
Reachability analysis for polynomial dynamical systems
using the Bernstein expansion over polytopes

Thao Dang and Romain Testylier ?

VERIMAG,
2 avenue de Vignate, 38610 Gières, France

Abstract. This paper is concerned with the reachability computation problem for polyno-
mial dynamical systems. Such computations constitute a crucial component in algorithmic
verification tools for hybrid systems and embedded software with polynomial dynamics,
which have found applications in many engineering domains. We describe two methods for
over-approximating reachable sets of such systems; these methods are based on a combina-
tion of the Bernstein expansion of polynomial functions and a representation of reachable
sets by template polyhedra. Using a prototype implementation, the performance of the
methods was demonstrated on a number of examples.

1 Introduction

Hybrid systems have become a common mathematical model for engineering systems exhibit-
ing both continuous and discrete dynamics. Recently they have proved appropriate for modeling
phenomena in molecular biology. Generally, a hybrid system consists

In this work we focus on safety verification of such systems, which can be roughly stated as
proving that a hybrid system never enters a dangerous (i.e. unsafe) state.

Generally, a hybrid system can be thought as the interaction between a discrete and a con-
tinuous process. It consists of a collection of continuous modes each of which is associated with
a continuous vector field specifying the evolution of n continuous variables within some subset of
the state space X ⊆ Rn. Such sets are called the staying sets of the modes. The discrete dynamics
is described by discrete transitions, which can be triggered when the continuous variables satisfy
their associated guards. Between two transitions, the continuous process evolves according to the
continuous vector field associated with the active mode. Various hybrid systems models have been
proposed and this remains an active research area [?,?,?]. It is important to note the following
major types of non-determinism in the behavior of a hybrid system. First, the continuous dynam-
ics can be subject to uncertain input modelling external disturbances or under-specified control.
Second, non-determinism in discrete dynamics manifests when multiple discrete transitions are
simultaneously activated, or when the system simultaneously satisfies the staying condition of the
current mode (that is, it can still evolve according to the current continuous dynamics) and the
guard condition of a transition (that is, it can take the transition to switch to a different continu-
ous mode). In addition, initial conditions that are not exactly known. Even starting from a single
initial state, the system may generate a possibly infinite set of trajectories. Therefore, to prove
that the system satisfies a property, one often needs to consider a set of solutions instead of single
solutions.

A major component of a safety verification algorithm for hybrid systems is an efficient method
to compute their reachable set, which is the set of all the states visited by all the trajectories.
Roughly speaking, the goal of reachability analysis is to study the set of all possible trajectories.
While the computation of reachable sets by discrete dynamics requires mainly Boolean operations
over sets in Rn, computing the set of states reachable by continuous dynamics requires handling and
is more difficult; this has been an obstacle towards applying formal verification to real-life problems.
Therefore, much research in hybrid systems verification focuses on this particular problem. Using

? This work is supported by the ANR project VEDECY.



well-established results on linear systems, numerous methods and tools for such systems and other
simpler systems have been developed 1. Nevertheless, nonlinear systems still remain a challenge.

In this work, we address the following reachability computation problem: given a set of initial
states in Rn, compute the reachable set of a discrete-time dynamical system described by the
following difference equation:

x[k + 1] = π(x[k]) (1)

where π : Rn → Rn is a multivariate polynomial. Such dynamical systems could result from a
numerical approximation of a continuous or hybrid system. In addition, similar equations can
arise in embedded control systems, such as when a physical system is controlled by a computer
program which is the implementation of some continuous (or possibly hybrid) controller using
appropriate discretization. Our interest in discrete-time polynomial systems is motivated by their
applicability in modeling a variety of phenomena bio-chemical networks. Indeed, discrete-time
models are useful for analysis purposes, since experimental data are often measured by sampling
the continuous biochemical reaction outputs, and computer based analysis and simulation depend
on discrete-time data.

It is important to emphasize that the results presented in this paper can also be extended
to continuous-time dynamical systems described by differential equations, since these equations
can be approximated using an appropriate time discretization scheme. However, as to solve initial
value problems for continuous-time ordinary differential equations, it is crucial to obtain a time
discretization method that can guarantee conservativeness of the resulting reachable set approxi-
mations. This is indeed a topic of our current research.

