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Abstract. We present a technique to compute over-approximations of
the time trajectories of an affine hybrid system using template polyhedra.
Such polyhedra are obtained by conjoining a set of inequality templates
with varying constant coefficients. Given a set of template expressions,
we show the existence of a smallest template polyhedron that is a positive
invariant w.r.t to the dynamics of the continuous variables, and hence, an
over-approximation of the time trajectories. However, the least invariant
is hard to compute efficiently. Therefore, we propose a policy iteration
technique that iterates over the space of invariant certificates to converge
onto a solution that is close to the least solution. We incorporate our ideas
in our prototype tool TimePass for safety verification of affine hybrid
systems, with promising results on benchmarks.

1 Introduction

The time elapse operator over-approximates the continuous state evolution in-
side each discrete mode of a hybrid system. In this paper, we investigate the
computation of the time elapse over template polyhedra. A template is a set
H = {h1(x), . . . , hm(x)} of linear expressions over x, represented as an m × n
matrix H . Given a template, a family of template polyhedra is obtained by
considering conjunctions of the form

∧
i hi(x) ≤ ci.

Definition 1 (Template Polyhedron). A template polyhedron over a tem-
plate H is a polyhedron of the form Hx ≤ c, wherein c ∈ Rm

+ . Such a polyhedron
will be represented as 〈H, c〉. Further properties of template polyhedra are pre-
sented in our previous work [4].

An instance of the time elapse problem consists of an initial region 〈H, c0〉, a
location invariant 〈H, inv〉, and the vector field D : ẋi = fi(x) specifying the
dynamics of each state variable xi. We assume that D is an affine vector field.
The Lie derivative LD(f) for any affine function f : cT x + d is also affine.

If c1 ≤ c2 (the ≤ relation is applied entry-wise) then 〈H, c1〉 ⊆ 〈H, c2〉. Given
a template H , operations such as join, intersection, post-condition, emptiness
and containment checks can all be carried out efficiently.

Positive Invariant Sets. Informally, a closed region C is a positive invariant iff
at every point on its surface, the vector field “points” back inside the region [1].
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The polyhedron 〈H, d〉 s.t. c0 ≤ d ≤ inv, is a positive invariant w.r.t 〈H, inv〉 iff
for each row i, either (a) 〈H, d〉 ∧ Hix = di |= LD(Hix) > 0, or (b) di = invi.
The notion of positive invariance can be relaxed using Lagrangian relaxation.
〈H, d〉 is a relaxed invariant w.r.t a scale factor μ ∈ R, iff c0 ≤ d ≤ inv, and

∀ i ∈ [1, m], if di < invi then 〈H, d〉 |= LD(Hix − di) + μ(Hix − di) ≤ 0 .

Theorem 1. If 〈H, d〉 is a relaxed invariant w.r.t some scale factor μ, then it
is a positive invariant.

2 Policy Iteration

We now sketch the salient aspects of our policy iteration technique to com-
pute relaxed invariants1. The technique presented here extends earlier work by
Gaubert et al. to continuous systems [2]. Consider the instance 〈H, c0, inv,D〉
along with a fixed value for the scale factor μ. Policy iteration starts from an
initial relaxed invariant α(0) = inv, and computes a sequence of invariants:
inv = α(0) > α(1) > · · · > α(N) = α(N + 1) ≥ c0, eventually converging to
a relaxed invariant α(N). For simplicity, we assume that the initial conditions
and the invariants are non-empty and bounded.

Dual Certificate. Let 〈H, α〉 be a relaxed invariant w.r.t a scale factor μ. We
define a certificate to verify this fact. The key requirement to be checked is that
for each row j ∈ [1, m], if αj < invj , then 〈H, α〉 |= μ(Hjx−αj) +L(Hjx) ≤ 0.
This condition is checked by verifying that the linear program Lj has a non-
positive solution:

Lj : max μ(Hjx − αj) + L(Hjx − αj) s.t. 〈H, α〉 , (1)

Note that since 〈H, α〉 is feasible and bounded (because c0 ≤ α ≤ inv), the
optimal solution to Lj exists and is bounded. A row j for which αj ≥ inv is
termed a frozen row. The value of αj is justified by the invariant for such a row.
Let H ′

jx + hj denote the Lie derivative of Hjx. Dualizing Eqn. 1, we obtain

Dj : min αT λ − μαj + hj s.t. HT λ = (μ(Hj) + H ′
j)

T ∧ λ ≥ 0 (2)

The solution to Dj certifies the validity of Eqn. 1 if its optimal value is non-
negative: αT λ−μαj +hj ≤ 0. The dual solutions can certify a relaxed invariant.

Definition 2 (Invariant Certificate). An invariant certificate is a tuple 〈F, Λ〉
wherein F ⊆ {1, . . . , m} is a set of frozen row indices, while Λ is a m × m
matrix with non-negative entries; s.t. for each index j ∈ [1, m] − F, HT Λj =
(μ(Hj) + H ′

j)
T ∧ Λj ≥ 0 (Eqn. 2), and for each index j ∈ F, Λj = 0.

