
HDR

Thao DANG, CR1, CNRS

December 8, 2009

Contents

1 Motivations and scientific challenges 5

1.1 Thesis outline . 7

2 Reachability analysis of non-linear systems 9

2.1 Context . 9

2.1.1 Related work . 11

2.2 Hybridization . 12

2.2.1 Hybridization: Basic ideas 14

2.2.2 Tighter error bounds . 17

2.2.3 Construction of simplicial domains 22

2.2.4 Simplex size and shape . 22

2.2.5 Simplex orientation . 23

2.2.6 Curvature estimation . 25

2.2.7 Simplex construction algorithm 26

2.3 Other results . 27

2.3.1 Algebraic differential equations 27

2.3.2 Predicate Abstraction . 28

2.3.3 Abstraction by projection 29

3 Reachability analysis of polynomial systems 30

3.1 Introduction . 30

3.2 Set integration . 32

3.2.1 Numerical scheme . 32

3.2.2 Convergence . 34

1

3.3 Using Bézier techniques . 34

3.3.1 Bézier simplices . 35

3.3.2 Computing the Bézier control net 36

3.3.3 Approximation error and subdivision 38

3.4 Using box splines . 43

3.4.1 Box splines . 43

3.4.2 Image approximation using box splines 46

3.4.3 Enumerating integer points 48

3.4.4 Approximation by zonotopes 51

3.4.5 Control points . 52

3.5 Using the Bernstein expansion . 55

3.5.1 Image computation using optimization 58

3.5.2 Computing affine bound functions over polyhedral domains 60

3.5.3 Image computation algorithm 61

3.5.4 Approximation errors and complexity 62

3.6 Other results . 68

3.6.1 Multi-affine systems . 68

3.6.2 Set integration and template polyhedra 68

4 Model-based testing of hybrid systems 70

4.1 Context . 70

4.2 Introduction . 71

4.3 Model . 73

4.4 Conformance testing . 75

4.4.1 Conformance relation . 76

4.4.2 Test cases and test executions 79

4.5 Test coverage . 80

4.5.1 Star discrepancy . 81

4.5.2 Coverage estimation . 82

4.5.3 Hybrid systems test coverage 85

4.6 Test generation . 85

4.7 Coverage-guided test generation 87

2

4.8 Controllability issue . 90

4.9 Disparity . 93

4.10 Disparity-guided sampling . 95

4.11 Termination criterion using disparity 96

4.12 Actuator and sensor imprecision 97

4.13 Tool HTG . 99

4.14 Applications . 101

4.14.1 Aircraft collision avoidance system 101

4.14.2 Robotic vehicle benchmark 102

4.14.3 Analog and mixed-signal circuits 104

4.15 Related work . 108

5 Scheduling of real-time multi-threaded programs 111

5.1 Context . 111

5.2 Introduction . 112

5.3 PV programs and diagrams . 114

5.3.1 PV programs: formal definitions 114

5.3.2 Geometrization . 116

5.4 Timed PV programs and diagrams 117

5.4.1 Timed PV programs . 118

5.4.2 Geometrization . 119

5.4.3 Duration of strings . 120

5.5 Threads sharing a limited number of available processors 122

5.6 Scheduling problem and abstraction of timed executions 124

5.6.1 Scheduling problem . 124

5.6.2 Discrete abstraction of timed executions 125

5.6.3 The abstraction graph . 128

5.7 Scheduling using a spatial decomposition 129

5.8 Scheduling using a continuous geometric property 132

5.8.1 Continuous geometric property 133

5.8.2 Constructing a witness timed execution 133

5.8.3 Proof of Theorem 13 . 136

3

5.8.4 Finding a good schedule via path planning 137

5.9 Related works . 141

5.10 Conclusion and future work . 143

4

Chapter 1

Motivations and scientific
challenges

Since 2001, after joining the CNRS, the main theme of my research has been
“Methods and tools for computer aided design of embedded systems”.

Due to an increasing utilization of computers, there has been a dramatic rise
in interest in embedded systems, that is systems in which the computer interacts
with the physical world. Embedded systems are present in a large variety of ap-
plication domains, including avionics/aeronautics, space, transport, automotive,
telecommunications, smart cards, consumer electronics. Embedded systems are
composed of hardware and software components specifically designed for control-
ling a given application device.

Hybrid systems, that is, systems exhibiting both continuous and discrete dy-
namics, have been recognized as a high-level model appropriate for embedded
systems, since this model can describe, within a unified framework, the logical
part and the continuous part of an embedded system. They have also been used as
a mathematical model for various physical phenomena and engineering systems,
such as chemical process control, avionics, robotics, automobiles, manufacturing,
and most recently in molecular biology.

Due to the safety critical features of many such applications, formal analysis
is a topic of particular interest. Recently, much effort has been devoted to the
development of automatic analysis methods and tools for hybrid systems, based
on formal verification. This can be seen in a large number of publications on
the topic in the recent proceedings of HSCC Hybrid Systems: Computation and
Control, a major international conference of the domain. The goal of formal
verification is to prove that the (designed) system satisfies a property. Due to
the complexity and scale of real-life applications, automatic analysis is very de-
sirable. This is a motivation to adopt the algorithmic approach which consists
in building software tools that can analyze automatically all the behaviors of a

5

given system. Results in algorithmic verification of hybrid systems resulted in a
number of verification tools, such as Coho[65] developed at University of British
Columbia, Verdict [?] developed at University of Dortmund, CheckMate [31]
developed at University of Carnegie Mellon, VeriShift [26] developed at Uni-
versity of Berkeley, d/dt [17] developed at VERIMAG, MPT [76] developed at
ETH Zurich, HJB toolbox [85] developed at Stanford University. Although these
methods and tools have been successfully applied to a number of interesting case
studies, their applicability is still limited to systems of small size due to the com-
plexity of exhaustive analysis, required by formal verification. It soon became
clear that for systems of industrial size, one needs more ‘light-weight’ methods.

Testing is another validation approach, which can be used for much larger
systems and is a standard tool in industry, despite its limitations compared to
algorithmic and deductive verification. Indeed, like simulation techniques, testing
can only reveal an error but does not permit proving the correctness of the system.
The success of the testing approaches in industry is perhaps due to the fact that
they suffer less from the problem of state explosion. Indeed, the engineer can
choose the degree of validation by changing the number of tests. In fact, the
larger number of tests are executed, the larger portion of behaviors of the system
is validated, and therefore the more confidence in the correctness of the system
we gain. This is different from the results of the type ‘yes’ or ‘no’ provided by
the formal verification methods. On the other hand, testing can be applied to
real systems, and not only on their models.

Although testing has been well studied in the context of finate state machines,
it has not been much investigated for continuous and hybrid systems. Therefore,
a question of great interest is to bridge the gap between the verification and
testing approaches, by defining a formal framework for testing of hybrid systems
and developing methods and tools that help automate the testing process, in
particular test generation from specifications.

A number of special characteristics of hybrid systems make their validation
particularly challenging, in particular the combination of the complexity in both
discrete and continuous aspects. While continuous systems have been well studied
in control theory and continuous mathematics, and discrete systems have been
investigated in computer science, the interaction between continuous and discrete
dynamics leads to fundamental problems (such as undecidability) which are not
yet well understood or for which a general solution is often impossible.

A number of special characteristics of hybrid systems make their testing par-
ticularly challenging, in particular:

• Combination of the complexity in both discrete and continuous
aspects. While continuous systems have been well studied in control theory
and continuous mathematics, and discrete systems have been investigated in

6

computer science, the interaction between continuous and discrete dynamics
leads to fundamental problems (such as undecidability) which are not yet
well understood or for which a general solution is often impossible.

• Infiniteness of the state space of a hybrid system and of the input
space. In general, in order to test an open system, one first needs to feed
an input signal to the system and then check whether the behavior of the
system induced by this input signal is as expected. When there is an infinite
number of possible input signals, it is important to choose the ones that
lead to interesting scenarios (with respect to the property/functionality to
test).

Methodology and main results

To respond to these challenges, the main objective of my research has been to de-
velop new validation methods and tools, with a focus on semi-formal approaches
(such as testing), by applying the ideas from different domains (such as, geomet-
ric design, interval computation), and by exploring new application areas (such
as, analog and mixed-signal circuits).

I have carried out both theoretical and practical research work. In this thesis.
I will describe a selection of main results, which describes best my visions and
efforts. These results can be summarized as follows:

1. A number of verification techniques for non-linear hybrid systems

2. A conformance testing framework including a coverage-guided test genera-
tion algorithms and a test generation tool.

3. A novel approach for scheduling of real-time multi-threaded programs

4. Exploration of two new application domains which is analog and mixed
signal circuits and biological systems.

1.1 Thesis outline

In Chapter ??, we discuss hybrid automata [?], the modeling formalism we use for
hybrid systems. We then introduce our formal framework for conformance test-
ing, which includes the basic concepts (such as conformance relation, test cases,
test executions). The chapter contains the theoretical background necessary for
the subsequent developments.

Chapter ?? is concerned with the development of two test coverage measures.
We are interested in test coverage measures that describe how well the states

7

visited during a test execution represent the reachable set. The first coverage
measure we propose is based on the star discrepancy notion, and the second is
based on the δ-cover notion. We then present the methods to compute these
coverage measures.

In Chapter ??, we develop an algorithm for generating test cases from hybrid
automata. This algorithm is an extension of the RRT (Rapidly-exploring Random
Tree) algorithm [79] to hybrid systems. An important property of this algorithm,
namely probabilistic completeness, is then discussed.

In Chapter ??, in order to rapidly achieve a good coverage quality, we develop
a method for guiding the test generation algorithm using the coverage measures.

The goal of Chapter ?? is to show how to implement the abstract algorithms
introduced in the previous chapters. This can be seen as a concrete realization of
these algorithms. We also briefly present the prototype test generation tool that
we call HTG. The tool provides automatic test generation from hybrid automata.

Chapter ?? is devoted to a number of case studies treated using the tool HTG.
These case studies come from control applications and analog and mixed signal
circuits. To illustrate the performance of our test generation algorithms, some
linear systems (with up to 100 continuous variables), which are randomly gen-
erated, were treated. The experimental results shows the applicability of our
approach to high dimensional systems.

Each of the above chapters also includes a discussion of related work. The
concluding chapter summarizes the contributions of the thesis and suggests future
research directions.

For the best understanding of this thesis, the reader is encouraged to follow
chapter by chapter. In particular, Chapter ?? contains important definitions and
notations which are used throughout the thesis.

8

Chapter 2

Reachability analysis of
non-linear systems

2.1 Context

Reachability analysis is an important problem in formal verification. A major
ingredient in designing a reachability analysis algorithm for hybrid systems is an
efficient method to handle their continuous dynamics described by differential
equations (since their discrete dynamics can be handled using existing discrete
verification methods). While many well-known properties of linear differential
equations can be exploited to design relatively efficient methods, non-linear sys-
tems are much more difficult to analyze. This motivated me to continue this
direction, which I had started in my PhD thesis.

My focus and methodology have however been more application driven, which
can be summarized as follows.

Hybrid systems as a means of approximation. Hybrid systems have been
proven to be a mathematical model appropriate for reasoning about interactions
between discrete and analog parts in embedded applications as well as discontin-
uous phenomena in molecular biology. My attempt to apply hybrid systems ver-
ification technology to analog circuits and biological systems allowed me to have
the following understanding which stimulated my research directions in analysis
of non-linear systems

• Besides the phenomena which are intrinsically of mixed discrete-continuous
nature, hybrid systems can be used to approximate complex systems by

9

simpler ones. In addition, it also allows to naturally capture stiffness in
continuous dynamics, which often causes instability in traditional methods
such as numerical simulation.

• While the hybrid systems methodology can provide effective modelling for
many applications, its use does not come for free. Indeed, even when contin-
uous dynamics can be efficiently handled, discrete dynamics (which theoret-
ically can be handled using well-developed techniques for discrete systems)
may lead to significant computation costs, as high as that for overcoming
numerical instability. Indeed, while numerical instability is often addressed
by reducing time step sizes in order to adapt to fast changes of some vari-
ables, switching continuous dynamics via discrete transitions in a hybrid
system may deteriorate “nice” geometric structures of continuous reach-
able sets. As an example, trajectories starting from points in a convex
polyhedron can reach a transition guard at very different times, and the ac-
cumulation of starting points for the next continuous dynamics may form
a “curved” set with complex geometry.

Taking both the drawbacks and advantages of the hybrid system methodology
into account, I revisited the reachability analysis approach for non-linear sys-
tems using hybridization, developed in collaboration with Eugene Asarin (LI-
AFA, Paris) and Antoine Girard (Laboratory LJK, Grenoble). The main idea of
this approach is to “decompose” a non-linear vector field into different segments
each of which is approximated with a linear vector field. The resulting approx-
imation is thus a piece-wise linear system which can be treated using available
techniques for hybrid systems with linear continuous dynamics. This approach
is very general and in principle can be applied to a large class of non-linear sys-
tems. However, in practice, the price for having “artificial” discrete transitions is
often high, since the simpler continuous dynamics are used, the larger number of
segments is needed in order to assure a desired precision. I thus seeked a way to
get rid of these discrete transitions. In fact, these transitions can be smoothened
without compromising the approximation quality. This led to the development
of a dynamic hybridization approach, which enabled us to treat a number of bio-
logical systems with up to 9 continuous variables. This is a considerable progress
since the original hybridization approach was limited to systems with only 3, 4
continuous variables.

Specialization for specific non-linear systems. Besides my efforts in tack-
ling general non-linear systems, I am conscious that it is hard to design an ef-
ficient general-purpose algorithm for automatic verification of non-linear hybrid
systems, since such an algorithm would not be able to exploit the particularities
of each class of non-linearities. I thus centered my attention in multi-affine sys-
tems, which have numerous applications in many domains such as biology and

10

economy. Despite their simple non-linearity form they can exhibit complicated
behaviors including chaos. I discovered a number of useful geometric proper-
ties not only of multi-affine but also of polynomial functions which were already
used in robust control to handle uncertain parameters in transfer functions [?].
These properties have also been intensively used in Computer Aided Geometric
Design. This inspired me to develop the analysis methods which are specialized
for polynomial systems.

Beyond ODEs. Analog circuits are often modeled using differential algebraic
equations (DAEs) rather than ordinary differential equations (ODEs). This was
the motivation of my work on reachability analysis of DEAs that I will briefly
summarize in Section 2.3.

Abstraction as a means of complexity reduction. A major challenge in
algorithmic verification of hybrid systems is that the size of practical systems is
often much larger than what computational exhaustive analysis can handle. This
therefore requires methods for complexity reduction. To address this problem,
I worked on two abstraction methods: predicate abstraction and abstraction by
projection.

In the following I present some of these results and briefly describe the other.
I first focus on the hybridization approach, which can be applied to a large class
of non-linear continuous systems. In the next chapter, I will focus on techniques
specialized for polynomials systems. It is important to note that, for simplicity
of presentation the results are explained for continuous systemsl; however, all
the techniques were designed can be applied to hybrid systems which requires
additionally Boolean operations when handling discrete transitions.

2.1.1 Related work

Before continuing, I present a brief review of related work. The reachability
problem for continuous systems described by differential equations has moti-
vated much research both for theoretical problems, such as computability (see
for example [11]), and for the development of computation methods and tools.
If the goal is to compute exactly the reachable set or approximate it as accu-
rately as possible, one can use a variety of methods for tracking the evolution of
the reachable set under the continuous flows using some set represention (such as
polyhedra, ellipsoids, level sets) [64, 39, 31, 75, 13, 102, 85, 59]. Since high quality
approximations are hard to compute, other methods seek approximations that

11

are sufficiently good to prove the property of interest1 (such as barrier certificates
[92], polynomial invariants [101]). Abstraction methods for hybrid systems are
also close in spirit to these methods. Indeed, their main idea is to approximate
the original system with a simpler system (that one can handle more efficiently)
and refine it if the analysis result obtained for the approximate system is too
conservative (see for example [100, 9, 32, 15, 14]).

2.2 Hybridization

In this work, our object of study is a non-linear continuous system and we apply
the hybrid systems methodology as a systematic approximation method. More
concretely, we approximate a complex system with a simpler system, for which
well-developed analysis tools exist (such as systems with affine continuous dy-
namics). To this end, we partition the state space of the system into disjoint
regions and then approximate its dynamics in each region by a simpler dynamics.
Thus, globally, the approximate system when moving from one region to another
changes the dynamics. Due to these switchings, the approximate system behaves
like a hybrid system and we thus call this approximation process hybridization.
Then, the resulting system is used to yield approximate analysis results for the
original system. The essence behind this approach was first put forward in [?, 58]
to provide efficient numerical simulation of differential equations.

The usefulness of this approach (in terms of accuracy and computational tractabil-
ity) depends on the choice of the approximate system. We developed two methods
using two classes of approximate systems: piecewise affine (defined over a simpli-
cial partition) and piecewise multi-affine (defined over a rectangular partition).
However, while the continuous part is simplified, this increased the complexity
of the discrete part, which makes reachability analysis more difficult. Indeed,
frequent treatments of discrete transitions cause non-convex sets with complex
geometric form that are hard to handle. We are thus working on a method that
can avoid a direct treatment the discrete transitions.

On the other hand, as mentioned in the previous chapter, we developed a
reachability analysis method specialized for multi-affine systems in order to deal
with sub-systems generated by the hybridization. The hybridization using multi-
affine subsystems is more efficient than the one using affine systems because
rectangular partitions are easier to handle than simplicial ones.

This work was done in collaboration with Eugene Asarin from LIAFA (Paris),
Antoine Girard from LJK (Grenoble). The results were published in the pro-
ceedings of the conference HSCC 2003 (Hybrid Systems - Computation and Con-

1It should be noted that reachable set computations can also be used for controller synthesis
where the accuracy criterion is important.

12

trol) [15] and in the journal Acta Informatica January 2007 [16].

Our most recent result is a new scheme for dynamical hybridization. In dy-
namical hybridization, the partition of the state space is dynamically created, so
that the intersection with the boundary of two adjacent regions can be avoided.
This greatly improves the efficiency and scalability of the method, and we have
successfully applied the method to some biological systems. The work on dy-
namical hybridization has been done in collaboration with Oded Maler and Colas
LeGuernic from VERIMAG. The results were published in the proceedings of the
conference CMSB 2009 (Computational Methods for Systems Biology) [?].

In this chapter I describe only our most recent results on hybridization, obtained
in collaboration with Oded Maler and Romain Testylier from VERIMAG. This
is indeed a topic of Romain’s PhD thesis work, co-advised by myself and Oded.

The dynamic scheme gives us more freedom in the choice of the size and shape
of hybridization domains (with each of which simpler dynamics is associated),
freedom that we can exploit. The core problem we investigate in this paper is
the following: given a convex polytope P representing the reachable set at some
iteration of the reachability computation algorithm, find a domain D, an affine
function Ax+ b and an error set U which satisfy the condition for approximation
convervativeness and, in addition, are good with respect to the following efficiency
and accuracy criteria which are partially-conflicting:

1. The size of the error set U is small;

2. The affine function Ax + u (where u ∈ U) and the error set U can be
efficiently computed;

3. The system’s evolution remains in ∆ as long as possible.

The first optimization criterion is important not only for the approximation ac-
curacy but also for the computation time-efficiency. Let us give an intuitive
explanation of this. Non-linear systems often behave in a much less predictable
manner than linear systems. A linear system preserves convexity and therefore
exploring its behavior starting from a finite number of “extremal” points (for
example, the vertices of a convex polytope) is sufficient to construct the set of
trajectories from all the points in that set. This is no longer true for most non-
linear systems since the boundary of a reachable set can originate from some
“non-extremal” points. Hence, the effect of error accumulation in the analysis of
non-linear systems is more significant. For example, when the error part contains
some points that generate completely different behavior patterns (for example, a
significant change in the evolution direction), these spurious behaviors may con-
sume a lot of computation time.

13

The novelty of the results presented in the following is that we exploit new
tighter error bounds for linear interpolation in order to improve both the accuracy
and efficiency of reachability computations. These tighter error bounds allow
using large domains for the same desired accuracy and thus the linearization
procedure is invoked less often.

The third criterion also aims at reducing the frequency of constructing new
domains. As we will show, the error bound requirement leaves some freedom for
choosing the position and orientation of the domains, which is used to address
this criterion.

The rest of the chapter is organized as follows. We first recall the basic prin-
ciples hybridization and introduce necessary notation and definitions. We then
describe the error bound for linear interpolation that we will use in this work
and compare it with the (larger) bounds used in our previous work [15, 16]. We
then present a method for building simplicial approximation domains that sat-
isfy this error bound while taking into account the above efficiency and accuracy
criteria. We finally demonstrate this new method on a biological system with 12
continuous variables, that is x ∈ R12.

2.2.1 Hybridization: Basic ideas

We consider a non-linear system

ẋ(t) = f(x(t)), x ∈ X ⊆ Rn. (2.1)

where the function f is Lipschitz. The set X is called the state space.

The basic idea of hybridization is to approximate the system (2.1) with another
system that is easier to analyze:

ẋ(t) = g(x(t)), x ∈ X ⊆ Rn. (2.2)

In order to capture all the behaviors of the original system (2.1), an input is
introduced in the system (2.2) in order to account for the approximation error.

Let µ be the bound of ||g − f ||, i.e. for all x ∈ X

||g(x)− f(x)|| ≤ µ

where || · || is some norm on Rn. In this work we will consider the norm || · ||∞
which is defined as

||x||∞ = max(|x1|, . . . , |xn|).

The approximate system with input is written as:{
ẋ(t) = s(x(t), u(t)) = g(x(t)) + u(t),
u(·) ∈ Uµ

(2.3)

14

where Uµ is the set of admissible inputs which consists of piecewise continuous
functions u of the form u : R+ → U where U contains all points u ∈ Rn such
that such that ||u(·)|| ≤ µ.

The system (2.3) is an overapproximation of the original system (2.1) in the
sense that all trajectories of (2.1) are contained in the set of trajectories of (2.3)
[?]. From now on, we call (2.3) “approximate system”.

The construction of such an approximate system consists of two main steps:

• Inside a zone of interest that contains the current reachable set, we compute
an approximation domain of size %max. Then, an approximate vector field is
assigned to that domain. When the system’s trajectories leave the current
approximation domain, a new domain is determined. If the approximate
vector field in each domain is affine, the resulting system f is piecewise
affine over the whole state space. The use of such approximate systems
is motivated by a large choice of available methods for the verification of
piecewise affine systems (see for instance [?, ?, ?, ?, ?]). However, other
classes of functions can be used, such as constant or multi-affine.

• To construct the error set U , we estimate the error bound µ which depends
on the domain size %max. We assume that the chosen function f satisfies
the following property: µ tends to 0 when %max tends to 0. Suppose that
we can find an upper bound of µ, denoted by µ. Then, we can choose the
input value set U to be the ball (i.e. a hypercube for the infinity norm) that
is centered at the origin and has radius µ.

In this work, we focus on the problem of approximating the reachable set of
the system (2.1). Some notation related to the reachable sets is needed. Let
Φs(t, x, u(·)) be the trajectory starting from x of the system (2.3) under in-
put u(·) ∈ U . The reachable sets of the system (2.3) from a set of initial
points X0 ⊆ X during the interval [0, t] is defined as: Reachs(t,X0) = { y =
Φs(τ, x, u(·)) | τ ∈ [0, t], x ∈ X0, u(·) ∈ Uµ }. The reachable set of the original
system can be defined similarly.

The following theorem shows the convergence of the reachable set of the ap-
proximate system to that of the original system [15].

Theorem 1. Let L be the Lispchitz constant of the vector field f of the sys-
tem (2.1) on X . Then

dH (Reachf (T,X0), Reachs(T,X0)) ≤
2µ

L
(eLT − 1)

where dH denotes the Hausdorff distance associated with the chosen norm || · ||.

15

This theorem shows the importance of the magnitude of µ since the error in
the reachable set approximation depends linearly on µ. This is a motivation for
our search for better error bounds, especially for linear interpolation which is an
efficient method for affine hybridization that we explain in the next section.

Affine hybridization

We will now focus on the hybridization that uses affine functions for each ap-
proximation domain, which is a simplex. We recall that a simplex in Rn is the
convex hull of (n+ 1) affinely independent points in Rn.

Suppose that we start with some initial set which is a polytope P0. Around
P0, we construct an approximation, around P0 which contains P0. In our first
work [15, 16], each domain is a cell in a simplicial mesh. Inside each cell the ap-
proximate vector field is defined using linear interpolation of f over the vertices of
the cell. As mentioned earlier, the inconvenience of this hybridization (which we
call static hybridization since the mesh is defined a-priori) is it requires expensive
intersection operations when handling the transition of the system from one cell
to its adjacent cells. To remedy this, rectangular mesh was then proposed. Nev-
ertheless, interpolating over the rectangle vertices results in multi-affine functions
which are harder to analyze.

In our recent paper [?], we proposed dynamic hybridization, in which a new
domain is constructed only when the system is about to leave the current domain.
Since intersection is no longer required, we can use a larger choice of approxima-
tion domain types for function approximations. In this work, we use again linear
interpolation on simplices which is an efficient function approximation method.
In addition, we exploit new better error bounds to investigate how the approxi-
mation quality of a simplex depends on its shape, size and orientation, in order
to significantly improve the function approximation accuracy.

In the remainder of this section, we recall the linear interpolation on the vertices
of a simplex. We denote by Pv the set of the vertices of a simplex ∆. We define l
as an affine map of the form: l(x) = Ax+b (A is a matrix of size n×n and b ∈ Rn)
such that l interpolates the function f at the vertices of ∆. More precisely,

∀p ∈ Pv : f(p) = l(p).

An important advantage of this approximation method is that using the vertices
of each simplex, the affine interpolant l is uniquely determined, since each simplex
has exactly (n+ 1) vertices.

Let us now define an input set U so that l is a conservative approximation of
the original vector field f . To this end, we define the interpolation error as:

µ = sup
x∈∆

||f(x)− l(x)||.

