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Abstract. In this paper we present an approach to approximate reacha-
bility computation for nonlinear continuous systems. Rather than study-
ing a complex nonlinear system ẋ = g(x), we study an approximating
system ẋ = f(x) which is easier to handle. The class of approximating
systems we consider in this paper is piecewise linear, obtained by inter-
polating g over a mesh. In order to be conservative, we add a bounded
input in the approximating system to account for the interpolation error.
We thus develop a reachability method for systems with input, based on
the relation between such systems and the corresponding autonomous
systems in terms of reachable sets. This method is then extended to the
approximate piecewise linear systems arising in our construction. The
final result is a reachability algorithm for nonlinear continuous systems
which allows to compute conservative approximations with as great de-
gree of accuracy as desired, and more importantly, it has good conver-
gence rate. If g is a C2 function, our method is of order 2. Furthermore,
the method can be straightforwardly extended to hybrid systems.

1 Introduction

Reachability computation is required by a variety of safety verification, anal-
ysis, and design problems for hybrid systems. The importance of the problem
has motivated much research on reachability analysis of such systems (see [5,
14]). For a class of hybrid systems with piecewise constant derivatives, methods
and tools for (exact) computation of reachable sets are well-developed [26,20,
16]. For systems involving non-trivial continuous dynamics (described by differ-
ential equations), exact reachability computation is difficult, and even for linear
differential equations it is feasible only for certain classes of matrices, depending
on eigenstructure [19,2]. Alternatively, several approximate methods have been
developed, and some of them can be used for nonlinear continuous systems, such
as [13,8,7,22]. Basically, these methods numerically approximate reachable sets
using a variety of set representations (such as polyhedra, level sets). A common
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point of these methods is that they work directly with the nonlinear differential
equations, more precisely, they track the evolution of the reachable sets accord-
ing to the flows of the nonlinear equations. In this work, we take an approach
which differs from these methods in this aspect. The main idea of the approach
is as follows.

Rather than studying a complex nonlinear system ẋ = g(x), we study an
approximating system ẋ = f(x) which is easier to handle. The class of approx-
imating systems we consider in this paper is piecewise linear, obtained by in-
terpolating the function g over a mesh built on the state space of the system.
Moreover, in order to be conservative, we add an input u to account for the error
inherent in approximating g with f , and the result is a system with (bounded)
input ẋ = f(x) + u. This construction gives rise to the question of how to deal
with the input in the approximating system efficiently. We thus consider the re-
lation between a system with input and the corresponding autonomous system
in terms of reachable sets, and this study leads us to an abstract reachability
algorithm for systems with input, which can then be extended to deal with the
approximate interpolating systems. The final result is a reachability method for
nonlinear systems which allows to compute conservative approximations with as
great degree of accuracy as desired, and more importantly, it has good conver-
gence rate. As we shall see later, if g is a C2 function our method is of order 2.
Furthermore, the method can be straightforwardly extended to hybrid systems
and readily integrated in a verification tool.

The ‘hybridization’ approach has previously been explored in [25,17,24] where
the approximating systems are systems with piecewise constant slopes or rect-
angular inclusions. The idea of defining piecewise linear approximation based
on interpolation has been used for numerical integration of nonlinear differential
equations [9,11]; in this paper, we exploit this idea for reachability computation
purposes. In [13], linear approximation is also used in each integration step to
obtain better approximations of the reachable sets in 2 dimensions. On the other
hand, our reachability method for systems with uncertain input has some similar
flavor with the method of approximation of viability kernels of differential inclu-
sions in [23]. Recently, in [15], a control problem for a class of piecewise linear
systems, similar to our approximating systems, is solved in terms of reachability
conditions.

The paper is organized as follows. Section 2 is devoted to definitions and
notations. In Section 3 we consider the reachability problem for (general) con-
tinuous systems with input. In Section 4 we present a method to approximate
reachable sets of nonlinear systems by means of piecewise linear approximation.
The theoretical result of Section 3 is the basis for the proof of the convergence
of the method. Section 5 contains some examples illustrating our approach.