As mentioned earlier, due to various non-determinism, to prove that the system satisfies a
property, one often needs to consider a set of solutions instead of single solutions. Roughly speak-
ing, the goal of reachability analysis is to study sets of all possible trajectories. Many existing
reachability computation methods can be seen as an extension of numerical integration. That is,
one has to solve the above equation (1) with sets, that is x[k] and x[k + 1] in the equation are
subsets of Rn (while they are points if we only need a single solution, as in numerical integration).

This problem was previously considered in the work [?], which was inspired by modeling tech-
niques from Computer Aided Geometric Design (CADG) and tried to exploit special geometric
properties of polynomials. The drawback of the Bézier simplex based method proposed in this
work is that it requires expensive mesh computation, which restricts its application to systems of
dimensions not higher than 3, 4. In this paper, we pursue the direction which was initiated in [?]
and make use of a special class of polyhedra. These polyhedra can be thought of as local meshes
of fixed form. This enables a significant reduction of complexity. The manipulation of such poly-
hedra is handled by optimization techniques. In addition, by exploiting a technique from CADG,
namely the Bernstein expansion, we only need to solve linear programming (LP) problems instead
of polynomial optimization problems. In this paper, we describe our results achieved along this
direction, in particular, a significant accuracy improvement compared to [?], thanks to a more
precise representation of the Bernstein expansion over polyhedra.

The paper is organized as follows. In Section 2 we introduce basic definitions of reachable sets,
template polyhedra and the Bernstein expansion of polynomials. We then formally state our reach-
ability problem and describe an optimization-based solution. In order to transform the polynomial
optimization problem to a linear programming (LP) problem, two methods for computing bound
functions for polynomials over polyhedral sets are presented. Section 6.2 describes an algorithm
summarizing the main steps of our reachability analysis method. Some experimental results, in
particular the analysis of a control system and two biological systems, are reported in Section 7.

2 Preliminaries

Let R denote the set of reals. Throughout the paper, vectors are often written using bold letters.
Exceptionally, scalar elements of multi-indices, introduced later, are written using bold letters.

1 The reader is referred to the recent proceedings of the conference Hybrid Systems: Computation and
Control HSCC.



Given a vector x, xi denotes its ith component. Capital letters, such as A, B, X, Y , denote
matrices or sets. If A is a matrix, Ai denotes the ith row of A.

We use B to denote the unit box anchored at the origin, that is B = [0, 1]n. We use π to denote
a vector of n functions such that for all i ∈ {1, . . . , n}, πi is an n-variate polynomial of the form
πi : Rn → R. In the remainder of the paper, we sometimes refer to π simply as “a polynomial”.

To discuss the Bernstein expansion of polynomials, we use multi-indices of the form i =
(i1, i2, . . . , in) where each ij is a non-negative integer. Given two multi-indices i and d, we write

i ≤ d if for all j ∈ {1, . . . , n}, ij ≤ dj . Also, we write i
d for (i1/d1, i2/d2, . . . , in/dn) and

(
i

d

)
for(

i1
d1

)(
i2
d2

)
. . .

(
in
dn

)
.

2.1 Reachable sets

We consider a discrete-time dynamical system:

x[k + 1] = π(x[k]) (2)

where the initial state x[0] is inside some set X0 ⊂ Rn, and X0 is called the initial set.

Given a set X ⊂ Rn, the image of X by π, denoted by π(X), is defined as follows:

π(X) = {(π1(x), . . . , πn(x)) | x ∈ X}.

The reachable set Xk of the system (2) at time step k ≥ 0 is defined by the following recurrence

Xk+1 = π(Xk).

2.2 Template polyhedra

When starting from X0, a dynamical system such as (2) generates a set of solutions. To charaterize
this set of solutions we use special convex polyhedra with fixed geometric form, called template
polyhedra [?,?]; ranges [?] and the octagon domains [?] are special template polyhedra. In the
following we give a brief introduction to template polyhedra.

A template is a set of linear functions over x = (x1, . . . , xn). We denote a template by an m×n
matrix H, such that each row Hi corresponds to the linear function Hix. Given such a template H
and a real-valued vector c ∈ Rm, a template polyhedron is defined by considering the conjunction
of the linear inequalities of the form ∧

i=1,...,m

Hix ≤ ci.