16

Note that the real distance between the original function f and the approxi-
mating function l is key to the approximation quality, however this distance is
hard to estimate precisely. It is easy to see the importance of the tightness of
error bounds, since this directly impacts the error between the solutions of the
two systems. In our previous work we used the following bounds on µ for two
cases: the vector field f is Lipschitz and f is a C2 function.

• If f is Lipschitz and L is its Lipschitz constant, then

µ ≤ %max
2nL

n+ 1
= µ(%max).

where %max is the maximal edge length of the simplex.

• If f is C2 on ∆ with bounded second order derivatives then

µ ≤ Kn2

2(n+ 1)2
%2

max = µ(%max) (2.4)

where K is a bound on the second derivatives of f where

K = max
i∈{1,...,n}

sup
x∈∆

p1=n∑
p1=1

p2=n∑
p2=1

∣∣∣∣ ∂2f i(x)

∂xp1∂xp2

∣∣∣∣ .
We write the above error bounds as a function of %max to emphasize that it
depends on the maximal simplex edge length %max.

2.2.2 Tighter error bounds

In this section, we describe better error bounds on the interpolation over a sim-
plex ∆ in Rn. The class of systems we consider are assumed to satify some
smoothness conditions. To explain this, we need the notion of curvature.

From now on we write f = (f1, f2, . . . , fn) as a vector of n functions fi :
Rn → R. We first define the Hessian matrix associated with the function fi with
i ∈ {1, . . . , n} as:

Hi(x) =

∂2fi

∂x2
1

∂2fi

∂x1x2

. . .
∂2fi

∂x1xn

∂2fi

∂x1x2

∂2fi

∂x2
2

. . .
∂2fi

∂x2xn

. . .
∂2fi

∂x1xn

∂2fi

∂x2xn

. . .
∂2fi

∂x2
n

. (2.5)

17

For any unit directional vector d, the directional curvature of fi is defined as

∂fi(x, d) = dTHi(x)d.

Given a set X ⊆ X , if f satisfies the following condition for all unit vector
d ∈ Rn

∀i ∈ {1, . . . , n} ∀x ∈ X : max |∂fi(x, d)| ≤ γX , (2.6)

the value γX is called the maximal curvature of f in X. In other words, the above
means that all the eigenvalues of Hi are in [−γX , γX].

The following theorem gives a bound on the interpolation error [?].

Theorem 2. Let l be the affine functions that interpolates the functions f over
the simplex ∆. Then, for all x ∈ ∆

||f(x)− l(x)|| ≤ γ∆
r2
c (∆)

2
.

where γ∆ is the maximal curvature of f in ∆, and rc(∆) is the radius of the
smallest ball that contains the simplex ∆.

For short, we say “the smallest containment ball” to refer to the smallest ball
that contains the simplex ∆. Figure 2.2.2 illustrates this notion in two dimen-
sions where simplices are triangles.

rc

Smallest containment circle Circumcircle

Figure 2.1: The smallest containment circle of the same triangle (shown on the
left), which should not be confused with its circumcirle (shown on the right).

Compared to the error bound in (2.4), this error bound is tighter due to the
relation between the maximal edge length of a simplex and the radius of its small-
est containnement ball. This will be discussed in more detail later (especially in
Lemma 2).

We can see that within a ball of radius rc, if the curvature is constant, the
simplices with the largest volume that guarantee the interpolation error bound

18

γ∆
r2
c (∆)
2

of Theorem 2 are equilateral. We recall that a simplex is called equilateral
if their edges have the same length. However, this error bound is appropriate only
when the directional curvatures are not much different in every direction. There
are functions where the largest curvature in one direction greatly exceeds the
largest curvature in another, and in these cases it is possible to achieve the same
accuracy with non-equilateral simplices. Intuitively, we can stretch an equilateral
simplex along a direction in which the curvature is small in order to obtain a new
simplex with larger size.

A better way to judge the approximation quality of a simplex is to map it to an
“isotropic” space where the curvature bounds are isotropic. Indeed it is possible
to derive an error bound similar to the one in Theorem 2 but with the radius of
the smallest containment ball in this “isotropic” space [?]. To explain this, we
define:

C = ΩΞΩT

where Ω = [ω1ω2 . . . ωn] and

Ξ =

ξ1 0 . . . 0
0 ξ2 . . . 0

. . .
0 0 . . . ξn

 .

The vectors ωi and values ξi are the eigenvectors and eigenvalues of a symmetric
positive-definite matrix C, defined in the following.

We assume the boundedness of directional curvature of f . Given a subset X of
X and a symmetric positive-definite matrix C(X), if for any unit vector d ∈ Rn,

∀i{1, . . . , n} ∀x ∈ ∆ : max |dTHi(x)d| ≤ dTC(X)d,

we say that in the set X the directional curvature of f is bounded by C and we
call C is a curvature tensor matrix of f in X.

Let ξmax and ξmin be the largest ans smallest eigenvalues of C(∆). The curva-
ture matrix C(∆) can be specified using an estimate of the Hessian matrices Hi.
This will be discussed in more detail in Section 2.2.7.

We now define a matrix T which maps a point in the original space (that is,
the domain over which the functions f are defined) to an isotropic space:

T = Ω

√
ξ1/ξmax 0 . . . 0

0
√
ξ2/ξmax . . . 0

. . .

0 . . .
√
ξn/ξmax

 ΩT . (2.7)

19

Given a set X ⊆ Rn, let X̂ denote the set resulting from applying the linear
transformation specified by the matrix T to X, that is, X̂ = {Tx | x ∈ X}. Ge-
ometrically, the transformation T “shortens” a set along the directions in which
f has high curvatures. An illustration of this transformation is depicted in Fig-
ure 2.2.2, where the application of the transformation T to an ellipsoid produces
a circle. When applying T to the triangle inscribed the ellipsoid shown on the
left, the result is a more regular triangle shown on the right.

T

Figure 2.2: Illustration of the transformation to the isotropic space.

Theorem 3. Let l be the affine functions that interpolates the functions f over
the simplex ∆. Then, for all x ∈ ∆

||f(x)− l(x)|| ≤ γ∆
r2
c (∆̂)

2
= µ̄new(rc).

where γ∆ is the maximal curvature in ∆ and rc(∆̂) is the radius of the smallest

containement of the transformed simplex ∆̂.

Proof. The idea of the proof is as follows. Let

φ(x) = f(T−1x)

be the function defined over the isotropic space. Similarly, for the linear interpo-
lating function l, we define

λ(x) = l(T−1x).

Note that f̂(x̂) = f(x). So the range of φ over the domain ∆̂ is the same as
the range of f over the domain ∆. The curvature of φ has a bound that is
independent of direction. Let Gi(x) denote the Hessian matrix of φ(x). Indeed,

∂φi(x, d) = dTGi(x)d

= (T−1d)THi(x)(T
−1d)

It then follows from the definition of the curvature tensor matrix C(∆), we have

∂φi(x, d) ≤ dTT−1C(∆)T−1d

≤ γ∆

20

We thus see that γb∆ = γ∆. Using Theorem 2, the maximum of ||φ(x)− λ(x)||

over ∆̂ is γb∆ r
2
c (∆̂)

2
= γ∆

r2
c (∆̂)

2
. By the above definitions of the functions φ and

λ, we have f(x) = φ(x̂) and l(x) = λ(x̂) we have

max
x∈∆

||f(x)− l(x)|| = max
x∈b∆ ||φ(x)− λ(x)||.

It then follows that

||f(x)− l(x)|| ≤ γ∆
r2
c (∆̂)

2
.

To show the interest of this error bound, we first show that using transformation
T the smallest containment ball radius is reduced or at worst unchanged; hence
we can use larger simplices for the same error bound.

Lemma 1. Given a simplex ∆ ⊆ Rn, the radius of the smallest contrainment ball
of ∆̂ is not larger than the radius of the smallest contrainment ball of ∆, that is
rc(∆̂) ≤ rc(∆).

The proof can be directly established from the construction of the transfor-
mation matrix T . The error bound of Theorem 3 is at least as good as that of
Theorem 2. For a “thin” simplex whose longer edges are along the directions

of the eigenvectors associated with smaller eigenvalues, the ratio
rc(∆̂)

rc(∆)
can be

as small as

√
ξmin

ξmax

. In the worst case, when the simplex is “parallel” to an

eigenvector associated with largest eigenvalue, this ratio is 1.

Furthemore, we compare the new error bounds with the ones shown in (2.4) which
were used in the previous work. We first notice that the bound K in (2.4) must be
larger than γ∆. To see this, we notice that any matrix norm is always larger than
the maximum of the absolute values of the eigenvalues. It is however not easy
to relate the smallest containment ball with the simplex size. For comparison
purposes, we can use the following result.

Lemma 2. Let ∆ be a simplex in Rn with the maximal edge length %max. Then,
the radius rc(∆) of its smallest containment sphere satisfies

rc(∆) ≤ %max

√
n

2(n+ 1)

where n is the dimension of the system.

21

The proof of this inequality can be found, for example, in [?]. Indeed, the
equality is achieved when the smallest containment ball of a simplex is also its
circumscribed ball.

A direct consequence of this result is the following ratio between the old and
new error bounds for any simplex.

Theorem 4. For any simplex ∆ with the maximal edge length %max, the ratio
between the new error bound µ̄new of Theorem 3 and the old error bound µ̄ in (2.4)
satisfies the following inequality:

µ̄new(rc(∆̂))

µ̄(%max)
≤ n+ 1

2n
.

In two dimensions, compared to the old error bound, the new error bound is

reduced at least by the factor 4/3. The reduction factor
2n

n+ 1
grows when the

dimension n increases and approaches 2 when n tends to infinity.

This reduction is very useful especially in high dimensions because when divid-
ing a simplex in order to satisfy some edge length bound, the number of resulting
subsets grows exponentially with the dimension. Moreover, as in the above dis-
cussion of Lemma 1, by choosing an appropriate orientation we can reduce this

ratio further by

√
ξmin

ξmax

.

2.2.3 Construction of simplicial domains

We consider the problem of constructing a simplex around a polytope P (which is
for example the reachable set in the current iteration)with the objective of achiev-
ing a good approximation quality when performing analysis on the approximate
system to yield the result for the original system.

2.2.4 Simplex size and shape

We first consider the accuracy criterion. More precisely, we want to guarantee
that the linear function that interpolates f satisfies a given desired error bound,
say ρ. Let γ be the maximal curvature within a region of interest around the
initial set, and for short we write it without specifying the simplex.

22

Theorem 3 indicates that the interpolation error variation depends on the ra-
dius rc(∆̂). In order to exploit this result, we first transform the polytope P

to P̂ = TP in the “isotropic” space. Let B be the ball of radius
√

2ρ/γ the

centroid of which coincides with that of the polytope P̂ . We assume that P̂ is
entirely included in B. If this is not the case, the polytope P should be split. The
problem of finding a good splitting method is not addressed in this paper. In the
current implementation the splitting direction is perpendicular to the direction
along which the polytope is most stretched out.

Let E = T−1(B) be the ellipsoid resulting from applying the inverse transfor-
mation T−1 to the ball B. Then, according to Theorem 3 the interpolation error
associated with any simplex inside the ellipsoid E is guaranteed to be smaller
than or equal to ρ.

Since there are many simplices that can be fit in a ball, we proceed with
the problem of choosing a simplex that satisfies the other optimization crite-
ria, namely the simplex volume and the time of evolution within the simplex.

Lemma 3. Let ∆r be an equilateral simplex that the ball B is its circumscribed
ball. Then, T−1(∆r) is a simplex inscribed in the ellipsoid E = T−1B with the
largest volume.

The proof of this result relies on two standard results. First, the linear trans-
formation preserves the volume ratio between two measurable bodies. Second,
the simplices inside a ball with the largest volume are equilateral.

In follows from the lemma that we only need to consider the simplices resulting
from applying T−1 to the largest equilateral simplices inscribing in the ball B.
Any such simplex is guaranteed to be inscribed in the ellipsoid E and to have
the largest volume.

2.2.5 Simplex orientation

It remains to select one of the above simplices to meet the staying time require-
ment. To this end, we use the following heuristics. We sample trajectories starting
at a number of points inside and around the polytope P and then determine an
average evolution direction e for a given time interval. We then want the simplex
to be “aligned” with this direction e, as shown in Figure 2.2.5.

Note that we are considering only the equilateral simplices inscribed in B. We

23

���
���
���
���

���
���
���
���

e

P

Figure 2.3: Illustration of the average evolution direction e.

now first pick an equilateral simplex ∆r aligned with an axis, say x1, as shown
in Figure 2.4. This equilateral simplex can be efficiently constructed since, due
to its alignment, the construction can be done by recursively reducing to lower
dimensions. Without loss of generality, we can assume that the simplex has a
vertex p on this axis x1. We now want to compute the linear transformation M
which rotates it to align with −e. To do so, we compute its inverse tranforma-
tion as follows. Choosing a simplex vertex p as a “pivot” vertex, we define its
associated median axis as the line passing through p and perpendicular to the
hyperplane containing the corresponding base. Let q be the vector representing
this median axis, as shown in Figure 2.4.

q x1

x2

Figure 2.4: Illustration of a simplex median axis.

We want to compute a transformation R that aligns q with −e. This transfor-
mation is decomposed into (n− 1) successive rotations, each of which is around
an axis xi.

These rotations are illustrated with a 3-dimensional example in Figure 2.2.5.
The median axis q of the simplex lies on the axis x1. The bold line segment
represents the vector −e to rotate. After the first rotation by the angle θ1 around
the axis x1, the new vector is on the plan (x1, x2). The second rotation by the
angle θ2 is around the axis x3 to finally align the vector with q. The required
transformation M is then obtained by computing the inverse of R, that is M =

24

R−1.

Figure 2.5: Successive rotations needed to align a vector with the axis x1.

2.2.6 Curvature estimation

The curvature tensor matrix is needed to define the transformation T .

We first consider the case where the Hessian matrices are constant, such as
the class of quadratic functions2. To compute a curvature tensor matrix, we first
define a matrix Ci as the matrix with the same eigenvectors and eigenvalues as
Hi, except that each negative eigenvalue ξ of Hi is replaced with the positive
eigenvalue −ξ. Note that we can, in this case, omit the simplex in the notation
of the curvature tensor matrix. Hence, Ci is guaranteed to be positive definite.
If any eigenvalue of Hi is zero, we substitute it with some small positive value.
That is, for each matrix Hi, we define

Ci(∆) = [ωi
1 . . . ω

i
n]

|ξi

1| 0 . . . 0
0 |ξi

2| . . . 0
. . .

0 0 . . . |ξi
n|

 [ωi
1 . . . ω

i
n]T

where ωi
j (with j ∈ {1, . . . , n}) are the eigenvectors of Hi. We denote by ξi

max the
eigenvalue with the largest absolute magnitude of Ci. Among the matrices Ci we
can choose the one with the largest absolute eigenvalue to be a curvature tensor
matrix.

For more general classes of functions where the Hessian matrices are not con-
stant, we can estimate the curvature tensor matrix using optimization. This
optimization can be done a-priori for the whole state space or it can be done lo-
cally each time we construct a new approximation domain. The transformation
matrix T can then be computed using (2.7).

2Multi-affine and quadratic functions have found numerous applications, such as in biology
and economy.

25

2.2.7 Simplex construction algorithm

Before continuing, the developments so far is summarized in an algorithm for
computing a simplicial domain around a polytope P . Let rc be the radius of the
smallest containement ball in the isotropic space that satisfies a given desired
error bound. The transformation matrix is denoted by T .

Algorithm 1 Simplex construction

P̂ = TP
Compute a ball B around P̂
Choose ∆r as an equilateral simplex inscribed in B such that an median axis
q of ∆r is aligned with the axis x1.
Compute the average trajectory direction e (by sampling trajectories from P)
ê = Te
Orientate the simplex ∆r so that the median axis q is aligned with the direction
−ê
∆ = T−1∆̂
Return ∆

Note that if the Hessian matrices are constant, we can reuse the curvature
tensor matrix and the transformation matrix T for the new domain construction
if invoked in the next iterations.

Experimental result: a biological system

We implemented the above algorithm using the algorithms in [?] for reachability
computation for affine approximate systems. We used this implementation to
study proteolytic reactions involving Type 1 Collagen that occur in the extra-
cellular matrix using a theorical model of the biochemical network [?], which is
a differential equation system with 12 variables (see Appendix). The numerical
values of parameters are given in Appendix. The vector field of this system is
quadratic and therefore its Hessian matrices are constant.

This system describes the type I Collagen Proteolysis initiated by the concen-
trations MT1 and M2 of MT1-MMP and MMP2 enzymes. The dynamics of the
system is quadratic, and its directional curvature varies a lot depending on the
directions. The application of this new simplex construction allows to not only
obtain a smaller approximate reachable set (due to a smaller error bound used in
the input set) and more over significantly reduce the computation time by roughly
2.5 for the same time horizon, compared to the previous method described in [?].

26

Figure 2.2.7 shows the projection of the reachable set evolution on the first
three variables, namely mt1 and m2. The initial set is a small set around the
origin. We observe that the variables converge towards some steady values (inside
the dense part of the reachable set shown in the figure).

Figure 2.6: Projection of the reachable set on the first three variables mt1, m2
and t2.

2.3 Other results

2.3.1 Algebraic differential equations

The behavior of many physical systems, such as non-linear analog circuits, can be
described by a set of differential algebraic equations. The extension of reachability
techniques for ordinary differential equations (ODEs) to handle DAEs is not
straightforward since these classes of equations differ in both theoretical and
numerical properties, and this is captured by the index concept. The differential
index of (??) is the minimal number of differentiations required to solve for the
derivatives ẋ. In general the problem of numerically solving DAEs with index 2
or higher is ill-posed. DAEs that model practical electronic circuits are typically
of index 1 or 2 and in this work we focus on the former. In particular, we will
study the equivalent semi-explicit form of (??):

ẋ(t) = f(x(t), y(t), p), (2.8)

0 = g(x(t), y(t), p). (2.9)

If the Jacobian gy(x, y) = ∂g/∂y is invertible in a neighborhood of the solution,
then by differentiating the algebraic equation we obtain

ẏ = −g−1
y gxf, (2.10)

27

and in this case, the DAE system is of index 1. A trivial way to compute reachable
sets for index 1 DAEs is to transform it into an ODE composed of (2.8) and (2.10)
using the above-described differentiation and then apply the existing techniques
for ODEs. However, the drawback of this approach is that the solution may drift
away from the algebraic constraint. We will retain the algebraic constraint (2.9)
and interpret the original DAE as the ODE, composed of (2.8) and (2.10), on
the manifold defined by (2.9). The main idea of our method is to combine the
commonly-used technique of geometric integration using projection [?], with our
reachability algorithm, to compute the reachable set.

The approach was applied to a number of examples, in particular a second order
biquad low-pass filter circuit. These results were published in the paper [37]. To
our knowledge, the reachability problem for DAEs had not been addressed before.

2.3.2 Predicate Abstraction

Predicate abstraction has emerged to be a powerful technique for extracting
finite-state models from infinite-state discrete programs. In this work we address
the reachability analysis problem for hybrid systems by combining the notion of
predicate abstraction with our techniques for approximating the set of reachable
states of linear systems using polyhedra [?]. Given a hybrid system and a set
of user-defined boolean predicates, we consider the finite discrete quotient whose
states correspond to all possible truth assignments to the input predicates. The
algorithm performs an on-the-fly exploration of the abstract system.

To compute the transitions out of an abstract state, the tool needs to compute
the set of discrete and continuous successors, and find out all the abstract states
that this set intersects with. The complexity of this computation grows exponen-
tially with the number of abstraction predicates. We developed various optimiza-
tions that are aimed at speeding up the search in the abstract state-space, and
demonstrate their benefits via case studies. We also studied the completeness of
the predicate abstraction technique for proving safety of hybrid systems.

The success of this approach however crucially depends on the choice of the
predicates used for abstraction. We thus focus on identifying these predicates
automatically by analyzing spurious counter-examples generated by the search
in the abstract state-space. We present the basic techniques for discovering new
predicates that will rule out closely related spurious counter-examples, optimiza-
tions of these techniques, implementation of these in the verification tool, and
case studies demonstrating the promise of the approach.

This work was done in collaboration with Rajeev Alur and Franjo Ivancic from
University of Pennsylvania. The results were published in the conferences HSCC

28

2003 - Hybrid Systems: Computation and Control [?], TACAS 2003 [?], HSCC
2004 - Hybrid Systems: Computation and Control [?] and two journal articles
TECS [?] and TCS [?].

2.3.3 Abstraction by projection

In this work, we proposed an abstraction method for dimension reduction, which
is along the lines of the hybridization-based approach. Our first observation is
that in many practical systems, the properties to verify involve only a subset of
variables, and the other variables may not need to be analyzed with great accu-
racy. The main idea of our method is to project out some continuous variables,
say z, and treat them in the dynamics of the remaining variables x as uncertain
input. Therefore, the dynamics of x is then described by a differential inclusion.
In addition, in order to avoid excessively conservative abstractions, the domains
of the projected variables are divided into smaller regions corresponding to dif-
ferent differential inclusions. The final result of our abstraction procedure is a
hybrid system of lower dimension with some important properties that guarantee
convergence results.

However, this abstraction method does not solve the verification problem by
itself. The success depends on the ability to deal with differential inclusions.
We thus focused on the reachability problem for uncertain bilinear systems, a
simple yet useful class of nonlinear differential inclusions. The combination of
the abstraction method and the reachability analysis method for bilinear systems
allows to treat multi-affine systems, which can be found in numerous applications
in engineering, biology and economics.

This work was done in collaboration with Eugene Asarin from LIAFA, which
resulted in a publication in the conference HSCC 2004 - Hybrid Systems: Com-
putation and Control [?].

29

Chapter 3

Reachability analysis of
polynomial systems

3.1 Introduction

Polynomial systems can be used to model a variety of physical phenomena, in
particular the dynamics of bio-chemical networks. Using the set integration idea,
we first derive an integration scheme that approximates the reachable state xk+1

by applying some polynomial map to xk. In order to use this scheme to approxi-
mate the reachable set, we then consider the problem of computing the image of
a set by a multivariate polynomial.

Numerical integration is a common method to solve non-linear differential equa-
tions. Its goal is to derive a scheme to approximate the solution at each time
step based on the solution at one or several previous steps. In general, a typical
numerical integration scheme can be written as: xk+1 = Yk(f, h,x0,x1, . . . ,xk)
where f is the derivative and h is the step size. Nevertheless, while this approach
is concerned with computing a single solution at a time and each xk here is a
point, in reachability analysis one has to deal with sets of all possible solutions
(due to non-determinism in initial conditions and in the dynamics of the system).
Therefore, wishing to exploit the numerical integration idea for reachable set com-
putation purposes, a question that arises is how to perform such schemes with
sets, that is, when each xk is a set of points. The essence behind the approach
we propose can be described as extending traditional numerical integration to set
integration.

In this chapter, we address the following image computation problem: given a
set in Rn, compute its image by a polynomial. This problem typically arises when

30

we deal with a dynamical system of the form x(k + 1) = π(x(k)) where π is a
multivariate polynomial. Such a dynamical system could result from a numerical
approximation of a continuous or hybrid system. Many existing reachability
computation methods for continuous systems can be seen as an extension of
numerical integration. For reachability analysis which requires considering all
possible solutions (for example, due to non-determinism in initial conditions),
one has to solve the above equation with sets, that is x(k) and x(k + 1) in the
equation are subsets of Rn (while they are points if we only need a single solution,
as in numerical integration). In addition, similar equations can arise in embedded
control systems, such as some physical system controlled by a computer program,
which is the implementation of some continuous (or possibly hybrid) controller
using appropriate discretization.

The image computation problem we are interested in can be formally stated as
follows. Given a polynomial map π : Rn → Rn of total degree d and a bounded set
X ⊆ Rn, we want to compute the image π(X) defined as: π(X) = {π(x) | x ∈ X}.

It should be noted that our method can be extended to a continuous-time
system described by a differential equation. Indeed, one can approximate it by a
difference equation using a discretization scheme with some uncertainty term to
guarantee conservativeness of the approximation.

Notation

Let R denote the set of reals. Vectors are often written using bold letters. Ex-
ceptionally, scalar elements of multi-indices, introduced later, are written using
bold letters. Given a vector x, xi denotes its ith component. Capital letters, such
as A, B, X, Y , denote matrices or sets. If A is a matrix, Ai denotes the ith row
of A. An affine function is thus represented as cTx + d.

We use Bu to denote the unit box Bu = [0, 1]n. We use π to denote a vector
of n functions such that for all i ∈ {1, . . . , n}, πi is an n-variate polynomial of
the form πi : Rn → R. In the remainder of the paper, we sometimes refer to π
simply as “a polynomial”.

To discuss Bézier simplices and the Bernstein expansion, we use multi-indices
of the form i = (i1, . . . , in) where each ij is a non-negative integer. Given two
multi-indices i and w, we write i ≤ w if for all j ∈ {1, . . . , n}, ij ≤ wj. Also, we
write i

w
for (i1

w1
, . . . , in

wn
) and

(
i
w

)
for

(
i1
w1

)(
i2
w2

)
. . .

(
in
wn

)
.

We define the norm of i by ||i|| =
∑n+1

j=1 i[j] and let Id
n denote the set of all

multi-indices i = (i[1], . . . , i[n + 1]) with ||i|| = d. We define two special multi-
indices: ej is a multi-index that has all the components equal to 0 except for
the jth component which is equal to 1, and o is a multi-index that has all the
components equal to 0. We call o the zero multi-index.

31

3.2 Set integration

We first show a method for obtaining a numerical scheme suitable for our reach-
ability computation purposes. Indeed, we would like a scheme which can be
effectively computed for polynomial systems. The development is however valid
for general non-linear systems.