2 Basic Definitions

We consider a nonlinear system

ẋ(t) = g(x(t)), x ∈ X ⊂ Rn. (1)
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As mentioned in the introduction, we approximate the system (1) with another
system (which is easier to solve):

ẋ(t) = f(x(t)), x ∈ X ⊂ Rn. (2)

Let µ be the bound of ||f − g||, i.e. ||f(x) − g(x)|| ≤ µ for all x ∈ X where || · ||
is some norm on Rn. We assume that the function f is L-Lipschitz. In order to
be able to capture all the behaviors of the original system (1), we introduce in
the system (2) an input to account for the approximation error.{

ẋ(t) = s(x(t), u(t)) = f(x(t)) + u(t),
u(·) ∈ Uµ

(3)

where Uµ is the set of admissible inputs which consists of piecewise continuous
functions u of the form u : R+ → Rn such that ||u(·)|| ≤ µ. It is not hard to
see that the system (3) is an overapproximation of the original system (1) in the
sense that all trajectories of (1) are contained in the set of trajectories of (3).

Given an initial point x ∈ X , let Φf (t, x) be the trajectory starting from
x of the system (2) and let Φs(t, x, u(·)) be the trajectory starting from x of
the system (3) under input u(·) ∈ Uµ. For a set of initial points X0 ⊂ X and
T > 0, the reachable sets of the autonomous system (2) during the interval [0, T ]
is defined as: Kf (T, X0) = { y = Φf (t, x) | t ∈ [0, T ], x ∈ X0 }. Similarly, the
reachable set of the system (3) from X0 during the interval [0, T ] is defined as:
Ks(T, X0) = { y = Φs(t, x, u(·)) | t ∈ [0, T ], x ∈ X0, u(·) ∈ Uµ }.

3 Reachability Analysis for Systems with Input

As mentioned earlier, with a view to deal with the input in the approximating
system, we first consider the problem of deriving the reachable set of a system
with input from the reachable set of the corresponding autonomous system. More
concretely, our goal is to compute the reacheable set Ks(T, X0) of the system
with input (3), assuming that we are able to compute the image of a set X ⊂ X
by the flow Φf of the autonomous system (2) for a given time t ≥ 0, denoted by
Φf (t, X).

We first describe an abstract algorithm to do so and then discuss the prop-
erties of the algorithm concerning conservativeness and convergence of the ap-
proximation. It is important to emphasize that these theoretical results are key
to the validation of the reachability method for nonlinear systems, developed in
the next section.

The idea to solve this problem relies on the following result, which is a con-
sequence of the Fundamental Inequality theorem from the theory of dynamical
systems (see Appendix).

Lemma 1. For all t ≥ 0 and for all u(·) ∈ Uµ,

||Φf (t, x) − Φs(t, x, u(·))|| ≤ µ

2
(eLt − 1).
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Hence, to approximate the reachable set of the system with input, we can ap-
propriately expand the reachable set of the autonomous system by the amount
given on the right hand side of the inequality of Lemma 1. We thus define an
‘expanding’ operation as follows: for a set S ⊂ Rn and a real number ε ≥ 0, the
expanded set is N (S, ε) = S ⊕ εB where B is the unit ball at the origin, and ⊕
is the Minkowski sum. Our reachability computation procedure is summarized
in Algorithm 1.

Input: Initial set X0, Result: Approximation of Ks(T, X0)
N = T

r
; ε = µ

L
(eLr − 1) /* r is the time step */

/* –Initialization */
P1 = Kf (r, X0)
Q1 = N (P1, ε)
R1 = Q1

/* –Main loop */
for i← 1 to N − 1 do

Pi+1 = Φf (r, Qi)
Qi+1 = N (Pi+1, ε)
Ri+1 = Ri ∪Qi+1

end
return RN

Algorithm 1: Approximating the reachable set of the system with input

In Algorithm 1, r is the time step and the set Qi represents an overapproxi-
mation of the reachable set during time interval [(i − 1)r, ir] of the system with
input (3). The algorithm consists of the following two phases. The goal of the
first phase is to initialize Q1. This is done by computing P1, which is indeed the
reachable set of the autonomous system (2) for the first time interval [0, r], and
then expanding P1 by the amount ε (which is the bound from Lemma 1). In the
main loop, each iteration i takes Qi as input and computes Qi+1 as follows. The
set Pi+1 is first computed as the image of Qi by the flow Φf of the autonomous
system, and Qi+1 is then obtained by expanding Pi+1 by ε. The result RN is
simply the union of all Qi.

Properties of the Approximation

We now present two properties concerning the conservativeness and convergence
of the approximation produced by Algorithm 1.