We denote this polyhedron by 〈H, c〉.
By varying the values of the elements of c, one can create a family of template polyhedra

corresponding to the template H. We call c a polyhedral coefficient vector. Given c, c′ ∈ Rm, if
∀i ∈ {1, . . . ,m} : ci ≤ c′i, we write c � c′. Given an m × n template H and two polyhedral
coefficient vectors c, c′ ∈ Rm, if c � c′ then the inclusion relation 〈H, c〉 ⊆ 〈H, c′〉 holds, and we
say that 〈H, c〉 is not larger than 〈H, c′〉.

The advantage of template polyhedra over general convex polyhedra is that the Boolean opera-
tions (union, intersection) and common geometric operations can be performed more efficiently [?].
Indeed, manipulating general convex polyhedra is expensive especially in high dimensions. This
poses a major problem in continuous and hybrid systems verification approaches using polyhedral
representations.



3 Reachable set approximation using template polyhedra

To compute the reachable set by a template polyhedron, at each time step, we need to compute
the image of a polyhedron P by the polynomial π. The template matrix H, which is of size m×n,
is assumed to be given; the polyhedral coefficient vector c ∈ Rm is however unknown. The problem
we now focus on is thus to find c such that

π(P ) ⊆ 〈H, c〉. (3)

For safety verification purposes, exact computation of reachable sets is often not possible (due to
undecidablity issues for example) and one thus needs to resort to over-approximations, and when
an over-approximation does not allow proving a safety property, the approximation needs to be
refined.

It is not hard to see that the following condition is sufficient for (3) to hold:

∀x ∈ P : Hπ(x) ≤ c.

Therefore, to determine c, one can formulate the following optimization problems:

∀i ∈ {1, . . . ,m}, ci = max(Σn
k=1H

i
kπk(x)) subj. to x ∈ P. (4)

where Hi is the ith row of the matrix H and Hi
k is its kth element. Note that the above functions

to optimize are polynomials. This problem is computationally difficult, despite recent progress
in the development of methods and tools for polynomial programming (see for example [?] and
references therein). An alternative solution is to find their affine bound functions, in order to replace
the polynomial optimization problem by a linear programming one, which can be solved more
efficiently (in polynomial time) using well-developed techniques, such as Simplex and interior point
techniques [?]. Indeed, the Bernstein expansion can be used to compute affine bound functions of
polynomials, as shown in the next section.

3.1 The Bernstein expansion

An n-variate polynomial π : Rn → Rn can be represented using the power base as follows:

π(x) =
∑
i∈Id

aix
i

where ai is a vector in Rn; i and d are two multi-indices of size n such that i ≤ d; Id is the set of
all multi-indices i ≤ d, that is Id = {i | i ≤ d}. The multi-index d is called the degree of π.

The polynomial π can also be represented using the Bernstein expansion. In order to explain
this, we first introduce Bernstein polynomials. For x = (x1, . . . , xn) ∈ Rn, the ith Bernstein
polynomial of degree d is defined as follows:

Bd,i(x) = βd1,i1(x1) . . . βdn,in(xn)

where for a real number y, βdj ,ij (y) =
(
dj

ij

)
yij (1− ydj−ij ).

Then, for all x ∈ B = [0, 1]n, the polynomial π can be written using the Bernstein expansion
as follows:

π(x) =
∑
i∈Id

biBd,i(x)

where for each i ∈ Id the Bernstein coefficient bi is defined as:

bi =
∑
j≤i

(
i
j

)(
d
j

)aj. (5)



With respect to our reachability problem that requires computing the image of a set by a poly-
nomial, the Bernstein expansion is of particular interest. For example, using the second property,
the coefficients of the Bernstein expansion can be used to over-approximate the image of the unit
box B by the polynomial π. Furthermore, as we will show in Section 4, these coefficients can be
used to efficiently compute an affine approximation of the polynomial.

It is important to note that the above expansion is valid only if x is inside the unit box. Even
if our initial set X0 is inside the unit box B, after the first step, the polyhedral approximation
of the reachable set can be outside the unit box. Therefore, we need to consider the problem of
computing the image of a general convex polyhedron P . To this end, we first consider the case
where the set P is the unit box and then show how the solution can be extended to general convex
polyhedra.