3.2.1 Numerical scheme

We consider a non-linear system:

ẋ(t) = g(x(t)). (3.1)

We first rewrite the dynamics of the system as the sum of a linear part Ax(t)
and a non-linear part f(x(t)), that is,

ẋ(t) = g(x(t)) = Ax(t) + f(x(t)). (3.2)

We then consider the non-linear term as independent input. In other words,
the system is treated as a linear system with input f(x(t)). This trick is to
separate the linear part for which we can derive the exact closed-form solution.
The interest in doing so will become clearer when we discuss the approximation
error. We now develop a numerical solution for (3.2). Let h > 0 be a time step
and tk = kh where k = 0, 1, 2, Then, we have

x(tk+1) = eAhx(tk) +

∫ h

0

eA(h−τ)f(x(tk + τ)) dτ. (3.3)

The idea is to approximate x(tk+τ) in the above equation by its Taylor expansion
around tk to the first order, that is α(tk + τ) = x(tk) + g(x(tk))τ . Denoting
x(tk) = xk, f(x(tk)) = fk and g(x(tk)) = gk, we have α(tk + τ) = xk + gkτ =
xk +(Axk +fk)τ . Replacing x(tk +τ) with α(tk +τ), we obtain an approximation
x̄k+1 of the exact solution xk+1:

x̄k+1 = eAhxk +

∫ h

0

eA(h−τ)f(α(tk + τ)) dτ. (3.4)

The integral in the above equation is a function of xk, and we denote it by

Q(xk) =

∫ h

0

eA(h−τ)f(α(tk + τ)) dτ

.

We now focus on the case where g(x) is a polynomial.

32

Lemma 4. If g(x) is a multi-variate polynomial, the map Q(xk) can be written
as a polynomial in xk.

Proof. The proof of the lemma is straightforward, however we present it here for
the clarity of the development that follows. It is easy to see that if the total
degree of f(xk) is d, then α(tk + τ) is a multivariate polynomial of total degree d
in xk, and therefore f(α(tk + τ)) is a polynomial of degree d in τ . We can write
f(α(tk + τ)) =

∑d
l=0 ψl(xk)τ

l where for every l ∈ {0, 1, . . . , d} ψl is a polynomial

in xk. We then denote Γl =
∫ h

0
eA(h−τ)τ l dτ , which can be written in a closed

form. It then follows that
∫ h

0
eA(h−τ)f(α(tk + τ)) dτ =

∑d
l=0 Γlψl(xk).

The resulting integration scheme to approximate the solution of (3.1) is:{
x̄k+1 = eAhx̄k +Q(x̄k) = P (x̄k),
x̄0 = x(0).

We call P (xk) the integration map.

Image computation problem

The problem we are now interested in can thus be formally stated as follows.

Problem 1. Given a polynomial map π : Rn → Rn of total degree d and a
bounded set X ⊆ Rn, we want to compute the image π(X) defined as: π(X) =
{π(x) | x ∈ X}. We will focus on the case where X is a simplex in Rn.

Example of multi-affine systems

Let us illustrate the proof with a simple case where g(x) is a multi-affine function
of degree 2. This is the case of a biological model we study in Section 3.3.3. The
function f(x) can be written as: f(x) =

∑
i,j∈{1,...,n},i6=j x[i]x[j]cij with cij ∈ Rn.

Then, replacing x(tk + τ) with α(tk + τ) = xk + gkτ , we have:

f(α(tk + τ)) =
∑

i6=j∈{1,...,n}

(gk[i]gk[j]τ
2 + (xk[i]gk[j] + gk[i]xk[j])τ + xk[i]xk[j])cij

Therefore, the equation (3.4) becomes:

x̄k+1 = P (xk) = Φxk +
∑

i6=j∈{1,...,n}

(γ2Γ2 + γ1Γ1 + γ0Γ0)cij. (3.5)

where Φ = eAh and γ2 = gk[i]gk[j], γ1 = gk[i]xk[j] + xk[i]gk[j], γ0 = xk[i]xk[j].
After straightforward calculations, we obtain:

Γl = l!
∞∑
i=0

Aihi+l+1

(i+ l + 1)!
(3.6)

33

It is thus easy to see that, due to the term γ2, P (xk) in (3.5) is a polynomial
of degree 4 in xk. The equation (3.5) can be readily used as a scheme specialized
for multi-affine systems of degree 2.

3.2.2 Convergence

A bound on the error in our approximation is given in the following theorem.

Theorem 5. Let x̄(tk+1) be the approximate solution at time tk+1 (computed
by (3.4)) and x(·) be the corresponding exact solution such that x̄(tk) = x(tk).
Then, a bound on the local error is given by: ||x̄(tk+1)− x(tk+1)|| = O(h3).

The proof of this result is presented in Appendix. This theorem shows that
the equation (3.4) is a second order scheme. In addition. we can show that the
global error is also convergent. As one can see from the proof, the error bound
depends on the Lipschitz constant of the non-linear function f . So now we can
see the interest in separating the linear part since the Lipschitz constant of f is
smaller than that of g.

Higher order integration schemes

Note that we have used an approximation of the exact solution x(tk + τ) by the
its first order Taylor expansion around tk. To obtain better convergence orders,
we can use higher order expansions which results in integration schemes involving
high order derivatives of f(x). The derivation of such schemes is similar to the
above development, but the degree of the resulting integration map P (xk) can be
higher. In the other direction, if we use a simpler approximation α(tk + τ) = xk

for all τ ∈ [tk, tk+1), then Q(xk) = Γ0f(xk) and we obtain the classic Euler
scheme for the non-linear part. The advantage of this scheme is that the resulting
polynomial Q(xk) has the same degree as f(x). As we will see later, the degree
of the integration map is one of the factors determining the complexity of the
reachability algorithm. It remains to compute the polynomial map Q(xk), the
problem we tackle in the next section.

3.3 Using Bézier techniques

To address the image computation problem for polynomial maps, we employ
the techniques from computer aided geometric design, in particular the Bézier
techniques and the blossoming principle. We also prove that our overall method
is of order 2. Although this paper focuses on continuous systems, the proposed
method can be extended to hybrid systems, since reachable sets are represented

34

by convex polyhedra, and Boolean operations (required to deal with discrete
transitions) over such polyhedra can be computed using a variety of existing
algorithms. This is illustrated through a biological example.

3.3.1 Bézier simplices

Let ∆ be a full-dimensional simplex in Rn with vertices {v1, . . . ,vn+1}. Given
a point x ∈ ∆, let λ(x) = (λ1(x), . . . , λn+1(x)) be the function that gives the
barycentric coordinates of x with respect to the vertices of ∆, that is, x =∑n+1

j=1 λj(x)vj and
∑n+1

j=1 λj(x) = 1.

A Bézier simplex of degree d of the form π : Rn → Rn is defined as1:

π(x) =
∑
||i||=d

biB
d
i (λ1(x), . . . , λn+1(x)) (3.7)

where for a given multi-index i, bi is a vector in Rn and Bd
i : Rn → R is a

Bernstein polynomial of degree d defined as:

Bd
i (y1, . . . , yn+1) =

(
d

i

)
y
i[1]
1 y

i[2]
2 . . . y

i[n+1]
n+1 (3.8)

with the multimonial coefficient(
d

i

)
=

d!

i[1]! i[2]! . . . i[n+ 1]!
.

In the above formula (3.7), each vector bi is called a Bézier control point and the
set of all such bi form the Bézier control net of π with respect to ∆.

Any polynomial can be written in form of a Bézier simplex, as in formula (3.7).
This form is a popular way to write polynomials in computer aided geometric
design (see [?] and references therein).

The following properties of Bernstein polynomials are well-known.

• The Bernstein polynomials form a partition of unity, that is,∑
||i||=d

Bd
i (y1, . . . , yn+1) = 1.

• They are non-negative, that is,

Bd
i (y1, . . . , yn+1) ≥ 0 for all 0 ≤ y1, . . . , yn+1 ≤ 1.

1The definition holds for more general polynomials of the form π : Rn → Rm.

35

The above properties of Bernstein polynomials imply the following shape prop-
erties of Bézier simplices, which we will use for reachability computation purposes.

Lemma 5. Given an arbitrary point x ∈ ∆,

1. [Convex hull property] the point π(x) lies inside the convex hull of the
control net, that is π(x) ∈ conv{bi | i ∈ Id

n}.

2. [End-point interpolation property] π interpolates the control net at the
corner control points specified by bdek

for all k ∈ {1, . . . , n+ 1}.

Note that the number of multi-indices in Id
k is

(
d+ n

n

)
; therefore, the number

of points bi is exactly

(
d+ n

n

)
=

(d+ n)!

d! n!
. We denote this number by β(n, d).

These shape properties can be used to approximate polynomial maps. Indeed,
the convex hull property in Lemma 5 shows that one can over-approximate π(∆)
by taking the convex hull of the Bézier control net of π with respect to ∆. In
addition, this over-approximation is tight due to the above end-point interpola-
tion property. In the rest of this section we focus on the problem of computing
the Bézier control net of the polynomial π. To avoid confusion, it is worthy to
emphasize that for reachability computation purposes, we are dealing with the
systems whose vector fields are given in monomial form (i.e. sums of monomials),
hence the integration map is also defined in this form. To compute the control
points of a polynomial given in monomial forms, we will exploit the techniques
for approximating and designing polynomial curves and surfaces. However, it is
important to mention that most of such existing tools deal with univariate or bi-
variate polynomials (often expressed in terms of control points), their application
to solve our problem requires an adaptation to multivariate polynomials as well
as geometric manipulation in general dimension.

3.3.2 Computing the Bézier control net

Our goal is to obtain the Bézier control net of a polynomial π given in monomial
form. By the definition (3.7), the most natural approach is to solve the following
interpolation problem. Let S be a set of β(n, d) points in ∆. For each x ∈
S, we evaluate π(x) and use (3.7) to obtain a system of linear equations with
the coordinates of the Bézier control points bi as unknown variables. One can
choose the set S such that the unique solution to these linear equations exists [?].
Although this method is conceptually simple, it may require solving a large linear
system2 (which is of size n∗β(n, d)). We will use a more efficient approach based

2The Gaussian elimination algorithm to solve a linear system of size m × m has the time
complexity O(m3).

36

on the blossoming principle, which is summarized in the following theorem. A
thorough description of this principle and its various applications can be found
in [?, 96].

Theorem 6 (Blossoming principle). For any polynomial π : Rn → Rn of degree
d, there is a unique symmetric d-affine map p : (Rn)d → Rn such that for all
x ∈ Rn p(x, . . . ,x) = π(x). The map p is called the blossom or the polar form of
π.

We recall that a map q(x1, . . . ,xd) is called d-affine if it is affine when all but
one of its arguments are kept fixed; it is said to be symmetric if its value does not
depend on the ordering of the arguments, that is, for any permutation (y1, . . . ,yd)
of (x1, . . . ,xd) we have q(y1, . . . ,yd) = q(x1, . . . ,xd). Given a polynomial π, the
connection between its Bézier control net relative to a simplex ∆ and its blossom
p is described by the following lemma.

Lemma 6. For all i ∈ Id
n, bi = p(v1, . . . ,v1︸ ︷︷ ︸

i[1]

, v2, . . . ,v2︸ ︷︷ ︸
i[2]

, . . . , vn+1, . . . ,vn+1︸ ︷︷ ︸
i[n+1]

)

where {v1, . . . ,vn+1} are the vertices of ∆.

This fact is also well-known [?], and we present its proof in Appendix, which
can facilitate understanding subsequent development.

Computing the blossom

We have seen that the Bézier control points can be computed by evaluating the
blossom values at some particular points shown in Lemma 6. To compute them,
we first derive an analytic expression of the polar form and then show how to
compute this expression efficiently. We do so by extending the results for bivariate
polynomial surfaces [?] to multivariate polynomials.

Before proceeding, we mention that the problem of computing the Bézier con-
trol net can be formulated as a problem of changing from the monomial basis
to the Bézier basis, which can be solved using the algorithms proposed in [?, ?].
These algorithms also make use of the blossoming principle. The idea is to ex-
press the coordinates of the new basis vectors in the old basis, and then apply
the transformation matrix to the old coefficients. However, when the polynomial
representation is “sparse”, that is it contains many zero coefficients, this sparsity
is not exploited. The method discussed in the following deals better with such
sparsity since it considers only the monomials with non-null coefficients. More
precisely, by “sparse polynomial representations” we mean those where the num-
ber of monomials (with non-null coefficients) is much smaller than the number of
all combinations of coordinate variables up to degree d. The sparse case happens
in many practical applications we have encountered.

37

We now show how to compute the blossom of monomials which are products of
only two variables, such as x[i]hx[j]k. Similar treatment can be used for mono-
mials involving more variables, but due to the length of the involved formulas
we do not detail it here. On the other hand, using linearity, we can obtain the
blossom of any polynomial expressed as a sum of monomials.

The blossom of degree d of the monomial (x[i])h(x[j])k is given by:

pd
h,k(u1,u2, . . . ,ud) =

1(
d
h

)(
d−h

k

) ∑
I ∪ J ⊆ {1, . . . , d},

|I| = h, |J | = k, I ∩ J = ∅

∏
r∈I

ur[i]
∏
s∈J

us[j].

To prove this, it suffices to check that the right hand side is a symmetric multi-
affine function, and moreover pd

h,k(u,u, . . . ,u) = (u[i])h(u[j])k.

To compute the blossom values using the above expression, we make use of a
recurrence equation on p, as proposed in [?]. We first denote

σd
h,k =

1(
d
h

)(
d−h

k

)pd
h,k(u1,u2, . . . ,ud).

The function σ is symmetric and has the following interpretation: this function
is computed by choosing h ith coordinates of the argument points and k ith

coordinates and forming their product, then summing these products over all
possible choices. We can thus derive the following recurrence formula:{

σd
h,k = σd−1

h,k + ud[i]σ
d−1
h−1,k + ud[j]σ

d−1
h,k−1 if h, k ≥ 0 and h+ k ≥ 1,

σd
0,0 = 0

(3.9)

This means that to compute the required blossom value pd
h,k(u1,u2, . . . ,ud) we

compute all the intermediate values pd′

h′,k′(u1, . . . ,ud′) with d′ ≤ d, h′ + k′ ≤ d′.
This computation can be done in time O(d3).

3.3.3 Approximation error and subdivision

We now estimate an error bound for the approximation of the polynomial map
π by its the Bézier control points.

Theorem 7. For each Bézier control point bi there exists a point y ∈ π(∆) such
that ||bi − y|| ≤ Kρ2 where ρ be the maximal side length of ∆ and K is some
constant not depending on ∆.

The proof of this theorem can be found in Appendix.

38

Consequently, when the simplicial domain ∆ is large, to achieve the desired
accuracy we may need to subdivide it into smaller simplices. This subdivision
creates new Bézier bases and therefore new control points. However, due to the
properties of multi-affine maps, one can compute the new control nets in a clever
way which reuses the computations performed for the original simplex. Suppose
that we want to partition the simplex ∆ by adding a point x ∈ ∆ and forming
(n+ 1) new smaller simplices. Then, we can use de Catesljau algorithm [?, ?] to
compute the value of the polynomial π at x. It turns out that this computation
also produces the control net for the new simplices. Note that this algorithm can
only be applied when the Bézier control points of the polynomial are known.

Figure 3.1: Subdividing a Bézier control net

We denote bl
i = p(v1, . . . ,v1︸ ︷︷ ︸

i[1]

, . . . ,vn+1, . . . ,vn+1︸ ︷︷ ︸
i[n+1]

,x1, . . . ,xl︸ ︷︷ ︸
l

) with i[1] + . . . +

i[n+ 1] + l = d. Since p is symmetric and multi-affine, we have:

bl
i = λ1(xl)b

l−1
i+e1

+ . . .+ λn(xl)b
l−1
i+en

(3.10)

Note that bn
o = p(x1, . . . ,xn) where o is the zero multi-index. In addition, with

l = 0, b0
i are exactly the Bézier control points of the polynomial. Therefore, by

running the above recursion starting from l = 0 until l = n we obtain the blossom
value at (x1, . . . ,xn). If all the argument points of the blossom are equal to x, the
result of the algorithm is π(x). The de Catesljau algorithm is illustrated with a
2-dimensional example in Figure 3.1 where each node is annotated with the argu-
ments of the blossom to evaluate. The nodes on the outermost layer correspond
to the control points for the original triangle uzw. The incoming arrows of uux
show that the blossom value at this point is computed from the blossom values
at uuu and uuw. As mentioned earlier, we can see that the computation of π(x)
indeed produces the Bézier control points for the sub-simplices. Figure 3.1 shows
the values p(u, . . . ,u︸ ︷︷ ︸

i[1]

,x, . . . ,x︸ ︷︷ ︸
i[2]

,w, . . . ,w︸ ︷︷ ︸
i[3]

) which are the Bézier control points for

the triangle uxw.

39

One important remark is that the subdivision at the center of the simplex does
not reduce the maximal side length of the simplices. By Theorem 7 this means
that the convergence of the Bézier control net towards the polynomial is not
guaranteed. However, one can repeat the bisection at the mid-point of the logest
edge, as shown in Figure 3.1 to achieve the desired accuracy. More generally, the
subdivision of a simplex can be defined as follows. For each barycentric coordinate
λi(x) > 0 of a point x ∈ ∆ we define a simplex ∆i obtained from ∆ by replacing
the vertex vi with x. Hence, when the point x is the mid-point of an edge we
obtain a bisection. It was proved in [?] that using the bisection at the mid-point
of the longest edge, after n steps (where n is the dimension of the simplex) the
simplex diameter is reduced at least by

√
3/2 times. In two dimensions, another

method of subdivision via all the mid-points of the edges was discussed in [?].
This method is however more complex to implement for dimensions higher than
2.

Image computation algorithm

We are now ready to describe the image computation algorithm for polynomial
systems. In Algorithm 2, X0 is the initial set which is assumed to be a con-
vex polyhedron in Rn, each Rk is a set of convex polyhedra. The function Bez
over-approximates the image of a simplex ∆ by the integration map P , using the
method presented in the previous section. The goal of the function triangulation
triangulates a set of convex polyhedra and returns the set of all simplices of the
triangulation. To do so, we collect all the vertices of the polyhedra and compute
a triangulation of this set. We then exclude all the simplices in the triagulation
whose interior does not intersect with Rk.

Algorithm 2 Image computation

R0 = X0, k = 0
repeat
S∆ = triangulation(Rk)
C = ∅
for all ∆ ∈ S∆ do
C = C ∪Bez(∆)

end for
Rk+1 = C
k = k + 1

until Rk+1 = Rk

40

Precision. Let us briefly discuss the precision of the algorithm. We suppose
that ρ is the maximal size of the simplices that are produced by the function
triangulation and h is the integration time step. If the integration map P can
be exactly computed, using Theorem 5, we know that the integration error is
O(h3). In addition, Theorem 7 shows that our approximation of the integration
map P induces an error O(ρ2). By the triangle inequality, the total error in each
iteration of Algorithm 2 is bounded by (O(h3) +O(ρ2)). Therefore, by choosing
appropriate values ρ in function of h, we can guarantee that Algorithm 2 is a
second order method.

We now discuss some computation issues. The first remark is that the total
number of the Bézier control points is β(n, d), but the actual number of vertices
of their convex hull (that is, Bez(∆)) is often much smaller, depending on the
geometric structure of the polynomial map P . On the other hand, in order to
speed up the computation (at the price of less precise results), one can approx-
imate C by its convex hull or even by a simplex. Algorithms for doing so have
been developed and some algorithms can compute a minimal volume enclosing
simplex (such as, [?, ?]).

Example: a biological system

We have implemented Algorithm 2 and applied it to two simplified models of a
well-known biological system, namely the system of gene transcription control in
the bacteria Vibrio Fisheri (see [22, 21] for a detailed description of the models
and the related gene control problems). The first model corresponds to one mode
of a simplified hybrid system where the continuous dynamics is described by the
following multi-affine system:

ẋ1 = k2x2 − k1x1x3 + u1

ẋ2 = k1x1x3 − k2x2

ẋ3 = k2x2 − k1x1x3 − nx3 + nu2

(3.11)

The state variables x = (x1, x2, x3) represent the cellular concentrations of dif-
ferent species, and the parameters k1, k2, n are the binding, dissociation and
diffusion constants. The variables u1 and u2 are control variables, which respec-
tively represent the plasmid and external source of autoinducer. In [21] the fol-
lowing control law for steering all the states in the rectangle [1, 2]× [1, 2]× [1, 2]
to the face x2 = 2 was proposed: u1(x) = −10(x2 + x1(−1 + 3) − 4x3) and
u2(x) = x1(3 + x2(−1 + x3)) − (−2 + x2)x3. This control objective corresponds
to the activation of some genes in the system. We consider two cases: with no
control (i.e. u1 = u2 = 0) and with the above control law. Figure 3.2 shows the
projection on x2 and x3 of the reachable sets obtained using our algorithm for
polynomial systems. In [14] we have already treated this model using an abstrac-
tion method based on projection. This method approximates the multi-affine

41

system by a lower dimensional bilinear system. Comparing with the result pre-
sented in [14], one can see that our new algorithm for polynomial systems is more
accurate, and in addition we have observed that it is also more time-efficient.

Figure 3.2: Reachable sets: with u1 = u2 = 0 (left) and with the specified control
law (right). The control law indeed drives the system to the face x2 = 2.

The second model is taken from [22]. It is a hybrid model3 with two modes
and one additional continuous variable x4. The continuous dynamics is

ẋ = Ax + g(x) + bij

where b01 and b10 correspond respectively to the non-luminescent and luminescent
modes, and

A =

−1
Hsp

0 0 rCo

0 0 0 −1
Hsp

− rCo

0 x0rAII
−1

HAI
x0rCo

0 −1
Hsp

0 0

 ; g(x) =

−1
1
−x0

0

 rAIRx1x3

We are interested in the question of how to determine the sets of states from which
the system can reach the luminescent equilibrium. The condition for switching
between the two modes is x2 = x2sw. This problem was also previously studied
in [22] using the tool d/dt that I developed during my PhD thesis. However,
in [22] the multi-affine dynamics was approximated by a 3-dimensional linear
system, assuming that x1 remains constant. Using our algorithm for polynomial
systems, we can now handle the non-linearity in the dynamics. To deal with the
discrete dynamics of the model, it suffices to implement some Boolean operations
over the reachable set generated by the continuous dynamics, which are repre-
sented by polyhedra. In terms of qualitative behavior, the result obtained for
the 4-dimensional multi-affine model is compatible with the result for the linear

3The numbering of variables is different from that in [22].

42

approximate model in [22], that is, from the non-luminescent mode the system
can reach the guard to switch to the luminescent mode and then converge to
the equilibrium. However, the new result obtained for the 4-dimensional model
shows a larger set of states that can reach the equilibrium. This can be explained
by the fact that in this model the variable x1 is not kept constant and can evolve
in time.

3.4 Using box splines

We now describe a method based on the box-spline representation of polynomials,
the coefficients of which can be used to enclose all the reachable points. Compared
to our previous method using the Bézier simplex representation, this method
works on more general domains and does not require simplicial decompositions.

We start by providing a brief introduction of box splines and some of their
properties, which are useful for our problem. We then show how to use the
box-spline representation to approximate the image of a set by a polynomial.

The next sections focus on each step of the algorithm. Finally, we report some
experimental results obtained using the algorithm on a biological system and a
number of randomly generated examples. Before concluding, we present a brief
survey of related work.

3.4.1 Box splines

Definition

We will present an inductive definition of box spline, and other definitions (such
as, geometric or by recursion) can be found in [?, ?].

Let n be the dimension (or the number of variables). Given an integer k ≥ n,
let V = {ξ1, . . . , ξk} be a set of k vectors in Rn where ξ1, ξ2, . . . , ξn are linearly
independent. Each such vector is called direction. We denote byM = [ξ1 ξ2 . . . ξk]
a matrix of size n×k, the columns of which are the vectors in V . For convenience
of notation, we use the same letter ξi to refer to a vector in V or a column of the
matrix M .

Without loss of generality, it could be assumed that the first n columns of M
form the n-dimensional identity matrix I. The inductive definition of a box spline
BM associated with V is as follows.

We denote s = k−n and start with the base case where k = n and s = 0. Then
Ms = I and BMs(x) = 1 if x ∈ [0, 1)n and 0 otherwise. Note that this function is
piecewise constant and has degree s = 0.

43

If we add a column in M denoted by M ∪ ξ, then the box spline associated
with the new matrix Ms = Ms−1 ∪ ξ is defined as:

BMs∪ξ =

∫ 1

0

BMs−1(x− tξ)dt. (3.12)

Thus, each convolution in another direction v increases the degree by 1, and when
s = k − n, BM is a piecewise polynomial of degree k − n.

We use the well-known Zwart-Powell box spline [?] to illustrate the above def-
inition. First, we consider the following matrix of size 2× 3

M =

(
1 0 1
0 1 1

)
In this case we have n = 2, k = 3. We start with k = n = 2 and the identity
matrix formed by two vectors ξ1 = (1, 0) and ξ2 = (0, 1) defines a unit box (see
Figure 3.4.1-(a)). By adding the vector ξ3 = (1, 1) the matrix M defines a mesh
inside a zonotope, as shown in Figure 3.4.1-(b). Using the definition (3.12), we
obtain the box spline BM which is the hat function shown in Figure 3.4.1.

We further add a new vector ξ4 = (−1, 1) to form a matrix M ′ as follows:

M ′ =

(
1 0 1 −1
0 1 1 1

)
.

This defines a new mesh (see Figure 3.4.1-(d)) and the corresponding box spline
BM ′ is depicted in Figure 3.4.1. This function is called Zwart-Powell box spline.

Figure 3.3: Supports of some box splines.

44

Figure 3.4: The hat function (left) and the Zwart-Powell box spline (right).

Basic properties

The box splines have the following properties which follow directly from their
definition.

For all x ∈ [ξ1 ξ2 . . . ξk][0, 1)k, BM(x) > 0. The support of BM(x) is

Z = [ξ1ξ2 . . . ξk][0, 1]k. (3.13)

that is the sum of the vectors in V , or the zonotope with V as the set of its
generators. The box spline BM is symmetric with respect to the center of its
support.

It should be noted that the box spline BM is piecewise polynomial. Indeed, it is
a polynomial of degree at most (k−n) within each element of the simplicial mesh
defined by V over the support of BM . The following lemma states two important
properties of BM .