Theorem 1. Let RN be the set computed by Algorithm 1. Then,

– P1. (Conservative approximation) Ks(T, X0) ⊆ RN .
– P2. (Convergence of the approximation) dH(Ks(T, X0), RN ) ≤ 2µ r eLT ,

where dH is the Hausdorff distance.
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As we can see from the theorem, the approximate set produced by Algorithm 1
is guaranteed to be an overapproximation of the exact reachable set. Moreover,
it converges to the exact set with regard to the Hausdorff distance. The proof of
the theorem can be found in Appendix.

4 Reachability Computation for Nonlinear Systems
Using Piecewise Linear Approximation

In this section, we focus on the main problem of the paper, which is the com-
putation of reachable sets for nonlinear continuous systems. Following the ‘hy-
bridization’ idea, our method consists of two steps. We first approximate the
(complex) nonlinear system by a piecewise (simple) linear system. A bound on
the approximation error is estimated and then added to the piecewise linear sys-
tem as uncertain input, which guarantees that the resulting system is indeed an
overapproximation of the original system. The second step involves extending
Algorithm 1, which is designed for continuous systems with input, to piecewise
linear systems. We first describe the two steps of the method and then discuss
the convergence results.

4.1 Construction of Approximating Systems

We consider the nonlinear system

ẋ(t) = g(x(t)), x ∈ X ⊂ Rn (4)

We assume that g is Lipschitz and the state space X is a bounded convex poly-
hedron in Rn. To define an approximating system, we decompose the state space
into polyhedral regions and then associate with each region a linear system using
interpolation. The procedure of decomposition of the state space is called mesh
generation. In the sequel, we will define these concepts formally.

Piecewise Linear Approximations Using Interpolation

Definition 1 (Mesh). A mesh M of the set X is a finite set of full-dimensional
convex polyhedra in Rn, called cells, satisfying the following conditions: (1) The
union of all cells

⋃
k Ck = X , and (2) If Cj and Ck are cells with non-empty

intersection, then their intersection lies within the boundaries of both; we say
that Cj and Ck are adjacent and we denote their intersection by ∂(Cj , Ck).

For a cell Ck ∈ M, we denote by V (Ck) the set of its vertices and by ∂Ck the
boundary of Ck. The size of Ck is h(Ck) = max{ ||x−y|| | x, y ∈ Ck }. Then, the
size (or granularity) of M is defined as h(M) = max{h(Ck) | Ck ∈ M }. Two
types of meshes are of practical interest: rectangular and simplicial. A mesh is
called rectangular if its cells are all boxes in Rn. If all the cells are simplices,
then we say that M is a simplicial mesh or a triangulation of X . We recall that
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a simplex in Rn is the convex hull of (n + 1) affinely independent points in Rn,
and h(Ck) is simply the maximum edge length.

Given a mesh M of X , we can derive a piecewise linear approximation of the
function g, using interpolation over the mesh. We restrict our attention to sim-
plicial meshes and the motivation will become clear in subsequent development.
A discussion on mesh construction is deferred to the end of this section.

Definition 2 (Piecewise linear approximation). For each cell Ck ∈ M, let
lk : Rn → Rn be an affine map of the form lk(x) = Akx+bk which interpolates g
on the vertices of Ck, that is, g(v) = lk(v) for all v ∈ V (Ck). Then, the piecewise
linear approximation of g is defined as: l(x) = lk(x) if x ∈ Ck.

The advantage of using simplicial meshes lies in the fact that the linear inter-
polant lk can be defined uniquely since each cell Ck has (n+1) vertices and, more-
over, for any two adjacent cells Ck and Cj , we have ∀x ∈ ∂(Ck, Cj) lk(x) = lj(x).
This important property allows us to obtain the following approximating system:

ẋ(t) = l(x(t))

which is continuous and Lipschitz. This not only guarantees the existence and
uniqueness of solutions, but also allows to derive a priori bound on the error of
approximation, as we will show in the following. This bound will then be used
to define a conservative approximating system.

Estimating interpolation error. The error in the approximation of g by the
abovedescribed linear interpolation is defined by the bound η of ||g(x) − l(x)||
for x ∈ X . We will estimate this bound for two cases: g is Lipschitz and g is a
C2 function. For brevity, we denote by h the size of the underlying mesh M.

Lemma 2. If g is Lipschitz, then

η ≤ h
2nL

n + 1

where L is the Lipschitz constant of the function g.