4 Computing bound functions over the unit box domain

To compute bound functions, we use the method based on the Bernstein expansion, published
in [?]. Computing convex lower bound functions for polynomials is a problem of great interest,
especially in global optimization. The reader is referred to [?,?,?] for more detailed descriptions
of these methods. It is important to note that the methods described in this section only work for
the case where the variable domain is the unit box B. The reason is that it employs the expression
of the control points of the Bernstein expansion in (5) which is only valid for this unit box. Their
extensions to arbitrary polyhedral domains are discussed in the next section. Therefore, in what
follows, we assume that our initial polyhedron P is included in the unit box.

4.1 Using a convex hull lower facet

The first step of this method [?] involves computing the affine lower bound function whose corre-
sponding hyperplane passes through this control point b0. Then, additionally, (n−1) hyperplanes
passing through n other control points are determined. This allows constructing a sequence of
n affine lower bound functions l0, l1, . . . ln. The method ends up with ln, a function whose cor-
responding hyperplane passes through a lower facet of the convex hull spanned by these control
points. Note that we can easily compute an upper bound function of π by computing a lower
bound functions for −π using this method and then multiply each resulting function by −1.

4.2 Using linear least squares approximation

The essence of the second method [?] for computing bound functions is to find a hyperplane
that is close to all the control points, using linear least squares approximation. This can lead to
tighter bound functions since the general shape of the function graph is better captured. Then,
the resulting affine function corresponds to the ”median” axis of the convex hull of all the control
points. It thus suffices to shift it downward so that it is guaranteed to be a lower bound function.

5 Computing affine bound functions over polyhedral domains

As mentioned earlier, the methods to compute affine bound functions for polynomials in Section 4
can be applied only when the set P is inside the unit box B anchored at the origin. To extend it
to polyhedral domains, we transform the polyhedra to the unit box by two methods: (1) via an
(oriented) box approximation, and (2) by rewriting the polynomials using a change of variables.

5.1 Using a box approximation

If we over-approximate P with a box B, it is then possible to derive a formula expressing the
Bernstein coefficients of π over B. However, this formula is complex and its representation and
evaluation can become expensive.



We alternatively consider the composition of the polynomial π with an affine transformation τ
that maps the unit box to B. The functions resulting from this composition are still polynomials,
for which we can compute their bound functions over the unit box, using the formula (5) of the
Bernstein expansion. This is explained more formally in the following.

Let B be the bounding box of the polyhedron P , that is, the smallest box that includes P .
The affine function τ that maps the unit box B to B can be easily defined as: τ(x) = diag(λ)x+g
where g ∈ Rn such that gi = li, and diag(λ) is a n× n diagonal matrix with the elements on the
diagonal defined as follows: for each i ∈ {1, . . . , n}, λi = hi − li.

The composition γ = (π o τ) is defined as γ(x) = π(τ(x)).
Note that γ = π o τ . Then, π(P ) ⊆ γ(B).

We remark that the above is still valid for any affine function τ . This means that instead of an
axis-aligned bounding box, we can over-approximate P more precisely with an oriented (i.e. non-
axis-aligned) bounding box. The directions of an oriented bounding box can be computed using
Principal Component Analysis (PCA) [?]. A detailed description of the method can be found in [?].

5.2 Using a change of variables

The polyhedron P can also be map to the unit box B by a change of variables as follows. We
assume that the polyhedron P is bounded and let V = {v1, . . . ,vl} be the set of its vertices. We
first express the coordinates of a point x inside the polyhedron P as a linear combination of the
vertices of P , that is

x =

l∑
j=1

αjvj = ν(α1, . . . , αl)

such that

∀j ∈ {1, . . . , l} αj ≥ 0 (6)

l∑
j=1

αj = 1. (7)

We then substitute x in π with ν(α1, . . . , αl) to yield a new polynomial in α1, . . . , αl.
We denote µ = π o ν, that is π(x) = µ(α1, . . . , αl). Furthermore, in order to retain the relation

between αj expressed in the constraint (7) we can use

αl = 1−
l−1∑
j=1

αj

to substitute αl in µ by the above sum, in order to obtain a polynomial with (l − 1) variables,
denoted by ξ(β) where α̃ = (α1, . . . , αl−1).