Let ρ de the minimal number of vectors that need to be removed from V so
that they do not span Rn. The box spline BM is (ρ − 2) times continuously
differentiable.

Again, we assume that the vectors in V = {v1, . . . , vk} span Rn. We define an
integer shift of the box spline BM(x−j) with j ∈ Zn. Since BM(x) is non-negative
and the sum of all the integer shifts of BM(x) is 1, the integer shifts of any box
spline BM(x) form a partition of unity.

We are now interested in the space of polynomials spanned by all shifts of BM .
We define the index set for each x ∈ Rn as follows:

IM(x) = {i ∈ Zn | BM(x− i) 6= 0}.

Note that this set is finite for any x; therefore, for simplicity we write infinite lin-
ear combinations of the integer shifts while keeping in mind that the combinations
are only over the associated index set.

45

Lemma 7. If the box spline BM is r times continuously differentiable. Then, for
any polynomial a of degree (r + 1), the function

π(x) =
∑
i∈Zn

a(i)BM(x− i). (3.14)

is a polynomial of degree (r + 1), and any polynomial can be represented as
in (3.14) by choosing M appropriately. The coefficients a(i) are called the control
points, and the function a is called the weight function.

Lemma 8. Given a point x, π(x) lies in the convex hull of the control points
corresponding to the index set IM(x):

π(x) = conv{a(i) | i ∈ IM(x)}.

This property, called the convex-hull property, will be used for our image com-
putation problem.

3.4.2 Image approximation using box splines

In this section we focus on the main problem of the paper, which is computing
the image of a bounded set X ⊂ Rn by a polynomial map π : Rn → Rn. This
image, denoted by π(X), is defined as follows:

π(X) = {π(x) | x ∈ X}.

To this end, as mentioned earlier, we use the control points in a box spline
representation, provided that the box spline BM must be of appropriate degree.
To compute these control points, we derive a symbolic expression of the weight
function a, and then determine the index set, that is the set of integer points at
which the integer shifts in the box spline representation (3.14) is non-null.

Index set

As mentioned earlier, when writing the infinite sum, it indeed suffices to consider
the integer points in the index set. Given x, the index set I(x) associated with
the box spline BM is IM(x) = {i ∈ Zn | BM(x− i) 6= 0}. It is not hard to prove
that

IM(x) = Zn ∩ (x−M [0, 1]k). (3.15)

The index set for all x inside some set X ⊆ Rn, denoted by IM(X), is defined as
follows:

IM(X) = {i ∈ Zn | ∃x ∈ X : BM(x− i) 6= 0}
= Zn ∩ (X ⊕ (−M [0, 1]k)).

46

where ⊕ denotes the Minkowski sum. Then the computation of the index set
IM(X) amounts to enumerating all the points with integer coordinates inside the
Minkowski sum of P and the zonotope −M [0, 1]k.

Image computation algorithm

We are now ready to apply the above image computation method to compute the
reachable set of a discrete-time system

xk+1 = π(xk)

where π is a polynomial map and x0 ∈ X0.

We assume that we have chosen an appropriate matrix M . This means that
the condition on M , stated in Lemma 7, which guarantees that the associated
box spline BM can reproduce all the polynomials of the required degree.

In the following algorithm, the initial set X0 is assumed to be a polytope.
In each iteration, we compute a set of points, the convex hull of which is an
over-approximation of the reachable set. It is important to emphasize that in
this abstract algorithm in each iteration the reachable set is the convex hull of a
point set, however we do not yet specify how this set is represented.

Algorithm 3 Image computation

P 0 = vertices(X0)
Z = (−M [0, 1]k)
i = 0
repeat
I = indexset(P i, Z) /* computing the index set */
P i+1 = ∅
forall(i ∈ I)
p = a(i) /* computing the control points */
P i+1 = P i ∪ {p}

endforall
i = i+ 1

until i > Kmax

The algorithm consists of three main steps:

1. The function indexset computes the index set associated with the Minkowski
sum conv{P i} ⊕ (−M [0, 1]k). This computation is summarized in Algo-
rithm 3.4.3, which will be discussed in the next section. It is important to
note that using this algorithm we avoid the computation of the convex hull
of the point set P i.

47

2. To each integer point in the index set, we apply the weight function a to
obtain the corresponding control point. By the convex-hull property of
the box spline representation, the convex hull of all such control points
is an over-approximation of the reachable set at the current iteration. If
the convex hull computation is expensive, one can choose a representation
for the reahcable sets, which is appropriate for the property verification
and for achieving a good trade-off between accuracy and computation cost.
In addition, the computation of the index set also depends on the chosen
representation. This will be discussed in Section 3.4.3.

3. The weight function a for the given box spline BM can be precomputed in
a symbolic form, which we will show in Section 3.4.5.

Refining the approximation via subdivision.

When approximating a polynomial by its box-spline representation coefficients,
it is possible to improve the precision by refining the underlying integer grid.
Indeed, given w ∈ Z, we obtain a finer box-spline representation of the polynomial
π as follows:

π(x) =
∑
i∈Zn

aw(i)BM(wx− i)

where the points aw(i) = wndk(i) can be successively computed by the following
recursion [?]:

d0(i) =

{
0 if 1

w
i 6∈ Zn,

a1(1
w
i) otherwise.

dr(i) = 1
w

∑w−1
l=0 dr−1(i− lξr), r = 1, . . . , k.

It can be proven that the polynomial π(x) is approximated by the convex hull
of the control points with the error O(1

w2). This means that the convergence
order of this approximation is quadratic. Details on the convergence proof of our
algorithm can be found in [?].

3.4.3 Enumerating integer points

This section is concerned with the computation of the function indexset in Al-
gorithm 3.

We first assume that the reachable set at each iteration is a bounded polytope
represented by its vertices. We thus focus on the problem of computing the integer
points in the Minkowski sum Q = P ⊕ Z where P is a bounded polytope and Z
is a zonotope. Before continuing, we briefly present a definition of zonotopes.

48

A zonotope is the Minkowski sum of a finite set of line segments. In this work,
we define a zonotope by its center and generators. The zonotope Z, centered at
c and with generators {g1, . . . , gmz} is the set

Z = {c+
mz∑
i=1

λiγi | ∀i ∈ {1, . . . ,mz} : − 1 ≤ λi ≤ 1}.

Given two zonotopes Z and Z ′ respectively described by the centers c and c′ and
the sets of generators G and G′, their Minkowski sum Z ⊕ Z ′ is a zonotope with
center (c+ c′) and its set of generators is G ∪G′.

We now go back to our problem. Let the zonotope Z be represented by a
center c and mz generators {g1, . . . , gmz} and P be represented by m vertices
{v1, . . . , vm}.

Indeed, the algorithm we use to solve this problem is inspired by the Mayan
pyramid algorithm in [?], which computes a set of integer points with positive
distance to the boundary in a given direction.

To avoid an explicit construction of the Minkowski sum, we find the minimum
and maximum integral values of the kth when the first (k − 1) coordinates have
been fixed. In other words, the algorithm examines orthogonal projections of the
Minkowski sum to linear subspaces.

Before presenting the algorithm, we need some notations. Given a set Q ⊂ Rn,
we denote by projk(Q) the (usual) projection of this set to Rk. Now, given a
point p ∈ Rn, let projk(p,Q) be a subset of projk(Q) such that each point in
projk(p,Q) has the same (k − 1) first coordinates as p, that is

projk(p,Q) = {y ∈ projk(P) | (y1, . . . , yk−1) = (p1, . . . , pk−1)}.

Then, we define

coordk(p,Q) = {yk | ∃y1, . . . , yk−1 : (y1, . . . , yk−1, yk) ∈ projk(p,Q)},

which is the set that contains all the kth coordinates of the points in projk(p,Q).

Step 2 of the algorithm can be done by solving the following linear programming
problems:

mn = min s,

mx = max s,

subject to

(p̄, s) = c+
∑mz

j=1 λjgj +
∑m

i=1 αivi

∀j ∈ {1, . . . ,mz} : − 1 ≤ λj ≤ 1,
∑mz

j=1 λi = 1

∀i ∈ {1, . . . ,m} : αi ≥ 0,
∑m

i=1 αi = 1

49

Algorithm 4 Enumerating integer points

Step 1: T = 0, k = 1, p̄ = ∅ /* p̄ is initially an empty vector */
Step 2:
mn = min{coordk(p̄, P ⊕ Z)}
mx = max{coordk(p̄, P ⊕ Z)}
Step 3:
if k < n then

for s ∈ [mn,mx] do
p̄ = (p̄, s)
k + +
Goto Step 2

end for
end if
if k = n then

for s ∈ [mn,mx] do
p̄ = (p̄, s)
T = T ∪ {p̄}

end for
end if

The algorithm returns the set T of integer points in the Minkowski sum.

Note that in the above we used the assumption that the vertices of the poly-
tope P are known. Indeed, in Algorithm 3 the reachable set at each iteration
is represented as a point set whose the convex hull guarantees to be an over-
approximation of the reachable set. Nevertheless, the convex-hull computation is
expensive in high dimensions and we would like to avoid this.

In this work, we choose to approximate this polytope by a zonotope. It is
not hard to see that if P is a zonotope, then the set P ⊕ Z is a zonotope.
The motivations of this choice are the following. First, the Minkowski sum of
zonotopes, unlike that of polytopes, can be efficiently computed (as described
earlier). Second, the resulting zonotope can serve as a compact representation of
the reachable set at each iteration, which not only can be used to check against
a property of interest but also allows further extension to hybrid dynamics (for
which treating discrete transitions requires Boolean operations over reachable
sets of continuous dynamics). In Section 3.4.4 we will describe how to over-
approximate the convex hull of a point set by a zonotope.

Scaling

When the diameter of a set X is large, the number of integer points can be large
and their enumeration can thus be expensive. To handle this, we consider the

50

composition of the polynomial π with an invertible linear transformation τ that
maps (or scales) X to some set Y with a small diameter. The function resulting
from this composition is still a polynomial, for which we can apply this image
computation method. This is explained more formally in the following.

Let the composition γ = (π o τ−1) is defined as γ(x) = π(τ−1(x)). Note that the
function γ can be computed symbolically. Hence, γ(Y) = {π(τ−1(x)) | x ∈ Y }.
We have τ−1(Y) = X. It then follows that π(X) = γ(Y). Therefore, to obtain
the image π(X) we compute γ(Y). Since Y is a set with a smaller diameter, the
size of the index set of Y associated with γ can be reduced.

3.4.4 Approximation by zonotopes

Let P be a set of a points in Rn, we consider the problem of over-approximating
the convex hull conv{P} by a zonotope. Let us first sketch the main idea of our
method.

First, using the Prinpical Component Analysis (PCA) [69] we can find an ori-
ented hyper-rectangle R that encloses P . We denote this by R = boundPCA(P)
and defer a description of this procedure to Appendix. Let l1, . . . , ln be the side
length of R and η1, . . . , ηn be the axes of R. Intuitively, η1, . . . , ηn define the
orientation of a box which best captures the spread of the point set P . We next
try to use the idea of PCA to determine other spreading directions. To this end,
we introduce a special translation operator. Roughly speaking, the goal of this
operator is to filter out the effects of the ”spreading directions” η1, . . . , ηn.

We define Rλ the rectangle resulting from scaling R by λ ∈ (0, 1)n around its
center (or centroid) c.

Given a point x, we next define a translation operator with respect to Rλ,
denoted by τ(x,Rλ). Let Hi denote the hyper-plane which has ηi as its normal
and goes through o. Let Πi(x) be the projection of x on Hi. We define

∆i =
δi

||Πi(x)− x||
(Πi(x)− x)

where δi ∈ [0, li/2]. Then, the translation operator τ is defined as follows.

τ(x,Rλ) =

{
o if x ∈ Rλ,
x+

∑n
i=1 ∆i otherwise.

We extend this operator to a set of points: τ(P,Rλ) = {τ(x,Rλ) | x ∈ P}.
Intuitively, the points which are inside Rλ are close to the hyperplanes Hi

(i ∈ {1, . . . , n}, that is they spread in the directions of the current oriented
hyper-rectangle R. These points will be translated to the same centroid point

51

c. The other points, which are ouxide Rλ, are translated nearer to c along the
directions η1, . . . , ηn. The intuition behind this is that this translation “reduces”
the spread of the point set along the directions η1, . . . , ηn and thus enables the
PCA algorithm to detect new spreading directions.

��
��
��
��
��
��
��

��
��
��
��
��
��
��

c

x

R

Rλ

τ(x,Rλ)

Figure 3.5: Illustration of the translation operator τ with δ1 = δ2 = 0.5.

In the above description, (δ1, . . . δn) and λ are user-defined parameters. We
can compute a zonotope that over-approximates conv{P} using the following
iterative algorithm.

Algorithm 5 Approximation the convex hull of a point set P by a zonotope

Q0 = P
i = 0
repeat
Ri = boundPCA(Qi);
Qi+1 = τ(Qi, Ri

λ);
i = i+ 1

until size(Ri) ≤ ε

The algorithm stops when the size of Ri is sufficiently small, and then all the
direction vectors of each rectangle Ri computed in each iteration are used to
define the generators of the over-approximating zonotope. The center of the
zonotope is the center of R0.

3.4.5 Control points

Any polynomial can be decomposed to a linear combination of monomials, it
is possible to compute the control points for each monomial and then combine
them.

52

More concretely, if the polynomial π is a linear combination of two monomials
m1 and m2, i.e. π = km + k′m′. Then, if m(x) =

∑
i∈Zn a(i)BM(x − i) and

m′(x) =
∑

i∈Zn a′(i)BM(x− i), then π(x) =
∑

i∈Zn(a(i) + a′(i))BM(x− i).

We use the extension of the Marsden identity [?] to derive an analytic expression
of a. We consider a monomial of the form xr1

1 . . . xrn
n where each ri is a non-

negative integer, and we denote it as mr(x) = xr where r = (r1, . . . , rn) is called
the multi-index. We define r′ ≺ r iff r 6= r′ and ∀i ∈ {1, . . . , n} : r′i ≤ ri.
Similarly, the difference r − r′ can be defined componentwise, that is r − r′ =
(r1 − r′1, . . . , rn − r′n).

Given a monomial mr, the goal is to determine the weight function ar such
that the monomial can be represented using the box spline BM , that is, xr =∑

i a(i)BM(x− i). We define the operator

µ : f →
∑

i

BM(i)f(−i). (3.16)

The (symbolic) computation of the function a can be done using the following
recurrence [?]: {

ar = mr −
∑

r′≺r µ(mr−r′) ar′

a(0,...,0) = 1.
(3.17)

The generation of µ(mr′) for all r′ ≺ r can be done before starting the recur-
sion (3.17). For a fixed r, we need to compute the expresions of cr′ for all r′ ≺ r,
and this requires computing the application of the operator µ on them. To do
so, as shown in (3.16), we need to determine the values of the box spline BM at
all the integer points inside its support.

The following recursive method for evaluating BM [?] can be used. For a point
x which can be represented as x = Mβ and let βξ denote the scalar component
of the vector β ∈ Rk corresponding to the column ξ of the matrix M . Then,

(k − n)BM(x) =
∑
ξ∈V

βξBM\{ξ}(x) + (1− βξ)BM\{ξ}(x− ξ) (3.18)

where M \ {ξ} is the matrix resulting from removing the column ξ from M .
The base case for the above recurrence corresponds to the square matrix M =
(ξ1, . . . , ξn), and in this case

BM(x) =
1

|detM |
χM [0,1]k(x)

where χ is the characteristic function of the set M [0, 1]k.

53

Experimental results

We have implemented the above-described algorithm and carried out a number
of experimentations. In this section we first illustrate our method on a biological
system.

This is a model of gene transcription control in the bacteria Vibrio Fisheri,
which is used to analyze and control the luminescence mechanism in these bacte-
ria [22, 21]. As a free-living organism, Vibrio Fischeri exists at low densities and
appears to be non-luminescent. As a symbiont, the bacteria live at high densities
and are, usually, luminescent.

A simplified model of this system is described by the following multi-affine
differential equations:

ẋ1 = k2x2 − k1x1x3 + u1

ẋ2 = k1x1x3 − k2x2

ẋ3 = k2x2 − k1x1x3 − ηx3 + ηu2

(3.19)

The state variables x = (x1, x2, x3) represent the cellular concentrations of differ-
ent species, and the parameters k1 = 30, k2 = 10 and η = 10 are repectively the
binding, dissociation and diffusion constants. The control variable u1 physically
represents the plasmid producing protein LuxR and u2 external source of autoin-
ducer. In [21] the following control law for steering all the states in the rectangle
[1, 2]× [1, 2]× [1, 2] to the face x2 = 2 was proposed:

u1(x) = −10(x2 + x1(−1 + x3)− 4x3)

u2(x) = x1(3 + x2(−1 + x3))− (−2 + x2)x3

This control objective corresponds to the activation of some genes in the system
in order to switch on the lux gene. We analyze the behaviors of the systems
with no control (that is when u1 = u2 = 0) and under the above control law. A
discretization scheme, similar to the one proposed in our previous paper [36], was
used to transform this differential equation to a difference equation. Figure 3.2
shows the projection on x2 and x3 of the reachable sets obtained using Algo-
rithm 3. This shows that without the control the system may exit the rectangle
through the face x1 = 1 and not through the face x2 = 2. The computation time
on this example was 35 seconds.

Comparing with the result presented in [36], to obtain a comparable accuracy,
our new algorithm for polynomial systems is more time-efficient. Indeed, the
Bézier method requires the convex-hull and triangulation operations, which on
one hand are expensive and, on the other hand, may cause numerical stability
problems in practice. This can thus compromise the theoretical accuracy of the
method.

54

Higher dimensional examples.

We have also applied the algorithm to a number of polynomial systems of degree
up to 3 in higher dimensions. The average computation time for 100 iterations
was: 5.3s for n = 3; 20s for n = 4; 120s for n = 5. We observe that the time
complexity of the algorithm is less sensitive to the degree of the polynomial than
to their number of variables (or dimension). More experimentation is needed to
better evaluate the practical cost and the accuracy of the method.

The novelty of the method we proposed in this paper is an easy way to control
approximation power via efficient subdivision. As future work, we intend to study
a number of related problems such as zonotopic approximation.

3.5 Using the Bernstein expansion

The drawback of the Bézier method is that it requires expensive convex-hull and
triangulation computation, which restricts its application to systems of dimen-
sions not higher than 3, 4. The essence of the new method we propose in this
paper can be summarized as follows. Using a special class of polyhedra together
with optimization, we are able to reduce the complexity of the required polyhe-
dral manipulation. Furthermore, by exploiting the Bernstein expansion, we only
need to solve linear programming problems instead of polynomial optimization
problems.

Our method is similar to a number of existing methods for continuous and
hybrid systems in the use of linear approximation. Its novelty resides in the ef-
ficient way of computing linear approximations. Indeed, a common method to
approximate a non-linear function by a piecewise linear one, as in the hybridiza-
tion approach [16] for hybrid systems, requires non-linear optimization. Indeed,

55

the work presented in this paper follows the approach using template polyhedra
and optimization for hybrid systems with continuous dynamics proposed in [?].

Besides constrained global optimization, other important applications of the
Bernstein expansion include various control problems [53] (in particular, robust
control). The approximation of the range of a multivariate polynomial over a
box is also used in program analysis and optimization (for example [98, 33]).
In the hybrid systems verification, polynomial optimization is used to compute
barrier certificates [92]. Algebraic properties of polynomials are used to compute
polynomial invariants [101] and to study the computability of image computation
in [?].

In the following we first recall the notions of template polyhedra and the Bern-
stein expansion. We then describe an optimization-based solution. In order to
transform the polynomial optimization problem to a linear programming prob-
lem, a method for computing bound functions is presented. We then describe an
algorithm summarizing the main steps of our method. Some experimental results,
in particular the analysis of a control and a biological systems, are reported.

Template polyhedra. A convex polyhedron is a conjunction of a finite number
of linear inequalities described as Ax ≤ b, where A is a m × n matrix, b is
a column vector of size m. Template polyhedra are commonly used in static
analysis of programs for computing invariants (see for example [94]). The reader
is referred to [94] for a thorough description of template polyhedra.

A template is a set of linear functions over x = (x1, . . . , xn). We denote a
template by an m × n matrix H, such that each row H i corresponds to the
linear function H ix. Given such a template H and a real-valued vector d ∈ Rm,
a template polyhedron is defined by considering the conjunction of the linear
inequalities of the form

∧
i=1,...,mH

ix ≤ di. We denote this polyhedron by 〈H,d〉.
By changing the values of the elements of d, one can define a family of template

polyhedra corresponding to the template H. We call d a polyhedral coefficient
vector. Given d,d′ ∈ Rm, if ∀i ∈ {1, . . . ,m} : di ≤ d′i, we write d � d′. Given
an m×n template H and two polyhedral coefficient vectors d,d′ ∈ Rm, if d � d′

then the inclusion relation 〈H,d〉 ⊆ 〈H,d′〉 holds, and we say that 〈H,d〉 is not
larger than 〈H,d′〉.

The advantage of template polyhedra over general convex polyhedra is that the
Boolean operations (union, intersection) and common geometric operations can
be performed more efficiently [94].

Bernstein expansion. We consider an n-variate polynomial π : Rn → Rn de-
fined as: π(x) =

∑
i∈Iw

aix
i where xi = xi1

1 . . . x
in
n , ai is a vector in Rn; i and w

are two multi-indices of size n such that i ≤ w; Iw is the set of all multi-indices

56

i ≤ d, that is Iw = {i | i ≤ w}. The multi-index w is called the degree of π.

Given a set X ⊂ Rn, the image of X by π, denoted by π(X), is defined as
follows: π(X) = {(π1(x), . . . , πn(x)) | x ∈ Rn}.

In order to explain the Bernstein expansion of the polynomial π, we first in-
troduce Bernstein polynomials. For x = (x1, . . . , xn) ∈ Rn, the ith Bernstein
polynomial of degree w is: Bw,i(x) = βw1,i1(x1) . . . βwn,in(xn) where for a real
number y, βwj ,ij(y) =

(
wj

ij

)
yij(1 − ywj−ij). Then, for all x ∈ Bu = [0, 1]n, π can

be written using the Bernstein expansion as follows:

π(x) =
∑
i∈Iw

biBw,i(x)

where for each i ∈ Iw the Bernstein coefficient bi is:

bi =
∑
j≤i

(
i
j

)(
w
j

)aj. (3.20)

The following property of the Bernstein coefficients is of interest. The above
enclosure yields: ∀x ∈ Bu : π(x) ∈ 2({bi | i ∈ Iw}) where 2 denotes the
bounding box of a point set.

Let us return to the main problem, which is computing the image of a set by
a polynomial. Using the above convex-hull property, we can use the coefficients
of the Bernstein expansion to over-approximate the image of the unit box Bu

by the polynomial π. To compute the image of a general convex polyhedron,
one can over-approximate the polyhedron by a box and then transform it to the
unit box via some affine transformation. A similar idea, which involves using the
coefficients of the Bézier simplex representation, was used in [36] to compute the
image of a convex polyhedron. However, the convex-hull computation is expensive
especially in high dimensions, which poses a major problem in continuous and
hybrid systems verification approaches using polyhedral representations.

In this work, we propose a new method which can avoid complex convex-hull
operations over general convex polyhedra as follows. First, we use template poly-
hedra to over-approximate the images. Second, the problem of computing such
template polyhedra can be formulated as a polynomial optimization problem.
This optimization problem is computationally difficult, despite recent progress
in the development of methods and tools for polynomial programming (see for
example [105, 68, 51] and references therein). We therefore seek their affine
bound functions for polynomials, in order to transform the polynomial optimiza-
tion problem to a linear programming one, which can be solved more efficiently
(in polynomial time) using well-developed techniques, such as Simplex [8] and
interior point techniques [28]. Indeed, the above-described Bernstein expansion

57

is used to compute these affine bound functions. This is discussed in the next
section.

Bound functions. To compute bound functions, we employ the method using
the Bernstein expansion, published in [54, 55, 56]. Finding convex lower bound
functions for polynomials is a problem of great interest, especially in global opti-
mization. It is important to note that the method described in this section only
works for the case where the variable domain is the unit box Bu. We however
want to compute the images of more general sets, in particular polyhedra. An
extension of this method to such cases will be developed in Section 3.5.2.

A simple affine lower bound function is a constant function, which can be
deduced from the above mentioned property of the Bernstein expansion:

xi ≤ min{bi | i ∈ Iw} = bi0 = b0.

The main idea of the method is as follows. We first compute the affine lower
bound function whose corresponding hyperplane passes through this control point
b0. Then, we aditionally determine (n− 1) hyperplanes passing through n other
control points. This allows us to construct a sequence of n affine lower bound
functions l0, l1, . . . ln. We end up with ln, a function whose corresponding hyper-
plane passes through a lower facet of the convex hull spanned by these control
points. A detailed description of the algorithm can be found in [41]. Note that
we can easily compute upper bound functions of π by computing the lower bound
functions for (−π) using this method and then multiply each resulting function
by (−1).

3.5.1 Image computation using optimization

We want to use a template polyhedron 〈H,d〉 to over-approximate the image of
a polyhedron P by the polynomial π. The template matrix H, which is of size
m×n is assumed to be given; the polyhedral coefficient vector d ∈ Rm is however
unknown. The question is thus to find d such that

π(P) ⊆ 〈H,d〉. (3.21)

It is not hard to see that the following condition is sufficient for (3.21) to hold:
∀x ∈ P : Hπ(x) ≤ d. Therefore, to determine d, one can formulate the
following optimization problem:

∀i ∈ {1, . . . ,m}, di = max(Σn
k=1H

i
kπk(x)) subj. to x ∈ P. (3.22)

where H i is the ith row of the matrix H and H i
k is its kth element. Note that

the above functions to optimize are polynomials. As mentioned earlier, polyno-
mial optimization is expensive. Our solution is to bound these functions with

58

affine functions, in order to transform the above optimization problem to a linear
programming one. This is formalized as follows.