We remark is that the second partial derivatives of the linear approximation
vanish; therefore, if g is a C2 function, we can obtain a better error bound.

Lemma 3. If g is a C2 function with a second derivative bound K, then

η ≤ h2 n2 K

2(n + 1)2
.

As we can see from the above lemmas, the bound η is of order O(h) if g is
Lipschitz, and it is of order O(h2) if g is a C2 function with bounded second
derivative. The proofs of these results are presented in Appendix.
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Defining conservative approximating systems. We can now use the bound
η from the above lemmas to define an overapproximation of the nonlinear sys-
tem (4), which has the form of the system with bounded input studied in Sec-
tion 3: {

ẋ(t) = s(x(t), u(t)) = l(x(t)) + u(t),
u(·) ∈ Uη

(5)

Before continuing, we mention that it is straightforward to extend this method to
a nonlinear systems with input of the form ẋ(t) = g(x(t))+u(t) where u(·) ∈ Uµ

by defining an overapproximation of this system as: ẋ(t) = l(x(t)) + u1(t) where
u1(·) ∈ Uν with ν = η + µ.

Using Lemma 1, we can show that the solution the approximate system (5)
converges to the solution of the original system (4) and, moreover, the conver-
gence is of the same order as the convergence of the interpolating function l to
g. Indeed, for all t ≥ 0 and for all u(·) ∈ Uη, we have

||Φg(t, x) − Φs(t, x, u(·))|| ≤ η

2
(eLt − 1) (6)

where Φg(t, x) and Φs(t, x, u(·)) are respectively the flows of the system (4) and
of the system (5) under input u(·) ∈ Uη.

4.2 Reachability Algorithm for Piecewise Linear Systems

This section is concerned with the problem of computing reachable sets of the
piecewise linear systems resulting from the above approximation. Naturally, such
systems can be thought of as a special class of hybrid automata [1], for which
existing reachability tools (such as [7,6,4]) can be used. In this work, we ex-
ploit the particular structure of these approximating systems in order to achieve
better efficiency. Our reachability algorithm is an extension of Algorithm 1 for
continuous systems with bounded input, and the convergence result is preserved.

When the system stays inside a cell, to compute the reachable sets we can
combine Algorithm 1 with one of the available methods (e.g. [7,6,19,4]) for the
linear autonomous system. The remaining problem is to handle the changes in
the dynamics that happen when the system moves from one cell to another.

Without loss of generality, we assume that initial set X0 is a convex poly-
hedron inside the cell C, and let ∂C be the boundary of C. We thus focus on
the problem of computing the set of exit points, that is, the set of points on ∂C
which the system, starting from X0, can reach to enter an adjacent cell. At these
points the system changes the dynamics, and therefore it is important to detect
this boundary crossing event.

Given a point x0 ∈ C, let t∗(x0) be the smallest time at which the system,
starting at x0, reaches the boundary ∂C. More precisely,

t∗(x0) = min{ t ≥ 0 | ∃u(·) ∈ Uη Φs(x0, t, u(·)) ∈ ∂C }
We can generalize the above definition to set X0 of initial points as follows:
t∗(X0) = min{ t∗(x) | x ∈ X0 }. A method to underapproximate t∗(x) is proposed
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in [12]. We first extend this method to linear systems with uncertain, bounded
input [3]. Moreover, in order to envision the event of boundary crossing we can
estimate t∗(X0) by considering only the trajectories from the vertices of X0. If
no trajectories from X0 can leave C, we denote this by t∗(X0) = +∞. Details
on these extensions can be found in [3]. On the other hand, in two dimensions
considering only the trajectories from the vertices is sufficient to determine the
set of exit points on the common boundary of two adjacent cells since it is indeed
an interval. In higher dimensions, we need to combine the estimation of t∗ with
reachability computation, as shown in Algorithm 2.

