign(y(n)).
Thus, the dynamics of the third-order modulator of

Figure 5 can be written as

x(n + 1) = sat(x̃(n + 1))
x̃(n + 1) = Ax(n) + bu(n)− sign(y(n))a
y(n) = c3x3(n) + b4

This is a synthetic way to represent the dynamics of
a hybrid system which is indeed piecewise a�ne, and
in which each mode corresponds to a speci�c con�g-
uration of saturation of the integrators and a output
value of the quantizer (for a modulator with 3 integra-
tors and one bit, the number of modes is 54).
Figure 6 gives a graph representation of the hybrid

automaton model of a modulator without saturation.
This reset functions associated with transitions be-

Figure 6: Hybrid automaton of a modulator without
saturation

tween modes in hybrid automata also allows to model
resetting of the integrator states. Indeed, when an
integrator quits its saturation zone, it can be advan-
tageous to reset its state to 0 (see [6]).
Using the resulting hybrid automaton model, we

can study very interesting properties of the modulator.
Saturation of the integrators (also refered to as `clip-
ping', see again [6]) can result in a non-desirable limit
cycle behaviour. It is therefore important to know
whether saturation can occur, which can indeed be
checked by reachability analysis. One can also deter-
mine the set of initial states from which under a �xed
bound on the input signals the system is guaranteed
not to enter a saturation zone. However, it happens
that the system can recover to normal operation from
a saturation state. Hence, an interesting problem is
to show that the system does not oscillate between
saturation thresholds.



4 Conclusion

We have presented in this paper a framework for mod-
eling and veri�cation of analog and mixed-signal cir-
cuits using hybrid system techniques. This work opens
a variety of future research directions. One challeng-
ing problem is the complexity of real-life circuits. The
use of our veri�cation method should be accompanied
with various abstraction techniques exploiting the cir-
cuit structure. On the other hand, an automatic trans-
lation from a circuit description (such as in VHDL-
AMS) to hybrid automata and a formal speci�cation
formalism for analog properties are necessary.
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