Optimization-based solution

We earlier discussed lower bound functions for polynomials. Note that these
bound functions are valid only when the variables x are inside the unit box Bu.
To consider more general domains, we introduce the following definition.

Definition 1 (Upper and lower bound functions). Given f : Rn → R, the func-
tion υ : Rn → R is called an upper bound function of f w.r.t. a set X ⊂ Rn if
∀x ∈ X : f(x) ≤ υ(x). A lower bound function can be defined similarly.

The following property of upper and lower bound functions is easy to prove.

Lemma 9. Given X, Y ⊆ Rn s.t. Y ⊆ X, if υ is an upper (lower) bound function
of f w.r.t. X, then υ is an upper (lower) bound function of f w.r.t. Y .

For each k ∈ {1, . . . ,m}, let uk(x) and lk(x) respectively be an upper bound
function and a lower bound function of πk(x) w.r.t. a bounded polyhedron P ⊂
Rn. We consider the following optimization problem:

∀i ∈ {1, . . . ,m}, di = Σn
k=1H

i
kωk. (3.23)

where the term H i
kωk is defined as follows:

• If the element H i
k > 0, H i

kωk = H i
k maxuk(x) subj. to x ∈ P ;

• If the element H i
k ≤ 0, H i

kωk = H i
k min lk(x) subj. to x ∈ P .

The following lemma is a direct result of (3.23).

Lemma 10. If d ∈ Rm satisfies (3.23), then π(P) ⊆ 〈H,d〉.

Proof. It is indeed not hard to see that the solution di of the optimization prob-
lems (3.23) is greater than or equal to the solution of (3.22). Hence, if d satis-
fies (3.23), then ∀i ∈ {1, . . . ,m} ∀x ∈ P : Σn

k=1H
i
kπk(x) ≤ di. This implies that

∀x ∈ P : Hπ(x) ≤ d, that is the image π(P) is included in 〈H,d〉.

We remark that if all the bound functions in (3.23) are affine and P is a bounded
convex polyhedron, d can be computed by solving at most 2n linear programming
problems. It remains now to find the affine bound functions uk and lk for π w.r.t.
a polyhedron P , which is the problem we tackle in the next section.

59

3.5.2 Computing affine bound functions over polyhedral
domains

The method to compute affine bound functions for polynomials described earlier
can be applied only when the function domain is a unit box, anchored at the
origin. The reason is that the expression of the control points of the Bernstein
expansion in (3.20) is only valid for this unit box. If we over-approximate P
with a box B, it is then possible to derive a formula expressing the Bernstein
coefficients of π over B. However, this formula is complex and its representation
and evaluation can become expensive.

We alternatively consider the composition of the polynomial π with an affine
transformation τ that maps the unit box Bu to B. The functions resulting from
this composition are still polynomials, for which we can compute their bound
functions over the unit box. This is explained more formally in the following.

Let B be the bounding box of the polyhedron P , that is, the smallest box that
includes P . The composition γ = (π o τ) is defined as γ(x) = π(τ(x)). The
functions τ and γ can be computed symbolically, which will be discussed later.

Lemma 11. Let γ = π o τ . Then, π(P) ⊆ γ(Bu).

Proof. By the definition of the composition γ, γ(Bu) = {π(τ(x)) | x ∈ Bu}.
Additionally, τ(Bu) = B. Therefore, γ(Bu) = π(B). Since the polyhedron P is
included in its bounding box B, we thus obtain π(P) ⊆ π(B) = γ(Bu).

We remark that the above proof is still valid for any affine function τ . This
means that instead of an axis-aligned bounding box, we can over-approximate P
more precisely with an oriented (i.e. non-axis-aligned) bounding box. This can
be done using the following method.

Computing an oriented bounding box

The directions of an oriented bounding box can be computed using Principal
Component Analysis [69]. We first choose a set S = {s1, s2, . . . , sm} of m points4

in the polyhedron P , such that m ≥ n. We defer a discussion on how this point
set is selected to the end of this section. PCA is used to find an orthogonal basis
that best represents the point set S. More concretely, we use s̄ to be the mean
of S, that is s̄ = 1

m

∑m
i=1 si and we denote s̃i,j = sj

i − s̄i. For two points si and sj

in S, the covariance of their translated points is: cov(si, sj) = 1
m−1

∑m
k=1 s̃k,is̃k,j.

Then, we define the co-variance matrix C such that the element Cij = cov(si, sj).

4By abuse of notation we use m to denote both the number of template constraints and the
number of points here.

60

The n largest singular values of C provide the orientation of the bounding box.
More concretely, since C is symetric, by singular value decomposition, we have
C = UΛUT where Λ is the matrix of singular values. The axes of the bounding
box are hence determined by the first n columns of the matrix U , and its centroid
is s̄.

We now discuss how to select the set S. When the vertices of P are available,
we can include them in the set. However, if P is given as a template polyhe-
dron, this requires computing the vertices which is expensive. Moreover, using
only the vertices, when their distribution do not represent the geometric form
of the polyhedron, may cause a large approximation error, since the resulting
principal directions are not the ones along which the points inside P are mostly
distributed. To remedy this, we sample points inside P as follows. First, we com-
pute an axis-aligned bounding box of P (this can be done by solving 2n linear
programming problems). We then uniformly sample points inside this bounding
box and keep only the points that satisfy the constraints of P . Uniform sampling
on the boundary of P in general enables a better precision. More detail on this
can be found in [41].

3.5.3 Image computation algorithm

The following algorithm summarizes the main steps of our method for over-
approximating the image of a bounded polyhedron P ⊂ Rn by the polynomial π.
The templates are an input of the algorithm. In the current implementation of
the algorithm, the templates can be fixed by the user, or the templates forming
regular sets are used.

Algorithm 6 Over-approximating π(P)

/* Inputs: convex polyhedron P , polynomial π, templates H */
B = PCA(P) /* Compute an oriented bounding box */
τ = UnitBoxMap(B) /* Compute the function mapping the unit box Bu to B
*/
γ = π o τ
(u, l) = BoundFunctions(γ) /* Compute the affine bound functions */
d̄ = PolyApp(u, l,H) /* Compute the coefficient vector d */
Q = 〈H, d̄〉 /* Form the template polyhedron and return it */
Return(Q)

The role of the procedure PCA is to compute an oriented bounding box B that
encloses P . The procedure UnitBoxMap is then used to determine the affine
function τ that maps the unit box Bu at the origin to B. This affine function
is composed with the polynomial π, the result of which is the polynomials γ.

61

The affine lower and upper bound functions l and u of γ are then computed,
using the Bernstein expansion. The function PolyApp determines the polyhedral
coefficient vector d by solving the linear programs in (3.23) with u, l and the
optimization domain is Bu. The polyhedral coefficient vector d are then used to
define a template polyhedron Q, which is the result to be returned.

Based on the analysis so far, we can state the correctness of Algorithm 6.

Theorem 8. Let 〈H, d̄〉 be the template polyhedron returned by Algorithm 6.
Then π(P) ⊆ 〈H, d̄〉.

We remark that u and l are upper and lower bound functions of γ with respect
to Bu. It is not hard to see that τ−1(P) ⊆ Bu where τ−1 is the inverse of τ .
Using the property of bound functions, u and l are also bound functions of γ
with respect to τ−1(P). Hence, if we solve the optimization problem over the
domain τ−1(P) (which is often smaller than Bu), using Lemma 10, the resulting
polyhedron is still an over-approximation of π(P). This remark can be used to
obtain more accurate results.

3.5.4 Approximation errors and complexity

We finish this section by briefly discussing the precision and complexity of our
method. A more detailed analysis can be found in [41]. The approximation errors
are caused by the use of bound functions, the bounding box approximation and
template polyhedra.

It can be proven that in one dimensional cases, the error between the bound
functions and the original polynomial is quadratic in the length of box domains.
This quadratic convergence seems to hold for higher dimensional cases in prac-
tice, as shown in [55]. We conjecture that there exists a subdivision method of
the box B which allows a quadratic convergence of the error. This subdivision
method is similar to the one used for finding roots of a polynomial with quadratic
convergence [87].

On the other hand, a polyhedron can be approximated by a set of non-overlapping
oriented boxes with arbitrarily small error. Then, for each box, we compute a
bounding function, with which we then compute a coefficient for each template.
Finally, for each template, we take the largest coefficient to define the template
polyhedron. Since the boxes are smaller, the bounding functions are more precise,
we can thus improve the coefficients as much as desired.

Concerning the error inherent to the approximation by template polyhedra, it
can be controlled by fine-tuning the number of template constraints. If using
this method with a sufficient number of templates to assure the same precision
as the convex hull in our previous Bézier method [36], then the convergence

62

of both methods are quadratic. However the Bezier method requires expensive
convex-hull and triangulation operations, and geometric complexity of resulting
sets may grow step after step. Combining template polyhedra and bounding
functions allows a good accuracy-cost compromise.

We now discuss the complexity of our algorithm. Let each polynomial πi be
written as πi =

∑
j∈Ii

ai
jx

j where each ai
j 6= 0. We denote by #(πi) the number of

such monomials in πi, i.e. the cardinality of Ii. Let K be the maximal number
of monomials in each πi, that is K = maxi∈{1,...,n} #(πi).

First, we remark that the computation of the bound functions and PCA only
requires manipulating matrices and linear equations. Additionally, linear pro-
gramming with n variables and m constraints can be solved in polynomial time
O((mn)3.5).

The proofs of the following results can be found in [41]. The complexity of
the computation of the bound functions is O(n4 + Kn5). The complexity of
the computation of an affine function τ mapping the unit box to an oriented
box is O(nn3.5) (due to n LP problems). The approximation using a template
polyhedron requires solving 2n LP problems over the unit box and has thus the
complexity O(2n(2nn)3.5) (see (3.23)).

The exponentiel factor in the complexity of our algorithm comes from the
composition of π and an affine transformation τ . Let us suppose that we use
a simple composition algorithm whose complexity depends on the number of
monomials5. The following theorem shows some cases for which our algorithm
has a polynomial time complexity.

Theorem 9. If π and τ satisfy two conditions:

(1) ∀i ∈ {1, . . . , n} :
∑
j∈Ii

n∑
k=1

jk = O(ln(n))

(2) ∀i ∈ {1, . . . , n}#(τi) ≤ 2

then the composition π o τ has in total O(Kn3) monomials, thus the computation
of π o τ can be done in O(Kn3).

The proof of this can be found in [41]. Note that if we use axis-aligned bounding
boxes, each component of τ always have 2 terms, and the second condition of
the theorem are satisfied. However, this polynomial time complexity w.r.t. the
dimension may not hold if we use oriented bounding boxes to over-approximate
the reachable sets before mapping them to the unit box. Indeed, in this case each
component of τ may have more than 2 terms.

5Advanced composition algorithms, e.g. [96], can achieve a better complexity.

63

Concerning the complexity w.r.t. the number of iterations, if the number of
template constraints is constant, we can prove that the complexity depends lin-
early on the number of iterations (see more in [41]).

Experimental results

We have implemented our method in a prototype tool using the template poly-
hedral library developed by S. Sankaranarayanan [95] and the library lpsolve
for linear programming. In the following, we demonstrate the method with two
examples: a control system (modelled as a hybrid system) and a biological sys-
tem (modelled as a continuous system). The time efficiency of the tool is also
evaluated by considering using a number of randomly generated polynomials.

A control system. The control system we consider is the Duffing oscillator [70,
51]. Its continuous-time dynamics is described by ÿ(t)+2ζẏ(t)+y(t)+y(t)3 = u(t),
where y ∈ R is the state variable and u ∈ R is the control input. The damping
coefficient ζ = 0.3. In [51], using a forward difference approximation with a
sampling period h = 0.05, this system is approximated by the following discrete-
time model: x1(k+ 1) = x1(k) +hx2(k), x2(k+ 1) = −hx1(k) + (1− 2ζh)x2(k) +
hu)k)− hx1(k)

3.

In [51], an optimal predictive control law u(k) was computed by solving a para-
metric polynomial optimization problem. In Figure 3.5.4 one can see the phase
portrait of the system under this control law and without it (i.e. ∀kge0 u(k) = 0)
is shown . We model this control law by the following switching law with 3
modes: u(k) = 0.5k if 0 ≤ k ≤ 10, u(k) = 5− 0.5(k − 10)/3 if 10 < k ≤ 40, and
u(k) = 0 if k > 40. The controlled system is thus modelled as a hybrid automa-
ton with 3 discrete modes. The result obtained using our tool on this system
is shown in Figure 3.5.4, which is coherent with the phase portrait in [51]. The
initial set is a ball with radius 1e − 04. The number of template constraints is
100. In addition to the reachable set after 120 steps (computed after 3s), in Fig-
ure 3.5.4, we also illustrate the approximation error by visusalizing the template
polyhedron after the first step and a cloud of exact points (obtained by sampling
the initial set and applying the polynomial to the sampled points).

A biological system. The second example is the well-known Michaelis-Menten
enzyme kinetics [67], where E is the concentration of an enzyme that combines
with a substrate S to form an enzyme substrate complex ES. In the next step,
the complex can be dissociated into E and S or it can further proceed to form a
product P .

This pathway kinetics can be described by the following ODEs where x1, x2,
x3 and x4 are the concentrations of S, E, ES and P : ẋ1 = −θ1x1x2 + θ2x3,

64

Figure 3.6: The Duffing oscillator: phase portrait, the reachable set, and the
reachable set after the first step.

ẋ2 = −θ1x1x2 + (θ2 + θ3)x3, ẋ3 = θ1x1x2 + (θ2 + θ3)x3, ẋ4 = θ3x3. Using a second
order Runge Kutta discretization with time step 0.3, we obtain

π1(x) = x1 − 0.053838x1x2 + 0.001458x2
1x2 + 0.001458x1x

2
2 − 3.9366e− 5.x2

1x
2
2

+0.005775x3 − 0.002025x1x3 − 0.000162x2x3 + 5.9049e− 5x1x2x3 − 6.075e− 6x2
3

π2(x) = x2 − 0.051975x1x2 + 0.001458x2
1x2 + 0.001458x1x

2
2 − 3.9366e− 5x2

1x
2
2 + 0.0721875x3

−0.002025x1x3 − 0.000162x2x3 + 5.9049e− 5x1x2x3 − 6.075e− 6x2
3

π3(x) = 0.051975x1x2 − 0.001458.x12x2 − 0.001458x1x
2
2 + 3.9366e− 5x12x2

2

+0.927812x3 + 0.002025x1x3 + 0.000162x2x3 − 5.9049e− 5x1x2x3 + 6.075e− 6x2
3

π4(x) = 0.001863x1x2 + 0.0664125x3 + x4.

The reachable set computed for all the initial states inside a ball centered at
(12, 12, 0, 0) with radius 1e− 0.4 is shown in Figure 3.7. The number of template
constraints is 60. In order to compare with the result in [67], the figures depict
the evolution of each variable for the first 10 steps (the horizontal axis is time).
In the vertical axis, the minimal and maximal values of the variables are shown.
This result is conherent with the simulation result in [67]. The computation time
for 20 steps is 3.7s.

Randomly generated systems. In order to evaluate the performance of our
method, we tested it on a number of randomly generated polynomials in various
dimensions and maximal degrees (the maximal degree is the largest degree for all
variables). For a fixed dimension and degree, we generated different examples to
estimate an average computation time. In the current implementation, polyno-
mial composition is done symbolically, and we do not yet exploit the possibility

65

Figure 3.7: Michaelis-Menten enzyme kinetics. The evolution of the reachable
set after 10 steps

of sparsity of polynomials (in terms of the number of monomials). The compu-
tation time shown in Figures 3.8-3.9 does not include the time for polynomial
composition. Note that the computation time for 7-variate polynomials of degree
3 is significant, because the randomly generated polynomials have a large number
of monomials; however, practical systems often have a much smaller number of
monomials. As expected, the computation time does not grows linearly w.r.t.
the number of steps. This can be explained by the use of template polyhedra
where the number of constraints can be chosen according to required precisions
and thus control better the complexity of the polyhedral operations, compared to
general convex polyhedra. Indeed, when using general polyhedra, the operations
such as convex hull may increase their geometric complexity (roughly described
by the number of vertices and constraints).

The above experimental results show a significant improvement in efficiency
compared to our previously developed method using Bézier techniques [36] and
box splines [?]. These encouraging results also show an important advantage of
the method: thanks to the use of template polyhedra as a symbolic set represen-
tations, the complexity and precision of the method are more controllable than
those using general polyhedra.

There are a number interesting directions to explore. Indeed, different tools
from geometric modeling could be exploited to improve the efficiency of the
method. For example, polynomial composition can be done for sparse poly-

66

Figure 3.8: Computation time for randomly generated polynomial systems

Figure 3.9: Computation time for randomly generated polynomial systems

67

nomials more efficiently using the blossoming technique [96]. In addition to more
experimentation on other hybrid systems case studies, we intend to explore a new
application domain, which is verification of embedded control software. In fact,
multivariate polynomials arise in many situations when analyzing programs that
are automatically generated from practical embedded controllers.

3.6 Other results

3.6.1 Multi-affine systems

On the other hand, we have developed a reachability analysis method specialized
for multi-affine systems. The interest of these systems also comes from its use-
fulness in a systematic approximation of a non-linear system using hybridization
(see Section ??). This method combines the idea of abstraction by projection to
transform some multi-affine systems to an uncertain bilinear system. A method
for uncertain bilinear systems using the Pontryagin principle from optimal control
is then applied to handle the resulting system.

This work was done in collaboration with Eugene Asarin from LIAFA (Paris)
and was published in the proceeding of the conference HSCC 2004 (Hybrid Sys-
tems - Computation and Control) [?].

3.6.2 Set integration and template polyhedra

This work has been carried out in collaboration with Sriram Sankaranarayanan
and Franjo Ivancic at NEC Laboratories (Princeton, USA).

We proposed a symbolic technique for the verication of hybrid systems using
template polyhedra as a set representation. Our technique uses higher-order Tay-
lor series approximations along with repeated optimization problems to bound
the terms in the Taylor series expansion. The location invariant is used to enclose
the remainder term of the Taylor series, and thus make our technique sound.

Another result obtained along this line is a policy iteration technique that com-
putes an over-approximation of the time trajectories of a system using template
polyhedra. Given a set of template expressions, we show the existence of a small-
est template polyhedron that is a positive invariant w.r.t to the dynamics of
the continuous variables, and hence, an over-approximation the time trajecto-
ries. Thus, we derive a time elapse operator for template polyhedra using policy
iteration that computes tight over-approximations of the time trajectories. We
also exploit the result of the policy iteration to improve the precision of Taylor
series-based flowpipe construction.

68

These techniques were implemented by Sriram Sankaranarayanan as a part of
the tool TimePass for verifying reachability properties of ane hybrid automata,
with promising results on different benchmarks. These results were published at
HSCC 2008 and TACAS 2008 [?, ?].

69

Chapter 4

Model-based testing of hybrid
systems

4.1 Context

Although the verification methods for hybrid systems have been successfully ap-
plied to a number of interesting case studies, their applicability is still limited to
systems of small size due to the complexity of formal verification. My attention
was thus drawn towards alternative approaches which can be applied to higher
dimensional systems with more complex dynamics. One of these is testing. This
choice was motivated by my interest in circuit design and the experience I had
gained from my previous work on verification of analog circuits. Testing is indeed
the main method used in industry for circuit design. Additionally, testing is a
“traditional” research topic of a research group in VERIMAG which developed
the well-known tool TGV for the generation of conformance test suites for pro-
tocols [?], which are based on algorithms coming from verification technology. In
order to make this methodology meaningful for hybrid systems with particular
features (one of which is the infinity of the state and input spaces), I tried to
first tackle two important problems: define a test coverage measure and how to
generate tests with good test coverages.

The geometric nature of the continuous state space led me to the idea of using
the notion of geometric discrepancy [19]. At the same time, I was influenced by
the algorithms for path planning from robotics, in particular the RRT algorithm
[82], which I believed useful for the exploration of the state space of a hybrid
system. In 2005, with my newly recruited PhD student Tarik Nahhal, we began
to explore this direction and developed a new version of RRT which is guided by
this test coverage. This constituted the main topics of the PhD thesis of Tarik,
defended in October 2007.

70

Project VAL-AMS. In 2006, together with the researchers of BIPOP in In-
ria Rhônes-Alpes (who were developing a novel technique for circuit simulation)
and the researchers of the laboratory LJK (who shared the interest in hybrid
systems), we elaborated a project, called VAL-AMS, for High Confidence Valida-
tion of Analog and Mixed-Signal Circuits and obtained an ANR funding for two
years. I was the coordinator of this project and much of my work presented in
this chapter was carried out in collaboration with the project partners.

The project intends to build an experimental platform for validating the cor-
rectness of analog and mixed-signal circuits, a component of increasing impor-
tance for the functioning of modern embedded system. The platform will com-
bine two technologies currently being developed by the partners: an efficient and
physically-accurate simulator for large analog and mixed-signal circuits and the
methods for covering the state space of such circuits by choosing appropriate
input signals.

In this project, we were responsible for the work package for the development
of search-based methods for validating large-scale continuous and hybrid sys-
tems. We recently combined our state space exploration method, developed in
the above mentioned test generation framework, with the numerical integration
engine of the platform SICONOS [?], developed by BIPOP Inria Rhône-Alpes.
The prototype tool was used to analyze a number of circuit benchmarks. Our
tool development within this project also includes generation of circuit equations
from models and optimization.

4.2 Introduction

Testing is a validation approach, which can be used for much larger systems
and is a standard tool in industry, although it can only reveal an error but does
not permit proving its absence. Although testing has been well studied in the
context of finite state machines (e.g. [104] and references therein) and, more
recently, of real-time systems (e.g. [78, 5, 24]), it has not been much investigated
for continuous and hybrid systems. Therefore, a question of great interest is
to bridge the gap between the verification and testing approaches, by defining
a formal framework for testing of hybrid systems and developing methods and
tools that help automate the testing process.

Classical model-based testing frameworks use Mealy machines or finite labeled
transition systems and their applications include testing of digital circuits, com-
munication protocols and software. Recently, these frameworks have been ex-
tended to real-time systems. However, hybrid systems conformance testing has
not yet been well investigated. A number of special characteristics of hybrid sys-
tems make their testing particularly challenging, in particular the infiniteness of

71

the state space of a hybrid system and of the input space. In general, in order
to test an open system, one first needs to feed an input signal to the system and
then check whether the behavior of the system induced by this input signal is
as expected. When there is an infinite number of possible input signals, it is
important to choose the ones that lead to interesting scenarios (with respect to
the property/functionality to test).

In this work we adopt a model-based testing approach. This approach allows
the engineer to perform validation during the design, where detecting and cor-
recting errors on a model are less expensive than on an implementation.

The main results we present in this chapter can be summarized as follows.

• Formal framework for conformance testing. We propose a formal
framework for conformance testing of hybrid systems. This framework uses
the commonly-accepted hybrid automaton model and is defined according
to the international standard for formal conformance testing [103]. This
framework allows, on one hand, to formally reason about the conformance
relation between a system under test and a specification, and on the other
hand, to develop test generation algorithms.

• Novel test coverage measure. This is a challenging problem in testing.
Intuitively, test coverage is a way to characterize the relation between the
number and the type of tests to execute and the portion of the system’s
behavior effectively tested. The classical notions of coverage, introduced
mainly for software testing (such as statement coverage, if-then-else branche
coverage, path coverage) are unsuitable for the behaviors of a hybrid system
defined as solutions of some differential equations. We thus proposed a novel
coverage measures, which on one hand reflect the testing objectives and,
on the other hand, can be efficiently computed. This measure is based
on the equidistribution degree of a set of states over the state space and
furthermore can be used to guide the test generation process.

• Coverage-guided test generation. We first developed a test generation
algorithm which is based on the RRT (Rapidly-exploring Random Tree)
algorithm [80], a probabilistic motion planning technique in robotics. This
RRT algorithm has been successful in finding feasible trajectories in motion
planning. We then proposed an test generation algorithm based on the
above mentioned coverage measures.

• Disparity-guided test generation. Besides, we introduced a new notion
of disparity between two point sets, in order to tackle ”blocking” situations
the RRT algorithms may enter. Indeed, in order to increase the coverage,
the algorithm may try to explore the directions which are not reachable by
the system’s dynamics. We can detect such situations by comparing the

72

distribution of the goal states and the visited states, using their disparity.
If the disparity is large, it means that the visited states do not follow the
goal states, which indicates that the goal states might not reachable and
we should change the goal state sampling strategy.

• Actuator and sensor imprecision. Due to the limitations of practi-
cal actuators and sensors, the tester cannot realize exactly an input value
specified as a real-valued vector as well as measure exactly the state of the
system. We handle this using sensitivity analysis.

• Tool development. We have implemented a tool for conformance testing
of hybrid systems, called HTG. The core of the tool is the implementation
of the coverage-guided test case generation algorithm and the methods for
estimating coverage measures.

• Applications. In particular, besides traditional applications of hybrid sys-
tems, we explore a new domain which is analog and mixed signal circuits.
Indeed, hybrid systems provide a mathematical model appropriate for the
modeling and analysis of these circuits. The choice of this application do-
main is motivated by the need in automatic tools to facilitate the design of
these circuits which, for various reasons, is still lagging behind the digital
circuit design. Besides hybrid automata described using a textual language,
the tool can accept as input electrical circuits specified using SPICE netlists.
We have thus treated a number of case studies from control applications as
well as from analog and mixed signal circuits. The experimental results ob-
tained using the tool HTG show its applicability to systems with complex
dynamics and its scalability to high dimensional systems.

Before presenting these results, we first describe our conformance testing frame-
work and test coverage measure.

4.3 Model

Conformance testing provides a means to assess the correctness of an implemen-
tation with respect to a specification by performing experiments on the imple-
mentation and observing its responses. When the specification is described by
a formal model, the international standard “Formal Methods in Conformance
Testing” (FMCT) [103] provides a framework of conformance testing, which in-
cludes abstract concepts (such as conformance, test cases, test execution, test
generation), and the requirements on these concepts.