Input: Initial set X0 inside cell C
Result: E = Set of exit points on ∂C, R = Reachable set in cell C
tmin = t∗(X0)
if tmin = +∞ then

E = ∅; R = Ks(T, X0)
return E, R

end
R0 = Ks(tmin, X0); E = ∅; i = 0
repeat

Ri+1 = Ks(r, Ri) ∩ C
E = E ∪ (Ri+1 ∩ ∂C)
i = i + 1

until Ri = Ri−1;
return E, R = Ri

Algorithm 2: Reachability computation for a cell

The algorithm first checks whether the system will always remain inside C,
indicated by tmin = +∞. If it is not the case, the switching from the dynamics
of C to the dynamics of an adjacent cell can happen only at time t ≥ tmin.
Therefore, the reachable set on the time interval [0, tmin) is computed as for a
system without switching. The advantage of estimating t∗ is that during the in-
terval [0, tmin) we do not need to check the intersection with the boundary. After
time tmin, in each step we compute the intersection of the reachable set with
the boundary of the current cell until no new reachable states inside C is found.
Once the computation for the cell C terminates, to propagate the reachable set
inside a new cell C ′, we use Algorithm 2 starting from the intersection of the
exit points E with C ′.

Convergence result. In order to show that our method is convergent, again
we consider the approximation error in terms of the Hausdorff distance.

Let Kg(T, X0) be the reachable set of the nonlinear system (4) (which we
want to compute), and let K̂s(T, X0) be the set computed by using Algorithm 2
for the piecewise linear system (5), as shown above.
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Theorem 2.

dH( Kg(T, X0), K̂s(T,X0) ) ≤ η(
eLT − 1

L
+ 2 r eLT ).

The sketch of proof is as follows. The distance between the (exact) reachable sets
of (4) and (5) is the bound given in (6). In addition, for the piecewise linear sys-
tem we can prove that the distance between the approximate set K̂s(T, X0) and
the exact set Ks(T, X0) is indeed the error of Algorithm 1, given by Theorem 1.
Then, using the triangle inequality we obtain the inequality of Theorem 2.

As we have seen earlier, if g is a C2 function with a second derivative bound,
η is of order 0(h2) where h is the size of the underlying mesh M. Therefore by
choosing appropriate time step r (depending on h), we can guarantee a quadratic
error bound.

It is worth to mention that the continuity of the approximating systems is key
to the convergence results. There are different choices for approximating func-
tions allowing to achieve better convergence. Bilinear interpolation over quadri-
laterals may offer a higher order approximation on a well-designed mesh. Another
possibility is to use higher degree approximants (such as piecewise quadratic).
This, however, requires the ability to deal with more complex autonomous sys-
tems.

Simplicial mesh construction. We finish this section by a brief discussion
on implementation issues. We have shown earlier a bound on the interpolation
error which depends on the mesh size. However, it should be noted that the
orientation and shape of the mesh may yield an order of magnitude significant
improvement in approximation accuracy. The problem of finding an optimal
mesh can be formulated as to minimize the interpolation error. However, the
optimal meshes may have complex geometric structures which are expensive in
storage and computation costs. In this work, we use a simple triangulation which
offers important advantages regarding the operations required by our reachability
algorithm.

We construct a simplicial mesh by triangulating an underlying rectangular
grid. Indeed, a n-dimensional rectangle can be dissected into n! simplices as
follows. It can be assumed that the rectangle is a cube [0, 1]n. We consider a
permutation π = (i1, i2, . . . , in) of (1, 2, . . . , n) and let Sπ be the simplex defined
by 0 ≤ xi1 ≤ xi2 . . . ≤ xin ≤ 1. It is not hard to see that such n! simplices Sπ form
a triangulation of the cube. More elaborated schemes allow to obtain a smaller
number of simplices [21]. However, the advantage of this method is that it allows
a compact representation of the resulting mesh and thus efficient manipulation.
Indeed, we need just to store the coordinates of the grid, and all adjacency
information (necessary to propagate the reachable set from one cell to another)
can be encoded based on the permutations. In addition, an adaptive mesh can
be generated on-the-fly during the progress of the reachability computation by
considering the derivative variation locally.
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5 Experimentation

Our reachability method was implemented and is being integrated in the tool
d/dt in order to analyze hybrid systems. We have experimented the method on
various examples. We now present some examples for illustrative purposes.

The Vanderpol equation. The first example is the Vanderpol equation, given
below. Here, we are interested in detecting limit cycles of the system.{

ẋ(t) = y(t)
ẏ(t) = y(t)(1 − x2(t)) − x(t).

We approximate the system by a piecewise linear interpolating system using a
uniform triangular mesh of size h = 0.05. We add an input to the latter whichs
account for the interpolation error. For a time step r = 0.05 and the initial set
X0 = {(x, y)|(x − 2)2 + (y − 2)2 ≤ 0.25}, the reachable set is shown in Figure 1.
We can see that the final reachable set (plotted on the right) contains the limit
cycle.