Note that the constraints (6-7) indicate that γ is inside the unit box Bα̃ in Rl−1. This implies
that a bound function computed for the polynomial ξ(α̃) on this unit box is also a bound function
for the original polynomial π on the polyhedron P without additional error, unlike in the above-
described case of box approximations. It then suffices to compute the bound functions for π over
the polyhedron P using the Bernstein expansion of ξ over the Bα̃.

6 Reachable set computation

6.1 Image computation

We now show how the above affine bound functions can be used to solve the optimisation prob-
lems (4) in order to determine the coefficients of a template polyhedron over-approximating the



reachable set. The functions to optimize in (4) can be seen as the compositions of polynomials πk.
Since every coefficient Hi

k is constant, each

σi(x) = Σn
k=1H

i
kπk(x)

is simply a polynomial and we can compute its bound functions. The template polyhedral coeffi-
cients can hence be computed by solving the following optimization problems:

∀i ∈ {1, . . . ,m}, ci = max(σi(x)) subj. to x ∈ P ; (8)

However, such compositions often result in polynomials with more monomial terms and thus
more Bernstein coefficients to consider. In the following we propose a way to bound each element
of the sum separately, which costs less computation time but induces greater overall error. For
each k ∈ {1, . . . ,m}, let uk(x) and lk(x) respectively be an upper bound function and a lower
bound function of πk(x) w.r.t. the initial polyhedron P .

We consider the following optimization problem:

∀i ∈ {1, . . . ,m}, ci = Σn
k=1H

i
kωk. (9)

where the term Hi
kωk is defined as follows:

– If the element Hi
k > 0, Hi

kωk = Hi
k maxuk(x) subj. to x ∈ P ;

– If the element Hi
k ≤ 0, Hi

kωk = Hi
k min lk(x) subj. to x ∈ P .

The following lemma is a direct result of (9).

Lemma 1. If a polyhedral coefficient vector c ∈ Rm satisfies (9). Then π(P ) ⊆ 〈H, c〉.
Proof. It is indeed not hard to see that the solution ci of the optimization problems (9) is

greater than or equal to the solution of (4). Hence, if c satisfies (9), then

∀i ∈ {1, . . . ,m} ∀x ∈ P : Σn
k=1H

i
kπk(x) ≤ ci.

This implies that ∀x ∈ P : Hπ(x) ≤ c, that is the image π(P ) is included in the template
polyhedron 〈H, c〉.

We remark that if all the bound functions in (9) are affine and P is a convex polyhedron, c
can be computed by solving 2n linear programming problems.

6.2 Reachable set computation algorithm

Algorithm 1 summarizes the main steps of our approach for over-approximating the reachable set
of the system (2) where the initial set X0 is a bounded polyhedron in Rn. The template is an input
of the algorithm. In the current implementation of the algorithm, either templates fixed a-priori
by the user or templates forming regular sets are used.

To unify two methods of mapping a polyhedron to the unit box in the same abstract algorithm,
we use β to denote both of the transformations using either a box approximation or a change of
variables.

The procedure UnitBoxMap is used to determine the function β. This function is then com-
posed with the polynomial π, the result of which is the polynomial γ. The affine lower and upper
bound functions l and u of γ are then computed, using the Bernstein expansion of γ over the
corresponding unit box. The function PolyApp determines the polyhedral coefficient vector c
by solving the linear programs where the optimization domain is the unit box. The polyhedral
coefficient vector c̄ is then used to define a template polyhedron Xk+1.

Based on the analysis so far, we can state the correctness of Algorithm 1.

Theorem 1. Let 〈H, c̄〉 be the template polyhedron returned by Algorithm 1. Then π(P ) ⊆ 〈H, c̄〉.
We remark that, when using a box approximation, u and l are upper and lower bound functions

of γ with respect to the unit box B. It is not hard to see that τ−1(Xk) ⊆ B where τ−1 is the
inverse of τ . Using the property of bound functions, u and l are also bound functions of γ with
respect to τ−1(Xk). Hence, if we solve the optimization problems over the domain τ−1(Xk) (which
is often smaller than B), using Lemma 1, the resulting polyhedron is still an over-approximation
of π(Xk). This remark can be used to obtain more accurate results.