In this work, as a formal model for embedded systems, use hybrid automata [7].
Intuitively, a hybrid automaton is an automaton augmented with continuous
variables that evolve according to some differential equations.

73

Definition 2 (Hybrid automaton). A hybrid automaton is a tuple A = (X , Q,E, F, I,G,R)
where

• X is the continuous state space and is a bounded subset of Rn;

• Q is a (finite) set of locations (or discrete states);

• E ⊆ Q×Q is a set of discrete transitions;

• F = {Fq | q ∈ Q} such that for each q ∈ Q, Fq = (fq, Uq) defines a
differential equation:

ẋ(t) = fq(x(t), u(t))

where u(·) ∈ Uq is an admissible input function of the form u : R+ → Uq ⊂
Rm. We assume that all fq are Lipschitz continuous1. The admissible input
functions u(·) are piecewise continuous.

• I = {Iq ⊆ X | q ∈ Q} is a set of staying conditions;

• G = {Ge | e ∈ E} is a set of guards such that for each discrete transition
e = (q, q′) ∈ E, Ge ⊆ Iq;

• R = {Re | e ∈ E} is a set of reset maps. For each e = (q, q′) ∈ E,
Re : Ge → 2Iq′ defines how x may change when A switches from q to q′.

• The initial state of the automaton is denoted by (qinit, xinit).

A hybrid state is a pair (q, x) where q ∈ Q and x ∈ X . The hybrid state space
is S = Q × X . In the rest of the paper, for brevity, we often use “state” to
refer to a hybrid state. In location q, the evolution of the continuous variables is
governed by ẋ(t) = fq(x(t), u(t)).

A state (q, x) of A can change in two ways as follows: (1) by a continuous
evolution, the continuous state x evolves according to the dynamics fq while the
location q remains constant; (2) by a discrete evolution, x satisfies the guard
condition of an outgoing transition, the system changes the location by taking
this transition and possibly changing the values of x according to the associated
reset map. More formally, continuous and discrete evolutions are defined as
follows.

Given a real number h > 0 and an admissible input function u(·) ∈ Uq,

(q, x)
u(·),h→ (q, x′) is a continuous evolution at the location q from the hybrid

state (q, x) to (q, x′), iff x′ = ξx,µ(·)(h) and for all t ∈ [0, h] : ξx,µ(·)(t) ∈ Iq, where

1The function fq is Lipschitz continuous if there exists a constant K such that ∀x, y :
||fq(x) − fq(y)|| ≤ K||x − y||, where || · || is some norm of Rn. This condition ensures the
existence and uniqueness of solutions of the differential equations.

74

ξx,µ(·)(t) is the solution of the differential equation at the location q with the
initial condition x and under the input µ(·). In other words, x′ is reached from
x under the input u(·) after exactly h time, and we say that u(·) is admissible
starting at (q, x) for h time.

Given a transition e = (q, q′) ∈ E, (q, x)
e→ (q′, x′) is a discrete evolution iff

x ∈ Ge and x′ ∈ Re(x). We say that (q′, x′) is reachable from (q, x) and the
discrete transition e is admissible at (q, x). Unlike continuous evolutions, discrete
evolutions are instantaneous, which means that they do not take time.

It is important to note that this model allows to capture non-determinism
in both continuous and discrete dynamics. The non-determinism in continuous
dynamics is caused be the uncertainty in the input function. For example, when
the input is used to model some external disturbances or modelling errors, we do
not know the exact input fucntion but only its range. The non-determinism in
discrete dynamics is caused by the fact that at some states it is possible for the
system to stay at the current location or to switch to another one. In addition,
multiple transitions can be enabled at some states. This non-determinism is useful
for describing disturbances from the environment and imprecision in modelling
and implementation. We assume that the hybrid automata we consider are non-
Zeno2.

4.4 Conformance testing

In this section, we define the main concepts of our testing framework. Our
testing goal is to make statements about the conformance relation between the
behaviors of an implementation or, more generally, a system under test (SUT)
and a specification. The specification is formal and is modeled by a hybrid
automaton. The conformance will be defined as a relation ≈⊆ Ξ×HA where Ξ
is a set of SUTs of interest, and HA is a set of hybrid automata modeling the
specifications of interest. The systems under test are physical systems, but it can
be assumed that all the SUTs in Ξ can be described by a class of formal models,
which is a set HAs of hybrid automata. It is important to note that we assume
that a model for each SUT in Ξ exists but do not assume that we know it. This
assumption enables us to include the system under test in our formal framework
and to express formally the conformance relation ≈ between the models of the
SUTs and the specifications, that is ≈ ⊆ HAs × HA. Note that here we use
the same notation ≈ for the relation between the real SUT and the specification
and the relation between the model of the SUT and the specification. A system
under test Sut ∈ Ξ is said to conform to a specification A ∈ HA if and only if

2A Zeno behavior can be described informally as the system making an infinite number of
discrete transitions in a finite amount of time.

75

the model As ∈ HAs of Sut is related to A by ≈, that is, As ≈ A.

The system under test often operates within some environment. In our testing
framework, a tester plays the role of the environment and it performs experiments
on the SUT in order to study the conformance relation between the SUT and the
specification. Such an experiment is called a test, and its specification is called a
test case. A set of test cases is called a test suite, and the process of applying a
test to a system under test is called a test execution. The tester works as follows.
It emits the control inputs to the SUT and measures the observation sequences
in order to produce a verdict ν ∈ {P, F} where P means ‘pass’ (the observed
behavior is allowed by the specification), F means ‘fail’ (the observed behavior is
not allowed by the specification). We continue by giving a detailed description of
conformance relation. The problem of how to perform test executions and derive
verdicts is discussed at the end of this section.

4.4.1 Conformance relation

Recall that the specification is modeled by a hybrid automaton A and the system
under test SUT by another hybrid automaton As. For brevity, when the context
is clear, we often say “the system under test” to mean the automaton As. To
define the conformance relation, we need the notions of inputs and observations.

An input of the system which is controllable by the tester is called a control
input; otherwise, it is called a disturbance input. We consider the following input
actions.

Continuous input action. All the continuous inputs are assumed to be con-
trollable by the tester. Since we want to implement the tester as a computer
program, we are interested in piecewise-constant input functions; indeed, a com-
puter cannot generate a function from reals to reals. Hence, a continuous control
action (ūq, h), where ūq is the value of the input and h is the duration, specifies
that the automaton continues with the continuous dynamics at the location q
under the input u(t) = ūq for exactly h time. We say that (ūq, h) is admissible
at (q, x) if the input function u(t) = ūq for all t ∈ [0, h] is admissible starting at
(q, x) for h time.

Discrete input actions. The discrete transitions are partitioned into control-
lable corresponding to discrete control actions and uncontrollable corresponding
to discrete disturbance actions. The tester emits a discrete control action to spec-
ify whether the system should take a controllable transition (among the enabled
ones) or continue with the same continuous dynamics. In the former case, it
can also control the values assigned to the continuous variables by the associated

76

reset map. For simplicity of explanation, we will not consider non-determinism
caused by the reset maps. Hence, we denote a discrete control action by the
corresponding transition, such as (q, q′).

We use the following assumption about the inputs: continuous control actions
are of higher priority than discrete actions. This means that after a continuous
control action (ūq, h) is applied, no discrete transitions can occur during h time,
i.e. until the end of that continuous control action. This assumption is not re-
strictive, from a modeling point of view. Indeed, by considering all the possible
values of h we can capture the cases where a discrete transition can occur before
the termination of a continuous control action.

In this work, we are only interested in testing non-blocking behaviors, we thus
need the notion of admissible input sequences. We write (q, x)

ι→ (q′, x′) to
indicate that (q′, x′) is reached after applying the input action ι to the state
(q, x).

Definition 3 (Admissible input sequence). For a state (q, x), a sequence of input
actions ω = ι0, ι1, . . . , ιk is admissible at (q, x) if

• ι0 is admissible at (q, x), and

• for each i = 1, . . . , k, let (qi, xi) be the state such that (qi−1, xi−1)
ιi−1→ (qi, xi),

then ιi is admissible at (qi, xi).

The sequence (q, x), (q1, x1), . . . , (qk, xk) is called the trace starting at (q, x) under
ω and is denoted by τ((q, x), ω).

We also write (q, x)
ω→ (q′, x′) to indicate that (q′, x′) is reached from (q, x) after

ω. We also say that (q′, x′) is forward reachable from (q, x) and (q, x) is backward
reachable from (q, x). In the rest of the paper, we simply say “reachable” to mean
“forward reachable”; “backward reachable” is explicitly stated.

By the assumption about the inputs, uncontrollable discrete transitions cannot
occur during a continuous control action. However, they can occur between con-
trol actions. Hence, the result of applying a control action is non-deterministic.
To determine all possible traces that can be generated by applying a sequence
of control actions, we need to define an admissible sequence of control actions
(see [42]). Intuitively, this means that an admissible control action sequence,
when being applied to the automaton, does not cause it to be blocked. We de-
note by SC(A) the set of all admissible control action sequences for the hybrid
automaton A starting at the initial state (qinit, xinit).

77

Observations

We use the following assumptions about the observability of the hybrid automata
A and As:

• The locations of the hybrid automata A and As are observable.

• We assume a subset Vo(A) and Vo(As) of observable continuous variables of
A and As respectively. In addition, we assume that Vo(A) ⊆ Vo(As), which
means that an observable continuous variable of A is also an observable
variable of As.

Since not all the continuous variables are observable, we need the following pro-
jection operator. The projection of a continuous state x of A on the observable
variables Vo(A) is denoted by π(x, Vo(A)). The projection can be then defined
for a trace as follows. The projection of a trace τ = (q0, x0), (q1, x1), (q2, x2) . . .
on Vo(A) is

π(τ, Vo(A)) = (q0, π(x0, Vo(A))), (q1, π(x1, Vo(A))), (q2, π(x2, Vo(A)))

A pair (q, π(x, Vo(A)), where q is a location and x is the continuous state of
the automation A, is called an observation.

Definition 4 (Observation sequence). Let ω be an admissible control action se-
quence starting at the initial state (qinit, xinit) of A. The set of observation se-
quences associated with ω is SO(A, ω) = {π(τ, Vo(A)) | τ ∈ Tr((qinit, xinit), ω)}.

Conformance relation

In the definition of the conformance relation between a system under test As and
a specificationA, we assume that the set of all admissible control action sequences
of A is a subset of that of As, that is SC(A) ⊆ SC(As). This assumption assures
that the system under test can admit all the control action sequences that are
admissible by the specification.

Definition 5 (Conformance). The system under test As is conform to the spec-
ification A, denoted by A ≈ As, iff

∀ω ∈ SC(A) : π(SO(As, ω), Vo(A)) ⊆ SO(A, ω).

Intuitively, the system under test As is conform to the specification A if under
every admissible control action sequence, the set of observation sequences of As is
included in that of A. Note that we have assumed earlier that SC(A) ⊆ SC(As),
that is a control action sequence which is admissible for A is also admissible for

78

As. Detecting the cases where the physical SUT does not admit some inputs that
are allowed by the specification requires the ability to identify the states of the
system from the observations. We do not consider this problem in this work.

Note that we use the trace inclusion to define conformance relation. In the
literature of conformance testing for discrete systems, more complex relations
are considered, for example input-output conformance relation (see [104]).

4.4.2 Test cases and test executions

In our framework, a test case is represented by a tree where each node is associated
with an observation and each path from the root with an observation sequence.
Each edge of the tree is associated with a control action. A physical test execution
can be described as follows:

• The tester applies a test ζ to the system under test Sut.

• It measures and records a number of observations.

• The observations are measured at the end of each continuous control action
and after each discrete (disturbance or control) action.

This procedure is denoted by exec(ζ, Sut) which leads to an observation sequence,
or a set of observation sequence if multiple runs of ζ are possible due to non-
determinism. The above test execution process uses a number of implicit as-
sumptions. First, observation measurements take zero time, and in addition, no
measurement error is considered. Second, the tester is able to realize exactly the
continuous input functions, which is often impossible in practice due to actuator
imprecision. Under these assumptions, one can only test the conformance of a
model of the system under test to the specification in discrete time. These issues
need to be considered in order to address the actual testing of real systems and
this will be discussed in Section 4.12.

We will focus on the case where each test execution involves a single run of a
test case. The remaining question is how to interpret the observation sequences
in order to produce a verdict. Let Ω denote the observation sequence domain.
We thus define a verdict function: v : Ω → {pass, fail}. Note that an observa-
tion sequence must cause a unique verdict. The observation sequences in Ω are
grouped into two disjoint sets: the set Op of observation sequences that cause
a ‘pass’ verdict, the set Of that cause a ‘fail’ verdict. Therefore, saying ‘The
system under test Sut passes the test ζ’ formally means v(exec(ζ, Sut)) = pass.
This can then be extended to a test suite.

79

We now discuss some important requirements for a test suite. A test suite Ts

is called complete if for a given specification A ∈ HA:

Sut ≈ A ⇐⇒ Sut passes Ts (4.1)

This means that a complete test suite can distinguish exactly between all con-
forming and non-conforming systems. In practice, it is generally impossible to
fulfill this requirement, which often involves executing an infinite test suite. A
weaker requirement is soundness. A test suite is sound if a system does not pass
the test suite, then the system is non-conforming. We can see that this require-
ment is weaker than completeness, since it corresponds only to the left-to-right
implication in (4.1).

After defining all the important concepts, it now remains to tackle the problem
of generating test cases from a specification model. In particular, we want the
test suites to satisfy the soundness requirement. A hybrid automaton might have
an infinite number of infinite traces; however, the tester can only perform a finite
number of test cases in finite time. Therefore, we need to select a finite portion
of the input space of the specification A and test the conformance of the system
under test As with respect to this portion. The selection is done using a coverage
criterion that we formally define in the next chapter. Hence, our testing problem
is formulated as to automatically generate a set of test cases from the specification
automaton to satisfy this coverage criterion.

4.5 Test coverage

Test coverage is a way to evaluate testing quality. More precisely, it is a way
to relate the number of tests to carry out with the fraction of the system’s be-
haviors effectively explored. As mentioned earlier, the classic coverage notions
mainly used in software testing, such as statement coverage and branch coverage,
path coverage (see for example [66, 104]), are not appropriate for the trajecto-
ries of continuous and hybrid systems defined by differential equations. However,
geometric properties of the hybrid state space can be exploited to define a cover-
age measure which, on one hand, has a close relationship with the properties to
verify and, on the other hand, can be efficiently computed or estimated. In this
work, we are interested in state coverage and focus on a measure that describes
how ‘well’ the visited states represent the reachable set of the system. This mea-
sure is defined using the star discrepancy notion in statistics, which characterises
the uniformity of the distribution of a point set within a region. Note that the
reachable sets of hybrid systems are often non-convex with complex geometric
form, therefore considering only corner cases does not always cover the behav-
iors that are important for reachabilily properties, especially in high dimensions.
Hence, for a fixed number of visited states (which reflects the computation cost

80

to produce a test suite), we want the visited states to be equidistributed over the
reachable set as much as possible, since this provides a good representation of all
possible reachable states.

4.5.1 Star discrepancy

We first briefly recall the star discrepancy. The star discrepancy is an important
notion in equidistribution theory as well as in quasi-Monte Carlo techniques (see
for example [19]). Recently, it was also used in probabilistic motion planning to
enhance the sampling uniformity [82].

Let P be a set of k points inside B = [l1, L1]× . . .× [ln, Ln]. Let J be the set
of all sub-boxes J of the form J =

∏n
i=1[li, βi] with βi ∈ [li, Li] (see Figure 4.1).

The local discrepancy of the point set P with respect to the sub-box J is defined
as follows:

D(P, J) =
∣∣∣A(P, J)

k
− vol(J)

vol(B)

∣∣∣
where A(P, J) is the number of points of P that are inside J , and vol(J) is the
volume of the box J .

Definition 6 (Star discrepancy). The star discrepancy of a point set P with
respect to the box B is defined as:

D∗(P,B) = supJ∈JD(P, J). (4.2)

r r
r
r

r
rB

(β1, β2)

(l1, l2)

J

(L1, L2)

Figure 4.1: Illustration of the star discrepancy notion.

It is not hard to prove the following property of the star discrepancy [99].

Proposition 12. The star discrepancy of a point set P with respect to a box B
satisfies 0 < D∗(P,B) ≤ 1.

Intuitively, the star discrepancy is a measure for the irregularity of a set of
points. A large value D∗(P,B) means that the points in P are not much equidis-
tributed over B. When the region is a box, the star discrepancy measures how
badly the point set estimates the volume of the box.

81

Example. To show an intuitive meaning of the star discrepancy, we use some
sequences of 100 points inside a 2-dimensional unit box. The first example is the
Faure sequence [50], a well-known low-discrepancy sequence (see Figure 4.2). As
we can observe from the figure, this set of points ‘covers well’ the box, in the sense
that the points are well-equidistributed over the box. Its star discrepancy value
is 0.048. The second example is the Halton sequence [106] shown in Figure 4.3,

Figure 4.2: Faure sequence of 100 points. Its star discrepancy value is 0.048.

which is also a well-known low discrepancy sequence. The value of the star
discrepancy of the Halton sequence is about 0.050, indicating that the Faure
sequence is more equidistributed than the Halton sequence. The star discrepancy
values of these two sequences are however close, and indeed visually it is hard to
see from the figures which one is better equidistributed. We now give another
example which is a sequence of 100 points generated by a pseudo-random function
provided by the C library system. This sequence is shown in Figure 4.4, from
which we can observe that this sequence is not well-equidistributed over the box.
This is confirmed by its star discrepancy value 0.1. The star discrepancy is thus
a meaningful measure that can characterize the uniformity quality of a point set
distribution.

4.5.2 Coverage estimation

To evaluate the coverage of a set of states, we need to compute the star dis-
crepancy of a point set, which is not an easy problem (see for example [44]).
Many theoretical results for one-dimensional point sets are not generalizable to
higher dimensions, and among the fastest algorithms, the one proposed in [44]
has time complexity O(k1+d/2). In this work, we do not try to compute the star

82

Figure 4.3: Halton sequence of 100 points. The star discrepancy value is 0.05.

Figure 4.4: A sequence of 100 points generated by a pseudo-random function in
the C library. Its star discrepancy value is 0.1.

83

discrepancy but approximate it by estimating a lower and upper bound. These
bounds as well as the information obtained from their estimation are then used to
decide which parts of the state space have been ‘well explored’ and which parts
need to be explored more. This estimation is done using a method published
in [99]. Let us briefly describe this method for computing the star discrepancy
D∗(P,B) of a point set P w.r.t. a box B. Although in [99] the box B is [0, 1]n,
we extended it to the case where B can be any full-dimensional box. Intuitively,
the main idea of this estimation method is to consider a finite box partition of
the box B, instead of considering an infinite number of all sub-boxes as in the
definition of the star discrepancy. Let B = [l1, L1]× . . .× [ln, Ln]. In what follows,
we often call this box B the bounding box. We define a box partition of B as a
set of boxes Π = {21, . . . ,2m} such that ∪m

i=12
i = B and the interiors of the

boxes 2i do not intersect. Each such box is called an elementary box. Given a
box 2 = [α1, β1] × . . . × [αn, βn] ∈ Π, we define 2+ = [l1, β1] × . . . × [ln, βn] and
2− = [l1, α1]× . . .× [ln, αn] (see Figure 4.5 for an illustration).

B

2+

2

2−

(α1, α2)

(β1, β2)

(l1, l2)

(L1, L2)

Figure 4.5: Illustration of the boxes 2− and 2+.

For any finite box partition Π of B, the star discrepancy D∗(P,B) of the point
set P with respect to B satisfies: C(P,Π) ≤ D∗(P,B) ≤ B(P,Π) where the upper
and lower bounds are:

B(P,Π) = max
2∈Π

max{A(P,2+)

k
− vol(2−)

vol(B)
,
vol(2+)

vol(B)
− A(P,2−)

k
} (4.3)

C(P,Π) = max
2∈Π

max{|A(P,2−)

k
− vol(2−)

vol(B)
|, |A(P,2+)

k
− vol(2+)

vol(B)
|}(4.4)

The imprecision of this approximation is the difference between the upper and
lower bounds, which can be bounded by B(P,Π)− C(P,Π) ≤ W (Π) where

W (Π) = max
2∈Π

(vol(2+)− vol(2−))/vol(B) (4.5)

Thus, one needs to find a partition Π such that this difference is small.

84

4.5.3 Hybrid systems test coverage

Since a hybrid system can only evolve within the staying sets of the locations,
we are interested in the coverage with respect to these sets. For simplicity we
assume that all the staying sets are boxes.

Definition 7 (Test coverage). Let P = {(q, Pq) | q ∈ Q ∧ Pq ⊂ Iq} be the set
of states. The coverage of P is defined as:

Cov(P) =
1

||Q||
∑
q∈Q

1−D∗(Pq, Iq)

where ||Q|| is the number of locations in Q.

If a staying set Iq is not a box, we can take the smallest oriented box that
encloses it and apply the star discrepancy definition in (4.2) to that box after an
appropriate coordinate transformation. We can see that a large value of Cov(P)
indicates a good space-covering quality. If P is the set of states visited by a test
suite, our objective is to maximize Cov(P).

4.6 Test generation

Our test generation is based on a randomized exploration of the reachable state
space of the system. It is inspired by the Rapidly-exploring Random Tree (RRT)
algorithm, which is a successful motion planning technique for finding feasible
trajectories of robots in an environment with obstacles (see [79] for a survey).
More precisely, we extend the RRT algorithm to hybrid systems. Furthermore,
we combine it with a guiding tool in order to achieve a good coverage of the
system’s behaviors we want to test. To this end, we use the coverage measure
defined in the previous section.

In this section, we describe the extension of the RRT algorithm to hybrid
system, which we call the hRRT algorithm. The combination of the hRRT
algorithm with the guiding tool will be explained in the next section.

The algorithm stores the visited states in a tree, the root of which corresponds
to the initial state. The construction of the tree is summarized in Algorithm 7.

The tree constructed at the kth iteration is denoted by T k. The function
Sampling samples a hybrid state sk

goal = (qk
goal, x

k
goal) to indicate the direction

towards which the tree is expected to evolve. Then, a starting state sk
near =

(qk
near, x

k
near) is determined as a neighbor of sk

goal. The definition of the distance

between two hybrid states will be given later. Expanding the tree from sk
near

towards sk
goal is done as follows:

85

Algorithm 7 Test generation algorithm hRRT

k = 1
T k.init(sinit) {sinit: initial state}
repeat
sgoal = Sampling(S) {S: hybrid state space}
sk

near = Neighbor(T k, sk
goal)

(sk
new, u

k
qnear

) = ContinuousSucc(sk
near, h) {h: time step}

DiscreteSucc(T k, sk
new)

k + +
until k ≥ kmax

• The function ContinuousSucc tries to find the input uk
qnear

such that,
after one time step h, the current continuous dynamics at qk

near takes the
system from sk

near towards sgoal, and this results in a new continuous state
xk

new. A new edge from snear to sk
new = (qk

near, x
k
new), labeled with the

associated input uk
qnear

, is then added to the tree. To find sk
new, when the

set U is not finite it can be sampled, or one can solve a local optimal control
problem.

• Then, from sk
new, the function DiscreteSucc computes its successors by

all possible discrete transitions and add them in the tree. A discrete succes-
sor by a transition is computed by testing whether sk

new satisfies its guard
and if so applying the associated reset function to sk

new.

The algorithm terminates after some maximal number of iterations. Another
possible termination criterion is that a satisfactory coverage value is reached. In
the classic RRT algorithms, which work in a continuous setting, only xgoal needs
to be sampled, and a commonly used sampling distribution of xgoal is uniform
over X . In addition, the point xnear is defined as a nearest neighbor of xgoal in
some usual distance, such as the Euclidian distance. In our hRRT algorithm,
the goal state sampling is not uniform and the function Sampling plays the role
of guiding the exploration via a biased sampling of xgoal.

The tree constructed by the hRRT algorithm can be used to extract a test
suite. In addition, when applying such test cases to the system under test, the
tree can be used to compare the observations from the real systems and the
expected observations in the tree. This allows a decision whether the system
satisfies the conformance relation.

86

4.7 Coverage-guided test generation

In this section we propose a tool for guiding the test generation algorithm. This
tool is based on the coverage measure defined using the star discrepancy. The
goal of the guiding tool is to use the sampling process to bias the evolution of the
tree towards the interesting region of the state space, in order to rapidly achieve
a good coverage quality. In each iteration, we use the information of the current
coverage to improve it. Indeed, the coverage estimation provides not only an
approximate value of the current coverage, but also the information about which
regions need to be explored more.

Sampling a goal state sgoal = (qgoal, xgoal) in the hybrid state space S consists
of two steps:

1. Sample a goal location qgoal from the set Q of all the locations, according
to some probability distribution.

2. Sample a continuous goal state xgoal inside the staying set Iqgoal
of the

location qgoal.

Location sampling

Recall that we want to achieve a good testing coverage quality, which is equivalent
to a small value of the star discrepancy of the points visited at each location. More
concretely, in each iteration, we want to bias the goal state sampling distribution
according to the current coverage of the visited states. To do so, we first sample
a location and then a continuous state. Let P = {(q, Pq) | q ∈ Q ∧ Pq ⊂ Iq} be
the current set of visited states. The location sampling distribution depends on
the current continuous state coverage of each location:

Pr[qgoal = q] =
D∗(Pq, Iq)∑

q′∈QD
∗(Pq′ , Iq′)

where the notation Pr is used for probabilities. As we have shown earlier, the
star discrepancy is approximated by a lower bound and an upper bound. We
thus compute the above probability Pr[qgoal = q] using these bounds and then
taking the mean of the results.

Continuous state sampling

We now show how to sample xgoal, assuming that we have already sampled a
location qgoal = q. In the remainder of the paper, to give geometric intuitions, we
often call a continuous state a point. In addition, since all the staying sets are

87

assumed to be boxes, we denote the staying set Iq by the box B and denote the
current set of visited points at the location q simply by P instead of Pq. Let k be
the number of points in P . Let Π be a finite box partition of B that is used to
estimate the star discrepancy of P . The sampling process consists of two steps.
In the first step, we sample an elementary box bgoal from the set Π; in the second
step we sample a point xgoal in bgoal uniformly.