−3 −2 −1 0 1 2 3
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−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Fig. 1. Left: successive computations of the reachable set. Right: the final reachable
set containing the limit cycle.

Zermelo’s problem. To illustrate the behavior of our algorithm on a nonlinear
system with bounded input, we consider a classical problem of optimal control
(Zermelo’s problem). The dynamics of the system is as follows:

ẋ(t) = y(t) − y2(t)+ ux(t)
ẏ(t) = uy(t)√

ux(t)2 + uy(t)2 ≤ 0.1
(7)

We perform the reachability computation with a time step r = 0.01 and the
result can be seen in Figure 2.
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Fig. 2. Successive computations of the reachable set

6 Concluding Remarks

In this paper, we proposed a framework for approximate reachability analysis of
continuous nonlinear systems by means of piecewise linear approximation and
developed a reachability algorithm with good convergence rate. This approach
can be seen as an application of hybrid systems to deal with complex systems.
It also shows a nice interplay between numerical and symbolic computation for
safety verification.

The results presented in the paper open various interesting directions for
future research. The convergence can be improved by using higher degree ap-
proximants, such as piecewise quadratic, and a reachability method for such
approximating systems would be of great interest. Additionally, using rectan-
gular meshes reduces significantly the complexity of reachability computation
and thus the use of a mixed rectangular-simplicial mesh could allow to achieve a
good trade-off between accuracy and computation cost. On the other hand, an
important question to address is to find conditions or classes of hybrid system
for which the convergence result of our method is preserved.
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Fundamental Inequality Theorem (see e.g. [18,10]) Let f be a function
with values in Rn, continuous and L-Lipschitz on a set D ⊂ Rn. Let x1(t)
and x2(t) be functions with values in Rn continuous, piecewise differentiable on
an interval I ⊂ R containing 0 such that ∀t ∈ I, x1(t) ∈ D, x2(t) ∈ D, and
||ẋ1(t) − f(x1(t))|| ≤ ε1, ||ẋ2(t) − f(x2(t))|| ≤ ε2. Then,

∀t ∈ I, ||x1(t) − x2(t)|| ≤ ||x1(0) − x2(0)||eL|t| +
ε1 + ε2

L
(eL|t| − 1).

Proof of Theorem 1 We start by proving the first property. To show that
Ks(T, X0) ⊆ RN , we first observe that, by definition, RN =

⋃
1≤i≤N Qi. Hence,

it suffices to show that for all i ∈ {0, . . . , N − 1}
∀x ∈ X0 u(·) ∈ Uµ t ∈ [ir, (i + 1)r] Φs(t, x, u(·)) ∈ Qi+1. (8)

We will prove (8) by induction. We begin by the base case (i = 0). Let x be
an element of X0, u(·) an admissible control, and t ∈ [0, r]. We denote ys =
Φs(t, x, u(·)) and yf = Φf (t, x). Using the Fundamental Inequality, we have
||yf − ys|| ≤ µ

L (eLt − 1) ≤ µ
L (eLr − 1). It is easy to see that yf is an element of

P1; therefore ys is an element of Q1, which implies that (8) holds for i = 0. We
now assume that the formula (8) holds for some i ≥ 0. Given x ∈ X0, u(·) ∈ Uµ

and t ∈ [(i+1)r, (i+2)r] we denote ys = Φs(t, x, u(·)) and zs = Φs(t− r, x, u(·)).
Since (8) holds for i, we have zs ∈ Qi+1. Let yf = Φf (r, zs). Again, by the
Fundamental Inequality, ||yf − ys|| ≤ µ

L (eLr − 1). In addition, yf ∈ Pi+2. It then
follows that ys ∈ Qi+2, which shows that (8) holds for i + 1. ut

We now prove the convergence property, i.e. dH(Ks(T, X0), RN ) ≤ 2µ r eLT .
We denote by δi the Hausdorff semi-distance from the set Ri, computed in
iteration i of Algorithm 1, to the corresponding exact set Ks(ir,X0): δi =
supx∈Ri

infy∈Ks(ir,X0) ||x − y||. To estimate the error bound, we determine the
relation between δi and δi+1.