Algorithm 1 Reachable set computation

/* Inputs: convex polyhedron X0, polynomial π, templates H */

k = 0
repeat
β = UnitBoxMap(Xk) /* Compute the function mapping the unit box B to the polyhedron Xk */
γ = π o β
(u, l) = BoundFunctions(γ) /* Compute the affine bound functions */
c̄ = PolyApp(u, l,H) /* Compute the polyhedral coefficient vector */
Xk+1 = 〈H, c̄〉 /* Construct the template polyhedron and return it */
k + +

until k = kmax

7 Experimental results

We have implemented our methods in a prototype tool. The implementaion uses the library lp-
solve2 for linear programming. The tool can be combined with a reachability analysis algorithms
to verify hybrid systems with polynomial continuous dynamics. In the following, we demonstrate
the methods with three examples: a control system (modeled as a hybrid system) and a biological
system (modeled as a continuous system). The time efficiency of the tool was also evaluated by
considering a number of randomly generated polynomials.

7.1 A control system

The first example we present is the Duffing oscillator taken from [?,?]. This is a nonlinear oscillator
of second order, the continuous-time dynamics is described by

ÿ(t) + 2ζẏ(t) + y(t) + y(t)3 = u(t)

where y ∈ R is the state variable and u ∈ R is the control input. The damping coefficient ζ = 0.3.
In [?], using a forward difference approximation with a sampling period h = 0.05 time units, this
system is approximated by the following discrete-time model:

x1[k + 1] = x1[k] + hx2[k]

x2[k + 1] = −hx1[k] + (1− 2ζh)x2[k] + hu[k]− hx31[k]

In [?], an optimal predictive control law u(k) was computed by solving a parametric polynomial
optimization problem.

We model this control law by the following switching law with 3 modes:

u[k] = 0.5 ∗ k if 0 ≤ k ≤ 10

u[k] = 5− 0.5 ∗ (k − 10)/3 if 10 < k ≤ 40

u[k] = 0 if k > 40

The controlled system is thus modeled as a hybrid automaton [?] with 3 discrete states. The initial
set is a rectangle such that 2.49 ≤ x1 ≤ 2.51 and 1.49 ≤ x2 ≤ 1.51.

The results obtained using the two methods are shown in Figure ?? which are coherent with
the phase portrait in [?]. We can see that the method using a change of variables achieved better
precision since the reachable set it computed is include in the set computed by the other method.
However, the method using a change of variables is less time-efficient. For 70 steps, the computation
time of the method using a box approximation is 1.25s while that of the method using a change
of variables is 1.18s. We also used this example to compare the two methods of computing bound
functions and observed that they produced equally accurate results, as shown in Figure 1.



Fig. 1. The Duffing oscillator: the reachable set computed using a change of variable is more accurate
than the one computed using a box approximation.

dim degree nb nb time (s) time (s)
d monomials of degree d templates method BA method CV

2 2 4 4 0.004 0.001
2 3 6 4 0.002 0.008
2 4 8 4 0.005 0.01

3 2 6 6 0.009 0.011
3 3 9 6 0.023 0.043
3 4 12 6 0.068 0.158

4 2 8 8 0.041 0.065
4 3 12 8 0.184 0.62
4 4 16 8 0.87 6.11167

5 2 10 10 0.265 0.501
5 3 15 10 15.44 1.48444

6 2 12 12 1.031 4.508

7 2 14 14 5.889 51.334

Fig. 2. Computation time for randomly generated polynomial systems in various dimensions and degrees.
The second column contains the degree d of the polynomials, and third column contains their number of
monomial of degree d.

7.2 Randomly generated systems

In order to evaluate the performance of our methods, we tested them on a number of randomly
generated polynomials in various dimensions and maximal degrees (the maximal degree is the
largest degree for all variables). For a fixed dimension and degree, we generated different examples
to estimate an average computation time. In the current implementation, polynomial composition
is done symbolically, and we do not yet exploit the possibility of sparsity of polynomials (in terms
of the number of monomials). The computation times in seconds for the method using a box
approximation (abbreviated to BA) and the method using a change of variables (abbreviated to
CV) are shown in the table in Figure 2.