The elementary box sampling distribution in the first step is biased in order to
optimize the coverage. Guiding is thus done via the goal box sampling process.

Let Π be the box partition used in the coverage estimation, and we denote
by P the current set of visited states. The objective is to define a probability
distribution over the set of elementary boxes of Π. This probability distribution
is defined at each iteration of the test generation algorithm. Essentially, we favor
the selection of a box if adding a new state in this box allows to improve the
coverage of the visited states. This is captured by a potential influence function,
which assigns to each elementary box 2 in the partition a real number that
reflects the change in the coverage if a new state is added in 2. The current
coverage is given in form of a lower and an upper bound. In order to improve the
coverage, we aim at reducing both of the bounds. More details on the method
can be found in [42].

Let us summarize the developments so far. We have shown how to sample a
goal hybrid state. This sampling method is not uniform but biased in order to
achieve a good coverage of the visited states. From now on, the algorithm hRRT
in which the function Sampling uses this coverage-guided method is called the
gRRT algorithm, which means ‘guided hRRT’.

We can prove that the gRRT algorithm preserves the probabilistic completeness
of RRT [42]. Roughly speaking, the probabilistic completeness property [74]
states that if the trace we seach for is feasible, then the probability that the
algorithm finds it approaches 1 as the number k of iterations approaches infinity.

To demonstrate the performance of gRRT, we use two illustrative examples.
For brevity, we call the classical RRT algorithm using uniform sampling and the
Euclidian metric hRRT. The reason we choose these examples is that they differ
in the reachability property. In the first example, the system is ‘controllable’ in
the sense that the whole state space is reachable from the initial states (by using
appropriate inputs), but in the second example the reachable set is only a small
part of the state space. These examples will also be used to validate the efficiency
of the new guiding method that we propose.

Example 1. This is a two-dimensional continuous system where the state space
X is a box B = [−3,−3]× [3, 3]. The continuous dynamics is f(x, t) = u(t) where
the input set is U = {u ∈ R2 | ||u|| ≤ 0.2}.

We use 100 input values resulting from a discretization of the set U . The

88

initial state is (−2.9,−2.9). The time step is 0.002. Figure 4.6 shows the result
obtained using gRRT and the evolution after each iteration of the coverage
of the states generated by gRRT (solid curve) and by hRRT (dashed curve).
The figure indicates that gRRT achieved a better coverage quality especially in
convergence rate.

Figure 4.6: Left: The gRRT exploration result. Right: Test coverage evolution
using hRRT and gRRT.

Example 2. This example is a linear system with a stable focus at the origin.
Its dynamics is (

ẋ
ẏ

)
=

(
−1 −1.9
1.9 −1

)
×

(
x
y

)
+

(
u1

u2

)
We let the dynamics be slightly perturbed by an additive input u. The state space
is the box B = [−3,−3] × [3, 3]. The input set U = {u ∈ R2 | ||u|| ≤ 0.2}.

89

Figure 4.7: Results obtained using the guided sampling method (left) and using
the uniform sampling method (right).

Figure 4.7 shows the results obtained after 50000 iterations. We can see that
again the guided sampling method achieved a better coverage result.

4.8 Controllability issue

From different experiments with Example 2, we observed that the coverage per-
formance of gRRT is not satisfying when the reachable space is only a small
part of the whole state space. To illustrate this, we increase the state space from
B = [−3,−3] × [3, 3] to B′ = [−5,−5] × [5, 5]. For the larger state space, the
coverage quality is poorer (see Figure 4.8). This can be explained as follows.
There are boxes, such as those near the bottom right vertex of the bounding
box, which have a high potential of reducing the bounds of the star discrepancy.
Thus, the sampler frequently selects these boxes. However, these boxes are not
reachable from the initial states, and all attempts to reach them do not expand
the tree beyond the boundary of the reachable set. This results in a large number
of points concentrated near this part of the boundary, while other parts of the
reachable set are not well explored.

It is important to emphasize that this problem is not specific to gRRT. The
RRT algorithm using the uniform sampling method and, more generally, any
algorithm that does not take into account the differential contraints of the system,
may suffer from this phenomenon. This phenomenon can however be captured
by the evolution of the disparity between the set of goal states and the set of
visited states. This notion will be formally defined in the next section. Roughly
speaking, it describes how different their distributions are. When the disparity
does not decrease after a certain number of iterations, this often indicates that the
system cannot approach the goal states, and it is better not to favor an expansion

90

Figure 4.8: Results for the state spaces B (left) and B′ (right).

towards the exterior but a refinement, that is an exploration in the interior of the
already visited regions.

Figure 4.9 shows the evolution of the disparity between the set P k of visited
states at the kth iteration and the set Gk of goal states for the two examples.
We observe that for the system of Example 1 which can reach any state in the
state space (by choosing appropriate admissible inputs), the visited states follow
the goal states, and thus the disparity gets stabilized over time. However, in
Example 2, where the system cannot reach everywhere, the disparity does not
decrease for a long period of time, during which most of the goal states indicate
a direction towards which the tree cannot be expanded further.

Figure 4.9 shows the Voronoi diagram3 of a set of visited states. In this example,
the boundary of the reachable set can be seen as an ‘obstacle’ that prevents
the system from crossing it. Note that the Voronoi cells of the states on the
boundary are large (because they are near the large unvisited part of the state
space). Hence, if the goal states are uniformly sampled over the whole state
space, these large Voronoi cells have higher probabilities of containing the goal
states, and thus the exploration is ‘stuck’ near the boundary, while the interior
of the reachable set is not well explored.

To tackle this problem, we introduce the notion of disparity to describe the
‘difference’ in the distributions of two sets of points. The controllability problem
can be detected by a large value of the disparity between the goal states and
the visited states. We can thus combine gRRT with a disparity based sampling
method, in order to better adapt to the dynamics of the system. This is the topic
of the next section.

3The Voronoi diagram of a set V of points in Rn is the partition of Rn into k polyhedral
regions. Each region corresponds to a point v ∈ V , called the Voronoi cell of v, is defined as
the set of points in Rn which are closer to v than to any other points in V .

91

Figure 4.9: Left: The evolution of the disparity between the set P k of visited
states and the set Gk of goal states. Right: Illustration of the controllability
issue.

Figure 4.10: The disparity between the Faure sequence (drawn using the + signs)
and the Halton sequence (drawin using the ∗ signs) is 0.06.

92

Figure 4.11: Left: The disparity between the Faure sequence (+ signs) and a
C pseudo-random sequence (∗ signs) is 0.12. Right: The disparity between the
Faure sequence (+ signs) and another C pseudo-random sequence (∗ signs) is
0.54.

4.9 Disparity

The notion of disparity between two point sets that we develop here is inspired
by the star discrepancy. Indeed, by definition, the star discrepancy of a set P
w.r.t. the box B can be seen as a comparison between P and an ‘ideal’ infinite
set of points distributed all over B.

Let P and Q be two sets of points inside B. Let J be a sub-box of B which has
the same bottom-left vertex as B and the top-right vertex of which is a point inside
B. Let Γ be the set of all such sub-boxes. We define the local disparity between

P and Q with respect to the sub-box J as: γ(P,Q, J) = |A(P, J)

||P ||
− A(Q, J)

||Q||
|

where A(P, J) is the number of points of P inside J and ||P || is the total number
of points of P .

Definition 8 (Disparity). The disparity between P and Q with respect to the
bounding box B is defined as: γ∗(P,Q,B) = supJ∈Γγ(P,Q, J).

The disparity satisfies 0 < γ∗(P,Q,B) ≤ 1. This property is a direct conse-
quence of the above definition. A small value γ∗(P,Q,B) means that the distri-
butions of the sets P and Q over the box B are ‘similar’.

To illustrate our notion of disparity, we consider two well-known sequences
of points: the Faure sequence [50] and the Halton sequence [106], which are
shown in Figure 4.10. Their disparity is 0.06, indicating that they have similar
distributions. We then compare the Faure sequence with a sequence generated
by the C library. Figure 4.11 displays these two sequences, each of which has 100

93

points. The star discrepancy coverage of the Faure sequence is much better than
that of the C sequence, and in fact their disparity between them (which is 0.12) is
twice larger than that between the Faure and Halton sequences. The last example
is used to compare the Faure sequence and a set of 100 points concentratred in
some small rectangle inside the bounding box. Their disparity is 0.54.

Disparity estimation

The exact computation of the disparity is as hard as the exact computation
of the star discrepancy, which is due to the infinite number of the sub-boxes.
We propose a method for estimating a lower and an upper bound for this new
measure. Let Π be a box partition of B. Let P , Q be two sets of points inside B.
For each elementary box 2 ∈ Π we denote µm(2) = max{µc(2), µo(2)} where

µc(2) =
A(P,2+)

||P ||
− A(Q,2−)

||Q||
, µo(2) =

A(Q,2+)

||Q||
− A(P,2−)

||P ||
. We also denote

c(2) = max{|A(P,2−)

||P ||
− A(Q,2−)

||Q||
|, |A(P,2+)

||P ||
− A(Q,2+)

||Q||
|}.

Theorem 10. [Upper and lower bounds] An upper bound Bd(P,Q,Π) and a
lower bound Cd(P,Q,Π) of the disparity between P and Q are: Bd(P,Q,Π) =
max2∈Π{µm(2)} and Cd(P,Q,Π) = max2∈Π{c(2)}.

The proof of the theorem can be found in [40].

Estimation error

We now give a bound on the estimation error. For each elementary box 2 =
[α1, β1]× . . .× [αn, βn] ∈ Π, we define the W-zone, denoted by W(2), as follows:
W(2) = 2+ \2−. We recall that 2+ = [l1, β1]× . . .× [ln, βn] and 2− = [l1, α1]×
. . . × [ln, αn]. We can prove the following bound on the error of the estimation,
defined as the difference between the upper and lower bounds [40].

Theorem 11 (Error bounds). Let Bd(P,Q,Π) and Cd(P,Q,Π) be the upper and
lower bounds of the disparity between P and Q. Then,

Bd(P,Q,Π)− Cd(P,Q,Π) ≤ max
2∈Π

max{A(P,W(2))

||P ||
,
A(Q,W(2))

||Q||
}.

The above error bounds can be used to dynamically refine the partition.

94

4.10 Disparity-guided sampling

The essential idea of our disparity based sampling method is to detect when the
dynamics of the system does not allow the tree to expand towards the goal states
and then to avoid such situations by favoring a refinement, that is an exploration
near the already visited states.

A simple way to bias the sampling towards the set P k of already visited states
is to reduce the sampling space. Indeed, we can make a bounding box of the set
P k and give more probability of sampling inside this box than outside it. Alterna-
tively, we can guide the sampling using the disparity information as follows. The
objective now is to reduce the disparity between the set Gk of goal states and the
set P k of visited states. Like the guiding method using the star discrepancy, we
define for each elementary box 2 of the partition a function η(2) reflecting the
potential for reduction of the lower and upper bounds of the disparity between
P k and Gk. This means that we favor the selection of the boxes that make the
distribution of goal states Gk approach that of the visited states P k. Choosing
such boxes can improve the quality of refinement. The formulation of the poten-
tial influence function for the disparity-based sampling method is similar to that
for the coverage guided sampling.

A combination of the coverage guided and the disparity guided sampling meth-
ods is done as follows. We fix a time window Ts and a threshold ε. When using
the coverage guide method, if the algorithm detects that the disparity between
the Gk and P k does not decrease by ε after Ts time, it switches to the disparity
guided method until the disparity is reduced more significantly and switches back
to the coverage guide method. Note that a non-decreasing evolution of the dispar-
ity is an indication of the inability of the system to approach the goal states. In
an interactive exploration mode, it is possible to let the user to manually decide
when to switch. As mentioned earlier, we call the resulting algorithm agRRT
(the letter ‘a’ in this acronym stands for “adaptive”).

Examples. We use the examples in the previous section to demonstrate the
coverage improvement of agRRT. Figure 4.12 shows that the final result for
Example 1 obtained using agRRT has a better coverage than that obtained
using gRRT. The solid curve represents the coverage of the set P k of visited
states and the dashed one the coverage of the set Gk of goal states. The dash-dot
curve represents the disparity between Gk and P k.

The result obtained using agRRT for Example 2 is shown in Figure 4.13,
which also indicates an improvement in coverage quality. The figure on the right
shows the set of generated goal states. The states are drawn in dark color. In
this example, we can observe the adaptivity of the combination of gRRT and
agRRT. Indeed, in the beginning, the gRRT algorithm was used to rapidly

95

Figure 4.12: Left: Test coverage of the result obtained using agRRT for Exam-
ple 1. Right: Comparing gRRT and agRRT.

Figure 4.13: Result after k = 50000 iterations, obtained using agRRT (left: the
set of visited states P k, right: the set of goal states Gk).

expand the tree. After some time, the goal states sampled from the outside of
the exact reachable space do not improve the coverage, since they only create
more states near the boundary of the reachable set. In this case, the disparity
between P k and Gk does not decrease, and the agRRT is thus used to enable
an exploration in the interior of the reachable set. The interior the reachable set
thus has a higher density of sampled goal states than the outside, as one can see
in the figure.

4.11 Termination criterion using disparity

We first explain why it is not suitable to use the star discrepancy coverage to
decide the termination of the test generation algorithm. Indeed, the star discrep-

96

Figure 4.14: The point set P (left) and the point set P ∪Q (right).

ancy allows to compare the spatial coverage quality between the point sets of the
same cardinality; it however may give misleading comparison between the sets
of different cardinalities. To illustrate this, we consider a set of two-dimensional
points: P = {(0.25, 0.25), (0.5, 0.5), (0.75, 0.25), (0.25, 0.75), (0.75, 0.75)} inside
the bounding box B = [0, 1] × [0, 1], shown in Figure 4.14-(left). The star
discrepancy estimation gives: D∗(P,B) ' 0.347. An arising question is how
the star discrepancy changes when we add more points in P . We now con-
sider another non-empty set Q of points inside B that does not contain any
points of P . Different experiments show that the star discrepancy of the union
P ∪ Q might be larger or smaller than that of P . For example, for the fol-
lowing set Q = {(0.06, 0.06), (0.12, 0.12), (0.06, 0.12), (0.12, 0.06) the value of
D∗(P ∪Q,B) ' 0.493 (see Figure 4.14-right). In other words, adding this set
Q in P increases the star discrepancy, which can be easily understood because
the set Q is not well equidistributed over the box B. However, from a verification
point of view, the union P ∪Q provides more information about the correctness
of the system than the set P . On the other hand, geometrically speaking, the set
P ∪Q “covers more space” than the set P .

Therefore, we do not use the star discrepancy coverage measure to decide when
the test generation algorithm can terminate. Instead, to detect when the coverage
reaches a “saturation”, we use the disparity between two consecutive sets of
visited states. If its value remains below some predefined threshold ∆γ after
a predefined number K of iterations, we can stop the algorithm because the
distribution of the sets of visited states are not much changed and the coverage is
not significantly improved. This criterion can be used together with a maximal
number of iterations.

4.12 Actuator and sensor imprecision

Due to the limitations of practical actuators and sensors, the tester cannot realize
exactly an input value specified as a real-valued vector as well as measure exactly
the state of the system. We first explain how actuator imprecision influences the
testing process.

97

Actuator imprecision. We consider the following continuous dynamics of a
location: ẋ(t) = f(x(t), u(t)). Given an initial state x and an input value u, let
ξx,u denote the unique trajectory during the time interval [0, h].

Due to actuator imprecision, when the tester emits an input u to the system
under test, indeed some input v = u + δu with |δu| ≤ εu is applied. We call εu
the actuator imprecision bound. After one step, this uncertainty causes the new
state y = ξx,v(h) to deviate from the exact state y′ = ξx,u(h). In the next step,
this deviation can be considered as an uncertainty in the initial condition, namely
(y′ − y), which causes further deviation.

Therefore, only when the observation measured by the tester lies outside some
admissible deviation neighborhood, the conformance property is considered vio-
lated. We need thus to compute the admissible deviation neighborhoods.

Let Mx =
∂ξx,u

∂x
and Mu =

∂ξx,u

∂u
denote the partial derivatives of ξx with

respect to the initial condition x and to the input. They are called the sensitivity
matrices. Given a neighboring initial state y and a neighboring input value v,
we can get an estimation of ξy,v by dropping higher order terms in the Taylor
expansion of ξx,u(t) seen as a function of x and of u:

ξ̂y,v(h) = ξx,u(h) +Mx(h)(y − x) +Mu(h)(v − u) (4.6)

The deviation is thus δ = |Mx(h)(y−x)+Mu(h)εu|. The deviation neighborhood
is defined as a ball centered at ξx,u(h) with radius δ. To compute the sensitivity
matrices, we solve the following differential equations, which result from taking
the derivative of the solution:

ẋ = f(x, u), (4.7)

Ṁx =
∂f(x, u)

∂x
Mx, (4.8)

Ṁu =
∂f(x, u)

∂x
Mu +

∂f(x, u)

∂u
(4.9)

with the initial condition ξx(0) = x and Mx(0) = In (the identity matrix) and
Mu(0) = 0n (the zero matrix). These are n+m+1 ordinary differential equations
of order n. Note that the cost can be made less than that of the resolution of

n+m+1 different systems since the Jacobian
∂f(x, u)

∂x
can be extensively reused

in the computation.

Therefore, in the RRT tree construction, when we compute a new state from a
given state x and input u, we additionally compute the corresponding sensitivity
matrix Mx(h) and Mu(h) and associate these matrices to the new node created
to store the new state. We also propagate the neighborhoods in order to detect
possible executions of uncontrollable discrete transitions. If the current state does

98

not enable a uncontrollable transition but the associated neighborhood intersects
with its guard, we compute the image of the intersection by the reset map and
take its centroid to define a new visited state. The diameter of the image is the
radius of the associated neighborhood.

Verdict. During the test, let s̃i = (q̃i, x̃i) be the observation at the ith step and
si = (qi, xi) be the corresponding expected state in the tree. Let M i

x and M i
u be

the sensitivity matrices associated with the node (qi, xi). The system under test
is assumed to satisfy the conformance property at the initial state. The verdict
is then decided as follows. We suppose that the conformance property is not
violated until the ith step. There are two cases:

1. (C1) s(i+1) is reached by the continuous dynamics. Then, if |x̃(i+1)−x(i+1)| >
M i

x|x̃i− xi|+M i
uεu, we conclude that the conformance property is violated

and stop the test. Otherwise, we continue the test.

2. (C2) s(i+1) is reached by a discrete transition. Then, if q̃i = qi and |x̃(i+1)−
x(i+1)| > δ(i+1) where δ(i+1) is the deviation radius, we conclude that the
conformance property is violated and stop the test. Otherwise, we continue
the test.

Sensor imprecision. Let the sensor imprecision be modeled by an upper
bound εx on the distance between the actual continuous state and the obser-
vation measured by the tester. The distance between the observation and the ex-
pected states is now tested againts a bound larger by εx, that is |x̃(i+1)−x(i+1)| >
M i

x(x̃
i − xi) +M i

uεu + εx for the above (C1) and |x̃(i+1) − x(i+1)| > δ(i+1) + εx for
(C2).

4.13 Tool HTG

We have implemented the above algorithms in a test generation tool, called HTG.
Its implementation uses a data structure, similar to a k-d tree, which facilitates
the required operations, such as updating the tree, finding neighbors, updating
the star discrepancy and disparity. Indeed, using this data structure, we can
efficiently encode a box partition for storing and accessing the visited states as
well as for the star discrepancy and disparity estimations. In the following, we
briefly describe some important functions. A more detailed description of the
implementation can be found in [40]

99

Numerical simulation

In most classic versions of hybrid automata, continuous dynamics are defined
using ordinary differential equations (ODEs). To analyze analog and mixed-
signal circuits, the behavior of which are described using differential algebraic
equations (DAEs), we adapt the model to capture this particularity and use the
well-known RADAU algorithm for solving DAEs [45]. On the other hand, with
view to applications in analog and mixed-signal circuits, an efficient and reli-
able simulation method is key. The state-of-the-art SPICE simulator is prone to
convergence problems when dealing with circuit components with stiff character-
istics. We also integrated in our test generation tool a connection to the platform
SICONOS, developed at INRIA Rhônes-Alpes, that contains a number of sim-
ulation algorithms based on the non-smooth approach [4], which have proved to
be efficient for systems with stiff dynamics.

SPICE netlists as input systems.

An important new feature of the tool is its ability to deal with circuits describes
using SPICE, in addition to textual descriptions of a hybrid automata. This
facilitates the application of the tool to practical circuits. Note that our test
generation method works on the differential equations of a hybrid automaton,
which is an appropriate mathematical model to describe circuit dynamics. How-
ever, the circuit equations need to be generated from a SPICE netlist. Common
SPICE parsers do not provide directly the a succinct form of circuit equations
but generate complex equations for the numerical resolution of each simulation
step. Furthermore, using SPICE descriptions we cannot specify uncertain inputs.
The solution we propose to address this can be described as follows:

• The inputs (controllable by tester) can be source currents or voltages in
SPICE. Their uncertainty is described in an auxiliary file.

• We use the tool ACEF [3] to generate the numerical simulation equations
in each step. The values of the conptrollable inputs, computed by the test
generation algorithm, are communicated to ACEF [3] before the generation
in each step. The generation can be optimized by only updating some terms
involving the modified input in the equations of the previous steps.

The test cases generated by the tool can be visualized by different standard
viewers such as matlab and gnu plots.

The tool can also be used as a systematic simulator to verify properties of a
model. For this problem, the tester can manipulate not only control inputs but
also disturbance inputs. Systematic simulation can be seen as a good compromise
between exhaustive verification and adhoc simulation.

100

4.14 Applications

The tool has been tested on various examples, which proved its scalability to
high dimensional systems (up to a few hundreds continuous variables) [42]. In
addition, we have also successfully applied the tool to a number of case studies
in control systems and in analog and mixed signal circuits. In the following, to
give an overview of the applicability of the tool, we briefly report some of these
applications.

4.14.1 Aircraft collision avoidance system

To illustrate the application of our algorithm to hybrid systems, we use the
aircraft collision avoidance problem [84], which is a well-known benchmark in
the hybrid systems literature. In this paper, the authors treated the problem of
collision avoidance of two aircrafts. To show the scalability of our approach we
consider the same model with N aircrafts.

As shown in Figure 4.15, all the aircrafts are at a fixed altitude. Each aircraft
i has three states (xi, yi, θi) where xi and yi describe the position and θi is the
relative heading of the aircraft. Each aircraft begins in straight flight at a fixed
relative heading (mode 1).

Figure 4.15: Aircraft behavior in the three modes [84].

As soon as two aircrafts are within the distance R between each other, they
enter mode 2. In this mode each aircraft makes an instantaneous heading change
of 90 degrees, and begins a circular flight for π time units. After that, they
switch to mode 3 and make another instantaneous heading change of 90 degrees
and resume their original headings from mode 1.

The dynamics of the system are shown in Figure 4.16. The guard transition
between mode 1 and mode 2 is given by Dij < R, which means that the aircraft

101

i is at R distance from the aircraft j. The dynamics of each aircraft is as follows:

ẋi = vcos(θi) + dxi,

ẏi = vsin(θi) + dyi

θ̇i = ω

The continuous inputs are dxi and dxi describing the external disturbances on
the aircrafts (such as wind):

dxi = d1sin(θi) + d2cos(θi),

dyi = −d1cos(θi) + d2sin(θi),

and −δ ≤ d1, d2 ≤ δ.

Mode 1 Mode 2 Mode 3

ẋi = vcos(θi) + dxi ẋi = vcos(θi) + dxi ẋi = vcos(θi) + dxi

żi = 0 żi = 0żi = 1

ẏi = vsin(θi) + dyi ẏi = vsin(θi) + dyi ẏi = vsin(θi) + dyi

θ := θ + π/2
z ≥ π

θ̇i = 0 θ̇i = ω θ̇i = 0

Dij > R

θ := θ + π/2

Dij ≤ R

z < π

Figure 4.16: System dynamics for the three modes.

Results. For N aircrafts, the system has 3N + 1 continuous variables (one for
modeling a clock). For the case ofN = 2 aircrafts, when the collision distance is 5,
no collision was detected after visiting 10000 visited states, and the computation
time was 0.9 min. The result for N = 8 aircrafts with the disturbance bound
δ = 0.06 is shown in Figure 4.17, where we show the projected positions of the
eight aircrafts on a 2-dimensional space. For this example, the computation time
for 50000 visited states was 10 min and a collision was found. For a similar
example with N = 10 aircrafts, the computation time was 14 min and a collision
was also found.

4.14.2 Robotic vehicle benchmark

This example is adapted from the robotic navigation system benchmark [91]. We
consider a car with the following continuous dynamics with 5 variables: ẋ =
vcos(θ), ẏ = vsin(θ), θ̇ = vtan(φ)/L, v̇ = u0, φ̇ = u1 where x, y, θ describe
the position and heading of the car, v is its speed and φ is its steering angle.

102

Figure 4.17: Eight-aircraft collision avoidance (50000 visited states, computation
time: 10 min.

The car can be in one of three car modes (smooth car, smooth unicycle, smooth
differential drive). In this work, we consider only the smooth car mode.

The inputs of the system are u0 and u1 which are respectively the acceleration
and steering control. The system uses a hybrid control law with 3 driver modes.
In the first driver mode, called RandomDriver, the control inputs are selected
uniformly at random between their lower and upper bounds. In the second driver
mode, called StudentDrive, when the speed is low, u0 is randomly chosen as in
first mode; otherwise, the strategy is to reduce the speed. In the third driver
mode, called HighwayDrive, the strategy is to reduce the speed when it is high
and increase it when it is low. A detailed description of this control law can be
found in [91].