Let x∗
f be an element of Ri+1 with i ≥ 1. There are two cases: (1) x∗

f ∈ Ri,
and (2) x∗

f /∈ Ri. For the first case where x∗
f ∈ Ri, it is not hard to see that there

exists x∗
s in Ks(ir,X0) ⊆ Ks((i + 1)r,X0) such that ||x∗

f − x∗
s|| ≤ δi. We now

focus on the second case where x∗
f /∈ Ri. Then, there exists y∗

f ∈ Pi+1 such that

||y∗
f − x∗

f || ≤ µ

L
(eLr − 1). (9)
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Fig. 3. Idea of the proof of theorem 1: conservativeness property (left) and convergence
property (right). The approximate reachable sets Qi of the system with input are drawn
in dotted line and the reachable sets Pi of the autonomous system in bold line.

Let z∗
f be the ‘predecessor’ of y∗

f by the autonomous system such that y∗
f =

Φf (r, z∗
f ). Since Pi+1 is obtained by applying Φf to the set Qi, therefore z∗

f ∈ Qi,
which means that z∗

f ∈ Ri. Then, there exists z∗
s in the exact reachable set

Ks(ir,X0) of the system with input such that ||z∗
f − z∗

s || ≤ δi.
We consider a point x∗

s defined as: x∗
s = Φs(r, z∗

s , u∗(·)) where u∗(·) is defined
as follows:

u∗(t) =
L(x∗

f − y∗
f )

(eLr − 1)
.

It is easy to see that u∗(·) which is an admissible input of the system (3). In
other words, x∗

s is the successor of z∗
s by the system with input, and hence x∗

s

is an element of Ks((i + 1)r,X0). In the following we will determine δi+1 by
estimating an upper bound of ||x∗

f − x∗
s||.

Let zf (t) and zs(t) be the solutions of the following equations:{
żf (t) = f(zf (t)), zf (0) = z∗

f ,

żs(t) = f(zs(t)) + u∗(t), zs(0) = z∗
s .

We also define two functions xf (t) and xs(t) as follows:{
xf (t) = zf (t) + t

r (x∗
f − y∗

f ),
xs(t) = zs(t).

Using the Fundamental Inequality and the bound µ on the input, we have

||zf (t) − zs(t))|| ≤ ||z∗
f − z∗

s ||eLt +
µ

L
(eLt − 1) ≤ δi eLt +

µ

L
(eLt − 1). (10)
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On the other hand, since xf (r) = x∗
f and xs(r) = x∗

s, we can write:

x∗
f − x∗

s = xf (r) − xs(r) = (xf (0) − xs(0)) +
∫ r

0
(ẋf (s) − ẋs(s))ds.

In addition, ||xf (0) − xs(0)|| = ||z∗
f − z∗

s || ≤ δi. Therefore,

||x∗
f − x∗

s|| ≤ δi + ||
∫ r

0
(ẋf (s) − ẋs(s))ds||. (11)

We now focus on the term inside the integral of (11). Note that ||ẋf (s)−ẋs(s)|| =

||f(zf (s)) + (x∗
f −y∗

f )
r − f(zs(s)) − u∗(s)||. Since f is L-Lipschitz, ||f(zf (s)) −

f(zs(s))|| ≤ L ||zf (s) − zs(s)||. Using (9) and (10) yields

||ẋf (s) − ẋs(s)|| ≤ ||x∗
f − y∗

f ||(1
r

− L

eLr − 1
) + L ||zf (s) − zs(s)||

≤ µ

2
eLrLr + L (δi eLs +

µ

L
(eLs − 1)).

Combining the above inequality with (11) and developing the integral gives

δi+1 ≤ δi eLr +
µ

2
eLrLr2 +

µ

L
(eLr − 1 − Lr).

Observe that eLr − 1 − Lr ≤ 1
2 eLr (Lr)2, thus δi+1 ≤ δi eLr + µL eLr r2. Then,

δN ≤ δ1 eL(N−1)r + µL eLr r2
N−2∑
i=0

eiLr = δ1 eL(N−1)r + µL eLr r2 eL (N−1) r − 1
eLr − 1

.