As expected, the computation time grows linearly w.r.t. the number of steps. This can be
explained by the use of template polyhedra where the number of constraints can be chosen ac-
cording to required precisions and thus the complexity of the polyhedral operations can be better
controlled, compared to general convex polyhedra. Indeed, when using general polyhedra, the op-
erations, such as the convex hull, may increase their geometric complexity (roughly described by
the number of vertices and constraints).

On the other hand, we also compared the two methods for computing bound functions: using a
lower convex hull facet (abbreviated to CHF) and using the least squares approximation (abbrevi-
ated to LSA). The average computation time for one step of reachability computation is shown in
Table 3. In this experiment we used box templates and we generate random quadratic polynomial
systems with 5 terms. Moreover, the computation time for polynomial composition is not included,
since the computation of bound functions is not a dominant part of the total computation time.
We were not able to test systems of dimensions higher than 9 because polynomial composition
becomes prohibitively costly. This issue can be handled by computing the Bernstein coefficients
without explicit polynomial composition, which is indeed a topic of our current research. We have
observed that the method using the least squares approximation would be more performant than
the one using a lower convex hull facet for systems of dimension beyond 9. The latter requires
solving n systems of linear equations in dimensions increasing from 1 to n. The former requires
solving only one linear system in dimension (n+ 1). Using Gaussian elimination to solve a system

2 http://lpsolve.sourceforge.net/



of n equations for n unknowns has complexity of O(n3). Thus, the complexity of the method
using a lower convex hull facet is roughly O((n − 1)2n2/4) while the complexity of the other is
O((n+ 1)2).

dim time (s) time (s)
method LSA method CHF

2 0.00005 0.0005
3 0.00016 0.00016
4 0.00275 0.00263
5 0.0117 0.0116
6 0.0463 0.0441
7 0.1497 0.1191
8 0.8012 0.4837
9 4.755 1.591

Fig. 3. The computation times of computing a bound function on randomly generated polynomial systems
using the LSA method (second column) and the CHF method (third column). In this experiment, the
polynomials are quadratic with 5 second-order monomials). The

8 Related work

Our reachability analysis approach is similar to a number of existing ones for continuous and hybrid
systems in the use of linear approximation. Its novelty resides in the efficient way of computing
linear approximations. Indeed, a common method to approximate a non-linear function by a
piecewise linear one, as in the hybridization approach [?] for hybrid systems, requires non-linear
optimization. Our approach exploits the Bernstein expansion of polynomials to replace expensive
polynomial programming by linear programming.

A similar idea, which involves using the coefficients of the Bézier simplex representation, was
used in [?] to compute the image of a convex polyhedron. If using the methods proposed in this
paper with a sufficient number of templates to assure the same precision as the convex hull in
our previous Bézier method [?], then the convergence of both methods are quadratic. However the
Bézier method requires expensive triangulation operations, and geometric complexity of resulting
sets may grow step after step. Combining template polyhedra and bound functions allows a good
accuracy-cost compromise.

Besides constrained global optimization, other important applications of the Bernstein expan-
sion include various control problems [?] (in particular, robust control). The approximation of the
range of a multivariate polynomial over a box and a polyhedron is also used in program analysis
and optimization (for example [?,?]). In the hybrid systems verification, polynomial optimization
is used to compute barrier certificates [?]. Algebraic properties of polynomials are used to compute
polynomial invariants [?] and to study the computability of image computation in [?].

9 Conclusion

The reachability computation methods we proposed in this paper combine the ideas from opti-
mization and the Bernstein expansion. These results can be readily applicable to hybrid systems
with polynomial continuous dynamics.

The performance of the methods was demonstrated using a number of randomly generated
examples. These encouraging results also show an important advantage of the methods: thanks to
the use of template polyhedra, the complexity and precision of the method are more controllable
than those using polyhedra as symbolic set representations.



There are a number interesting directions to explore. Indeed, different tools from geometric
modeling could be exploited to improve the efficiency of the method. For example, polynomial
composition can be done for sparse polynomials more efficiently using the blossoming technique [?].
In addition to more experimentation on other hybrid systems case studies, we intend to explore a
new application domain, which is verification of embedded control software. In fact, multivariate
polynomials arise in many situations when analyzing programs that are automatically generated
from practical embedded controllers.