An invariant 〈H, α〉 is certified by 〈F, Λ〉 iff for each j ∈ F , αj = invj and for
each j ∈ [1, m]−F , αT Λj −μαj + hj ≤ 0. Given an invariant α, we can extract
its certificate as follows: First, we solve the LP Dj for each row j. Following
1 A detailed version of this paper may be obtained by requesting the authors.
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Lj, it always has an optimum. If the optimal value is positive, then j ∈ F and
Λj = 0. Otherwise, Λj is set to the optimal solution for Dj . The certificates
obtained using this procedure will be called vertex certificates. Therefore, every
relaxed invariant 〈H, α〉 is certified by some vertex certificate π.

On the flip side, given certificate π : 〈F, Λ〉, the relaxed invariants that are
certified by it are obtained using the following constraints:

Lπ : c0 ≤ y ≤ inv ∧
∧

j∈F

yj = invj ∧
∧

j∈[1,m]−F

ΛT

j y − μyj + hj ≤ 0 (3)

A certificate π is feasible iff the constraint Lπ is feasible; i.e, it certifies at least
one relaxed invariant.

Lemma 1. If certificate π is feasible, then it has a minimal solution. I.e., ∃ c ∈
[[Lπ]], s.t. ∀d ∈ [[Lπ]], c ≤ d.

The minimal solution can be found by solving the LP: min.
∑

j yj s.t. Lπ. The
following result forms the basis of our technique:

Theorem 2. There are finitely many (O(2|H| · |H |2|H|
)) vertex certificates.

Let P = {π1, . . . , πM} be the set of all feasible vertex certificates, and C =
{ci|ci is the least solution to Lπi} be the corresponding least relaxed invariants.

Lemma 2. For every relaxed invariant c, there exists a relaxed invariant cj ∈
C, s.t. cj ≤ c.

Applying Lemma 2 repeatedly, we show that C has a minimum element. As a
result, the least relaxed invariant exists and can be computed algorithmically by
enumerating all the elements of the set C, in turn obtained by enumerating P .
However, the naive procedure is doubly exponential in the size of the template.

Therefore, we use a policy iteration algorithm to converge to a relaxed invari-
ant while exploring a tiny fraction of the set C in practice. However, this solution
is not always guaranteed to be the least solution. Starting from α(0) = inv, we
repeat the policy improvement steps (shown below) until α(j + 1) = α(j).

1. Compute the certificate π(j) for α(j) by solving Dj (Eqn. 2).
2. Compute α(j + 1) by solving the LP Lπ(j) in Eqn. 3.

Theorem 3. The policy iteration eventually converges to a relaxed invariant.

3 Implementation and Experiments

Our prototype tool TimePass implements the techniques described in this pa-
per using template polyhedra for the safety analysis of affine hybrid systems.
TimePass primarily uses a flowpipe construction technique for template poly-
hedra described in an earlier work [4]. The policy iteration algorithm is used to
restrict the invariant region for the flowpipe construction. The resulting flow-
pipe construction is more precise. Surprisingly, the policy iteration technique
also leads to fewer flowpipe segment and therefore a non-trivial speedup.
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Table 1. Performance of our tool on hybrid systems benchmarks. All timings are in
seconds and memory in MBs. Note, H: Template size, T:Time, Mem: memory, Prf?:
Property proved.

Name Description Bench Size Policy Iter. FPipe Comb.
#Var #Loc #Trs |H | T Mem Prf? T Prf? T Prf?

nav01 Benchmark [3] 4 8 18 64 10 30 Y 260 Y 22 Y
nav02 - 4 8 18 64 12 25 Y 362 Y 23 Y
nav03 - 4 8 18 64 8 24 Y 390 Y 20 Y
nav04 - 4 8 18 64 2 12 N 1147 Y 18 Y
nav05 - 4 8 18 64 2 10 N 7 N 513 Y
nav06 - 4 8 18 64 5 15 N 45 N 1420 N
nav07 - 4 15 39 64 14 31 Y 1300 N 572 Y
nav08 - 4 15 39 64 12 27 N 139 N 572 Y

Experiments. Table 1 shows the performance of our tool on some hybrid sys-
tems benchmarks consisting of small but complex systems, designed to test the
accuracy of the flowpipe construction and its propagation. A detailed descrip-
tion is available elsewhere [3]. We compare the performance of three ways for
computing the time elapse: (A) policy iteration, (B) flowpipe construction and
(C) their combination. Note that policy iteration alone is unable to prove many
of the properties. Furthermore, the strengths of the two approaches seem com-
plementary. Together, they can prove properties beyond the reach of either. Our
timings are competitive with those reported by tools such as PHaVer, HSolver
and a previous version of our tool using full convex polyhedra. Furthermore, we
are able to prove more systems using our techniques than previously reported
elsewhere.
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