Since eLr − 1 ≥ Lr and, in addition, we can prove that δ1 ≤ µ r eLr. The above
thus leads to δN ≤ 2µ r eLT . This completes the proof of the theorem. ut

Proof of Lemma 2 We first estimate an upper bound of ||g(x) − lk(x)|| for all
points x inside a cell Ck ∈ M. Let v be a vertex of Ck. By triangle inequality, we
have ||g(x)− lk(x)|| ≤ ||g(x)−g(v)||+ ||g(v)− lk(x)||. By definition, g(v) = lk(v).
In addition, g is L-Lipschitz, it then follows that

||g(x) − lk(x)|| ≤ ||g(x) − g(v)|| + ||lk(v) − lk(x)|| ≤ 2L||x − v||. (12)

Note that the above inequality holds for any vertex v ∈ V (Ck). In order to get
a tight upper bound on ||g(x) − lk(x)||, we can estimate a bound on ||x − v|| for
each vertex v and then choose the smallest bound. Let V (Ck) = {v1, v2, . . . , vn}
be the set of vertices of Ck. A point x ∈ Ck can be written as:{

x =
∑n

i=1 αi vi∑n
i=1 αi = 1 and ∀i ∈ {1, . . . , n} αi ≥ 0. (13)
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We observe, from the conditions (13), that there exists j ∈ {1, . . . , n} such that
αj ≥ 1

n+1 . Since
∑n

i=1 αivj = vj , we can write x − vj =
∑n

i=1,i6=j αi(vi − vj).
Additionally, ||vi − vj || ≤ h(Ck); therefore,

||x − vj || ≤ h(Ck)
n∑

i=1,i6=j

αi = h(Ck) (1 − αj) ≤ h(Ck)
n

n + 1
. (14)

Using this bound in (12) we get ∀x ∈ Ck ||g(x) − lk(x)|| ≤ h(Ck) 2 n L
n+1 . Note

that ∀Ck ∈ M, h(Ck) ≤ h(M) = h, which yields the result of the lemma. ut

Proof of Lemma 3 For a given cell Ck ∈ M, we define the function e(x) =
g(x) − lk(x) and let x∗ = arg maxx∈Ck

||e(x)|| (note that the simplex Ck is
compact). Let v be a vertex of Ck, and all points in the line segment connecting
x∗ and v can be written as: x(γ) = x∗ + γ (v − x∗), γ ∈ [0, 1]. To determine a
bound on e(x∗), we define a function z(γ) = e(x(γ)) for γ ∈ [0, 1]. Expanding z
with respect to γ gives

z(1) = z(0) +
dz

dγ
(0) +

∫ 1

0

d2z

dγ2 (s) (1 − s)ds. (15)

The ith coordinate of a point y ∈ Rn is denoted by yi. We can see that dxi/dγ =
(vi − x∗

i ). Additionally, ∂2lk/∂xi∂xj vanish for all i, j ∈ {1, 2, . . . , n}. Thus,

dz

dγ
(γ) =

n∑
i=1

∂e

∂xi
(x(γ)) (vi − x∗

i ),
d2z

dγ2 (γ) =
n∑

i=1

n∑
j=1

∂2e

∂xi∂xj
(x(γ)) (vi − x∗

i ) (vj − x∗
j )

Since ∂2lk/∂xi∂xj vanish for all i, j ∈ {1, . . . , n}, then ∂2e/∂xi∂xj =
∂2g/∂xi∂xj . Similar to the inequality (14) established in the proof of Lemma 2,
we can show that there exists v ∈ V (Ck) such that ∀i ∈ {1, . . . , n} ||vi −
x∗

i || ≤ h(Ck)n/(n + 1). Then, using the bound K on the second deriva-
tives of the function g, we obtain || d2z

dγ2 (γ)|| ≤ (h(Ck))2 n2 K
(n+1)2 . In addition,

||e(x∗)|| is maximum, which implies that dz
dγ (0) = 0. By definition of the in-

terpolating function, g(v) = lk(v), then z(1) = 0. Therefore, (15) becomes:
g(x∗) − lk(x∗) +

∫ 1
0

d2z
dγ2 (s) (1 − s)ds = 0. Using the above bound on || d2z

dγ2 (γ)||,
we get

||g(x∗) − lk(x∗)|| ≤ (h(Ck))2
n2 K

(n + 1)2

∫ 1

0
(1 − s)ds = (h(Ck))2

n2 K

2 (n + 1)2
.

Hence, ∀x ∈ X ||g(x) − l(x)|| ≤ h2 n2 K
2 (n+1)2 , and the proof is complete. ut


	Introduction
	Basic Definitions
	Reachability Analysis for Systems with Input
	Reachability Computation for Nonlinear Systems Using Piecewise Linear Approximation
	Construction of Approximating Systems
	Reachability Algorithm for Piecewise Linear Systems

	Experimentation
	Concluding Remarks
	References