Rather than to analyze a realistic navigation system model, we use this example
to test the efficiency of our algorithms on a hybrid system with a larger number
of locations. To this end, we created from this system two models. The terrain
is partitioned into K rectangles using a regular grid G = {0, . . . , Kx − 1} ×
{0, . . . , Ky − 1}. Each rectangle is associated a driver mode. The first model is a
hybrid automaton with KxKy locations and the system can only switch between
the locations corresponding to adjacent rectangles.

In the second model, we allow more complicated switching behavior by letting
the system jump between some rectangles which are not necessarily adjacent.
The rectangle corresponding to the grid point (i, j) ∈ G is Rij = [ilx, jly] ×
[(i + 1)lx, (j + 1)ly] where lx and ly are the sizes of the grid in the x and y
coordinates. The absolute index of Rij is an integer defined as follows: ι(Rij) =

103

iKy + j. From the rectangle Rij with even absolute index, we allow a transition
to Rmn such that ι(Rmn) = (ι(Rij) + J)mod(KxKy) (where J > 0 and mod is
the modulo division). The guard set at Rij is the right-most band of width εg,
that is [(i+ 1)lx − εg, jly]× [(i+ 1)lx, (j + 1)ly]. After switching to Rmn, the car
position (x, y) is reset to a random point inside the square of size εr defined as
[mlx, (n+ 1)ly − εr]× [mlx + εr, (n+ 1)ly].

We compared the results obtained for the two models using the gRRT algo-
rithm and the hRRT algorithm. In this experimentation the hRRT algorithm
uses a uniform sampling (both over the discrete and continuous state space).
Since we want to focus on the performance of the guiding tool, the two algo-
rithms use the same hybrid distance definition and implementation. The param-
eters used in this experimentation are: lx = ly = 20, lx = ly = 20, the car position
(x, y) ∈ [−100, 100] × [−100, 100], εg = εr = 6, J = 6. The number of locations
in the hybrid automata is 100. For the first model without jumps, in terms of
coverage efficiency, the algorithms are comparable. For the model with jumps,
gRRT systematically produced better coverage results. However, gRRT is not
always better than hRRT in terms of the number of covered locations. This is
due to our coverage definition using the average of the continuous-state coverages
of all the locations.

In terms of time efficiency, we now report the computation time of gRRT for
the experimentations with various maximal visited states. For the first model, the
computation times of gRRT are: 4.7s for 10000 states in the tree, 1min 26s for
50000 states, 6min 7s for 100000 states. For the second model, the computation
times of gRRT are: 4.2s for 10000 states in the tree, 2min 5s for 50000 states,
4min 40s for 100000 states, and 20min 22s for 150000 states.

4.14.3 Analog and mixed-signal circuits

Due to an increasing utilization of embedded systems, systems in which the com-
puter interacts with the physical world, such as cellular phones and other mobile
devices, there has been a dramatic rise in interest in analog and mixed-signal
circuits. While digital circuit design can be done with performant CAD tools,
analog and mixed signal design is still much less automated. The main goal of
this project is to develop new techniques for validating these circuits. The work
will be based on new analysis techniques for hybrid systems, systems that com-
bine discrete event systems and continuous systems and can naturally describe
the behaviors of such circuits.

Using the above results, we implemented a test generation tool and tested
it on a number of control applications, which proved its scalability to high di-
mensional systems [88]. In this implementation, all the sets encountered in the
hybrid automaton definition are convex polyhedra. For circuit applications, we

104

Figure 4.18: Test generation result for the transitor amplifier.

use the well-known RADAU algorithm for solving differential algebraic equations
(DAE) [45]. We recall that solving high index4 and stiff DAEs is computationally
expensive, and in order to evaluate the efficiency of the test generation algorithm,
we have chosen two practical circuits with DAEs of this type. The three circuits
we treated are: a transistor amplifier, a voltage controlled oscillator, and a Delta-
Sigma modulator circuit.

Transistor amplifier. The first example is a transistor amplifier model [45],
shown in Figure 4.18, where the variable yi is the voltage at node i; Ue is the input
signal and y8 = U8 is the output voltage. The circuit equations are a system of
DAEs of index 1 with 8 continuous variables: Mẏ = f(y, u). The function f is
given by:

−Ue/R0 + y1/R0

−Ub/R2 + y2(1/R1 + 1/R2)− (α− 1)g(y2 − y3)
−g(y2 − y3) + y3/R3

−Ub/R4 + y4/R4 + αg(y2 − y3)
−Ub/R6 + y5(1/R5 + 1/R− 6)− (α− 1)g(y5 − y6)

−g(y5 − y6) + y6/R7

−Ub/R8 + y7/R8 + αg(y5 − y6)
y8/R9

.

The circuit parameters are: Ub = 6; UF = 0.026; R0 = 1000; Rk = 9000,
k = 1, . . . , 9; Ck = k10−6; α = 0.99; β = 10−6. The initial state yinit =
(0, Ub/(R2/R1+1), Ub/(R2/R1+1), Ub, Ub/(R6/R5+1), Ub/(R6/R5+1), Ub, 0). To
study the influence of circuit parameter uncertainty, we consider is a perturbation
in the relation between the current through the source of the two transistors and

the voltages at the gate and source IS = g(UG − US) = β(e
UG−US

UF − 1) + ε, with
ε ∈ [εmin, εmax] = [−5e− 5, 5e− 5]. The input signal Ue(t) = 0.1sin(200πt). The
acceptable interval of U8 in the non-perturbed circuit is [−3.01, 1.42]. Once the
initial transient period has settled down, the test case indicates the presence of

4The differential index of a DAE is a measure of the singularity of the DAE. It characterizes
the difficulty in numerically solving the equation.

105

Figure 4.19: Voltage controlled oscillator (VCO) circuit.

traces with overshoots after 18222 iterations (corresponding to 1.1mn of compu-
tation time). The total computation time for generating 50000 states was 3mn.
Figure 4.18 shows the generated states projected on U8 over the first 0.03 seconds.

Voltage controlled oscillator. The second circuit we examined is a voltage
controlled oscillator (VCO) circuit [63], described by a system of DAEs with 55
continuous variables. In this circuit, the oscillating frequency of the variables vC1

and vC2 is a linear function of the input voltage uin. We study the influence of
a time-variant perturbation in C2, modeled as an input signal, on this frequency.
In this example we show that, in addition to conformance relation, using this
framework, we can test a property of the input/output relation. The oscillating
period T ± δ of vC2 can be expressed using a simple automaton with one clock
y in Figure 4.20. The question is to know if given an oscillating trace in A, its
corresponding trace in As is also oscillates with the same period. This additional
automaton can be used to determine test verdicts for the traces in the computed
test cases. If an observation sequence corresponds to a path entering the “Error”
location, then it causes a ‘fail’ verdict. Since we cannot use finite traces to
prove a safety property, the set of obsevation sequences that cause a “pass”
verdict is empty, and therefore the remaining obsevation sequences (that do not
cause a “fail” verdict) cause a “inconclusive” verdict. We consider a constant
input voltage uin = 1.7. The coverage measure was defined on the projection
of the state space on vC1 and vC2 . The generated test case shows that after the
transient time, under a time-variant deviation of C2 which ranges within ±10%
of the value of C2 = 0.1e− 4, the variables vC1 and vC2 oscillate with the period
T ∈ [1.25, 1.258]s (with ε = 2.8e − 4). This result is consistent with the result
presented in [63]. The number of generated states was 30000 and the computation
time was 14mn. Figure 4.20 shows the explored traces of vC2 over time.

Delta-Sigma circuit. The third example is a third-order Delta-Sigma modu-
lator [18], which is a mixed-signal circuit shown in Figure 4.21. When the input

106

Error

y := 0
T − δ ≤ y ≤ T + δ ∧ |x1| ≤ ε

y := 0
x1 = 0

ẋ1 = 0
ẏ = 1
y ≤ Tp

y > T + δ
∧ |x1| ≤ ε

Figure 4.20: Left: Automaton for an oscillation specification. Right: Variable vC2 over time.
The number of generated states was 30000 and the computation time was 14mn.

c3x3(k) + u(k) >= 0

+bu(k)− a

c3x3(k) + u(k) < 0

v(k) = −1
x(k + 1) = Ax(k)+

bu(k) + a
x(k + 1) = Ax(k)
v(k) = +1

Figure 4.21: Model of a third-order modulator: Saturation blocks model satura-
tion of the integrators.

sinusoid is positive and its value is less than 1, the output takes the +1 value more
often and the quantization error is fed back with negative gain and accumulated
in the integrator 1

z−1
. Then, when the accumulated error reaches a certain thresh-

old, the quantizer switches the value of the output to −1 to reduce the mean of
the quantization error. A third-order Delta-Sigma modulator is modeled as a hy-
brid automaton, shown in Figure 4.21. The discrete-time dynamics of the system
is as follows: x(k + 1) = Ax(k) + bu(k) − sign(y(k))a, y(k) = c3x3(k) + b4u(k)
where x(k) ∈ R3 is the integrator states, u(k) ∈ R is the input, y(k) ∈ R is
the input of the quantizer. Thus, its output is v(k) = sign(y(k)), and one can
see that whenever v remains constant, the system dynamics is affine continuous.
A modulator is stable if under a bounded input, the states of its integrators
are bounded. The test generation algorithm was performed for the initial state
x(0) ∈ [−0.01, 0.01]3 and the input values u(k) ∈ [−0.5, 0.5]. After exploring
only 57 states, saturation was already detected. The computation time was less

107

than 1 second. Figure 4.22 shows the values of (supx1(k))k as a function of the
number k of time steps. We can see that the sequence (sup x1(k))k leaves the
safe interval [−xsat

1 , xsat
1] = [−0.2, 0.2], which indicates the instability of the cir-

cuit. This instability for a fixed finite horizon was also detected in [37] using an
optimization-based method.

Figure 4.22: Test generation result for the Delta-Sigma circuit. The computation time was
less than 1s.

4.15 Related work

Classical model-based testing frameworks use Mealy machines or finite labeled
transition systems and their applications include testing of digital circuits, com-
munication protocols and software. Recently, these frameworks have been ex-
tended to real-time systems and hybrid systems. Here we only discuss related
work in hybrid systems testing. The paper [97] proposed a framework for gen-
erating test cases from simulation of hybrid models specified using the language
CHARON [8]. In this work, the test cases are generated by restricting the be-
haviors of an environment automaton to yield a deterministic testing automaton.
A test suite can thus be defined as a finite set of executions of the environment
automaton. It is mentioned in the paper that to achieve a desired coverage, non-
determinism in the environment automaton is resolved during the test generation
using some randomized algorithm. However, this coverage as well as the random-
ized algorithm were not described in detail. Besides testing a real system, another
goal of this work is to apply tests to models, as an alternative validation method.
In [72], the testing problem is formulated as to find a piecewise constant input
that steers the system towards some set, which represents a set of bad states.
To our knowledge, there is no other work in developing a formal framework for
conformance testing that follows the standards of FMCT (Formal Methods in
Conformance Testing) as closely as the framework we proposed.

The RRT algorithm has been used to solve a variety of reachability-related
problems such as hybrid systems planning, control, verification and testing (see

108

for example [46, 25, 72, 29, 91] and references therein). Here we only discuss a
comparison of our approach with some existing RRT-based approaches for the
validation of continuous and hybrid systems. Concerning the problem of defining
a hybrid distance, our hybrid distance is close to that proposed in [72]. The
difference is that we use the centroids of the guard sets to define the distance
between these sets, while the author of [72] uses the minimal clearance distance
between these sets, which is harder to compute. To overcome this difficulty, the
author proposed to approximate this clearance distance by the diameter of the
state space. An advantage of our hybrid distance is that it captures better the
average cases, allowing not to always favor the extreme cases. Note also that
our hybrid distance dH does not take into account the system dynamics. It is
based on the spatial positions of the states. In [72] the author proposed a time-
based metric for two hybrid states, which can be seen as an approximation of the
minimal time required to reach from one state to another, using the information
on the derivatives of the variables. Another distance proposed in [72] is called
specification-based. This distance is typically defined with respect to some target
set specifying some reachability property. It can be however observed that for
many systems, this “direct” distance may mislead the exploration due to the
controllability of the system. In [46, 72] and in our hRRT algorithm, the problem
of optimally steering the system towards the goal states was not addressed. In
other words, the evolution of the tree is mainly determined by the selection of
nearest neighbors. In [25], the problem of computing optimal successors was
considered more carefully, and approximate solutions for linear dynamics as well
as for some particular cases of non-linear dynamics were proposed. The authors
of [91] proposed a search on a combination of the discrete structure and the
coarse-grained decomposition of the continuous state space into regions, in order
to determine search directions. This can be thought of as an implicit way of
defining a hybrid distance as well as a guiding heuristics.

Concerning test coverage for continuous and hybrid systems, in [46] the authors
proposed a coverage measure based on a discretized version of dispersion, since
the dispersion is very expensive to compute. Roughly speaking, the dispersion of
a point set with respect to various classes of range spaces, such as balls, is the
area of the largest empty range. This measure is defined over a set of grid points
with a fixed size δ. The spacing sg of a grid point g is the distance from g to the
nearest visited state by the test if it is smaller than δ, and sg = δ otherwise. Let
S be the sum of the spacings of all the grid points. This means that the value of S
is the largest when the set of visited state is empty. Then, the coverage measure
is defined in terms of how much the vertices of the tree reduce the value of S.
It is important to note that while in our work, the coverage measure is used to
guide the simulation, in [46] it is used as a termination criterion. The paper [71]
addresses the problem of robust testing by quantifying the robustness of some
properties under parameter perturbations. This work also considers the problem

109

of how to generate test cases with a number of initial state coverage strategies.

Concerning guided exploration, sampling the configuration space has been one
of the fundamental issues in probabilistic motion planning. Our idea of guiding
the test generation via the sampling process has some similarity with the sampling
domain control [107]. As mentionned earlier, the RRT exploration is biased by
the Voronoi diagram of the vertices of the tree. If there are obstacles around
such vertices, the expansion from them is limited and choosing them frequently
can slow down the exploration. In the dynamic-domain RRT algorithm, the
domains over which the goal points are sampled need to reflect the geometric and
differential constraints of the system, and more generally, the controllability of the
system. In [83], another method for biasing the exploration was proposed. The
main idea of this method is to reduce the dispersion in an incremental manner.
This idea is thus very close to the idea of our guiding method in spirit; however,
their concrete realizations are different. This method tries to lower the dispersion
by using K samples in each iteration (instead of a single sample) and then select
from them a best sample by taking into account the feasibility of growing the
tree towards it. Finally, we mention that a similar idea was used in [46] where
the number of successful iterations is used to define an adaptive biased sampling.
To sum up, the novelty in our guiding method is that we use the information
about the current coverage of the visited states in order to improve the coverage
quality. Additionally, we combine this with controllability information (obtained
from the disparity estimation) to obtain a more efficient guiding strategy.

Future work

A number of directions for future research can be identified. First, we are inter-
ested in defining a measure for trace coverage. Partial observability also needs
to be considered. Convergence rate of the exploration in the test generation
algorithm is another interesting theoretical problem to tackle. This problem is
particular hard especially in the verification context where the system is subject
to uncontrollable inputs.

110

Chapter 5

Scheduling of real-time
multi-threaded programs

5.1 Context

In addition to the work on design of embedded systems based on hybrid systems
analysis techniques, I am interested in the topic of implementation of embedded
systems, where scheduling is a recurrent problem. This work was initiated in late
2003 by Philippe Gerner, who was a postdoctoral researcher in VERIMAG. He
introduced me to PV diagrams and a timed version of this model which can be
used to reason about the behavior of a class of multi-threaded real-time programs.
In these programs, the order of events in each of N threads can be represented on
one dimension of RN and their synchronisation and precedence requirements can
be expressed as “feasible” region in RN . A program schedule corresponds to a
trajectory from some starting point to the end point that remains in the feasible
region. I was immediately interested in the geometry of PV diagrams that forms
orthogonal polyhedra (which is a special class of non-convex polyhedra described
by unions of hyper-rectangles). Indeed, I had used this class of polyhedra for
reachability computation purposes and developed a number of algorithms for
manipulating them.

We first developed a method for finding quick schedules using a decomposi-
tion of such orthogonal polyhedra. Although the method was used to analyze a
number of interesting programs, its efficiency was limited by the complexity of
constructing and manipulating orthogonal polyhedra. To avoid explicit contruc-
tions, we looked for a sufficient condition to quickly test whether there exists a
feasible schedule connecting two given points. Our discovery of such a condition

111

brought about a new scheduling algorithm which can exploit random explorations
similar to RRTs, which were used for testing purposes (see Chapter 4).

This work shows the computational advantages of PV programs, compared
to timed automata, with respect to solving this scheduling problem. In fact,
their geometry is simple enough to benefit from efficient geometric computations
(on boxes). We are currently continue this work in various directions. One
direction is to extend the model towards more complex specifications, such as
those with deadlines and branching. Another direction is to focus on problems
with particular geometry (such as the job shop scheduling problems).

5.2 Introduction

With the decreasing cost of embedded systems, constructing “more intelligent”
embedded systems becomes possible and now product designers ask for more
functionalities from an embedded system. This increases the portion of software
in the system, to the point that some applications require programming with
threads—that is, what was before designed as separate hardware components
on a chip can now be achieved as separate threads. These threads can then be
executed on one or several (in the case of multiprocessing) hardware components.
But parallel programming in a real-time context is rather new, and much work is
to be done in order to be able to analyse the real-time behavior of such programs.
Indeed, simple extensions of existing analysis tools for sequential programs are not
sufficient: parallelism with threads involves purely parallel-specific phenomena
like deadlocks. In this work we examine the behavior of a class of multi-threaded
programs, from the point of view of the worst-case response time (WCRT). In
order to address this complex issue, we employ a geometric approach, which
enables us not only to better “see” what happens, but also to exploit the geometric
nature of the model in order to deal with the state explosion problem arising in
the analysis of concurrent programs. We will also address the issue of scheduling
parallel programs on a limited number of processors, using the same approach.

Our ideas of exploiting the geometry of parallel programs are inspired by the
work on PV diagrams. This model for geometrically describing interactions of
concurrent processes was introduced by Dijkstra [43]. It has been used, since the
beginning of the 90’s, for the analysis of concurrent programs [60, 48] (see [62]
for a good survey). In particular, we follow the spirit of [48], where the geometry
of the diagrams is used to construct an efficient analysis algorithm. We use
the notion of timed PV diagrams, which can be used in the context of real-time
concurrent programming. We focus on a particular problem: finding a schedule
which is safe (no deadlocks), and short, that is although we are not looking for
a shortest schedule, we want to find one which is as short as possible within a
reasonable computational time. More precisely, this schedule specifies how the

112

resources should be shared by the threads, so that the serving capacity of each
resource is respected and, in addition, the execution time of the program is as
small as possible. To determine such a schedule, one needs to resolve the conflicts
between two or more threads that happen when their simultaneous demand for
the same resource exceeds the serving capacity of that resource. A resolution here
means a decision to which threads to give the resource first and which threads
have to wait until the resource is released. The motivations of this scheduling
problem are:

• The program under consideration might be part of a global system (for
example, the body of an infinite loop) and subject to a deadline. However,
if no precise timing analysis result is available, then to determine the worst-
case response time (WCRT) of the program one must assume the worst
cases, i.e., all threads share a single protected resource (with a single access).
This amounts to sequentialization of the threads, and the WCRT is the sum
of the WCRT of each thread considered individually. This measure can
easily be greater than the deadline, while the real worst case concurrent
behavior of the program is probably better. Here we are interested in
analysing the real WCRT and providing a guaranteed worst case execution
time (also called worst-case response time). In addition, from the schedule,
the designer can gain a lot of insight about other properties of the program
executions, such as the frequency and duration of waits.

• Using the scheduling methods we propose, finding a deadlock-free schedule
comes “for free” when looking for a short schedule.

• Finally, in a more general consideration, we believe that if finding a short
schedule is computationally feasible, it is a good investment to design sys-
tems using such efficient schedules. For example, by reducing the compu-
tation time one can reduce energy consumption.

The chapter is structured as follows. In Section 5.3 we recall the concepts re-
lated to PV programs and diagrams. We then describe our timed version of PV
programs, its geometric representation and we define the worst case response

time WCRT of a schedule. We also discuss the case when there are less pro-
cessors than threads in Section 5.5. The definitions and notions introduced in
this part are necessary for the development of the results that follow. In Section
5.6 we explain a discrete abstraction of schedules. Based on this abstraction, two
methods for computing efficient schedules are then developped. The first method,
based on a spatial decomposition, is discussed in Section 5.7. In Section 5.8, we
describe the second method, which uses a geometric property of the PV model to
transform the scheduling problem to a path planning problem. The experimental
results obtained using each method are also reported. Finally, in Section 5.9 we

113

describe some related work, and in Section 5.10 we conclude and present future
work.

5.3 PV programs and diagrams

In this section we describe how to model real-time behavior of multi-threaded
programs using PV programs, a model introduced by Dijkstra [43]. The reader is
referred to [60, 48, 62] and the references therein for the results on the application
of this model in the analysis of concurrent programs. We model each thread as
a process, and a set of threads running together is modeled as a PV program. In
the PV vocabulary, P stands for “lock”, and V stands for “unlock” or “release”; it
is however important to emphasize that, in our modeling framework, the actions
“P” and “V” model the events of taking and releasing a resource, and they do
not necessarily mean locking and unlocking a resource in a concrete implementa-
tion. These actions are used to specify resource usage constraints, that is some
resources need to be used in a certain order and within some amount of time. A
classical PV program example, called the Swiss flag example, is as follows:

A = ⊥A.Pa.Pb.Vb.Va.>A (5.1)

B = ⊥B.Pb.Pa.Va.Vb.>B (5.2)

where a and b are resources whose serving capacity is 1. We assume that the
threads can always run concurrently, that is a thread can run as soon as it gets all
the required resources. Hence, in this example, both threads A and B are assumed
to have their own processor to run on. A model for the cases where the threads
have to share processors is discussed in Section 5.5. In the following, we give the
formal definition of the model.

5.3.1 PV programs: formal definitions

Letters in bold are often used to denote vectors and subscripts to denote the com-
ponents of a vector, for example ai is the ith component of vector a. Supercripts
are often used to denote the elements of a sequence, such as ai is the ith element
of sequence {a0, a1, . . . , am}.

Resources

The shared resources are represented by a set < of resource names. Each re-
source has a serving capacity1, represented by a function limit : < → N+. To

1In the PV vocabulary we say that the resource is protected by a semaphore.

114

model resource usage, we consider two types of resource actions: taking and
releasing a resource r ∈ <, denoted respectively by Pr and Vr.

Threads

We consider a set of N threads: E1, . . . , EN . Each thread Ei is a total order
of events. Each event e has an associated resource action, for example Pr. The
order relation of Ei is denoted by vEi

(or simply by v when the context is
clear). Each thread Ei contains at least two special events: its start event ⊥Ei

and its end event >Ei
, which are respectively the bottom and top elements of

the order. The threads are assumed to be well-behaved, in the sense that each
resource should be released before it is taken again by the same thread. We say
that thread Ei is accessing resource r at event e iff Pr has occurred before or at
e and, additionally, the corresponding release action Vr occurs (strictly) after e.
The running together of N threads is modeled by the product E =

∏
i=1,...,N Ei.

We denote by 4 the order of E , which is defined componentwise. An element of
E is called a state and often denoted by the letter ε, and thus εi is its event
on thread Ei. We denote by ⊥ = (⊥E1 , . . . ,⊥EN

) the bottom state of E and
by > = (>E1 , . . . ,>EN

) its top state. We denote by E the union
⋃

i=1,...,N |Ei|
where |Ei| is the set of events of Ei.

If B is a partial order and b, b′ ∈ B are such that b @ b′, the pair of these
elements is called an arc and denoted by 〈b, b′〉. Also, if B is a total order and
if b ∈ B and b 6= ⊥B, then predB(b) denotes the direct predecessor of b in B,
that is predB(b) v b′ @ b =⇒ b′ = predB(b). When the order is clear from the
context, we simply write pred(b). The notion of direct successors can be defined
similarly.

Forbidden states

A state ε ∈ E is said to be forbidden if at ε there is at least one resource
to which the number of concurrent accesses is greater than its limit, that is
∃r ∈ < :

∑
i=1,...,N accessingi(r, ε) > limit(r) where accessingi(r, ε) = 1 if thread

Ei is accessing resource r at εi and accessingi(r, ε) = 0 otherwise. We denote
by F the set of all forbidden states of E , and by A the set of all allowed states,
which is the complement of F .

Strings

An arc 〈ε, ε′〉 is called a small step if ∀ i ∈ {1, . . . , N} : pred(ε′i) vEi
εi vEi

ε′i.
For example, in the diagram of Figure 5.1 (left) the dotted arrows are small steps
from 4.

115

Definition 9. A string s is a total suborder of E such that for each state ε in
s \ {⊥s}, the arc 〈preds(ε), ε〉 is a small step.

A string, which does not contain a forbidden state and hence does not induce
any resource access conflicts, is called a feasible string. In [57], we defined
a string as a subset of A, and hence all such strings are by definition feasible.
The idea of not restricting to the elements of A is to separate time constraints
and resource usage constraints in order to model time more explicitly, as we shall
show later.

5.3.2 Geometrization

A mapping of a program and its schedules to a diagram and trajectories is called a
geometrization (or geometric realization) of the program. Intuitively, it involves
mapping the set of schedules to trajectories inside an N -dimensional cube, going
from the bottom left vertex of the cube (corresponding to the state ⊥ of the
program) to the top right vertex (corresponding to the state >). In the following,
we describe a geometrization in ZN . We use notation “ ” for the mapping; hence,
s is the image of string s by this mapping. We map each thread Ei onto a subset
of N as follows. Each event e of thread Ei is associated with an ordinate c(e).
The ordinates are defined inductively as follows:

• c(⊥Ei
) = 0.

• c(e) = c(pred(e)) + 1 if e 6= ⊥Ei
.

The order of Ei is mapped onto the order ≤ between the integers c(e). We denote
by Ei the resulting total order ({c(e) | e ∈ |Ei|},≤). This mapping is clearly an
isomorphism of total orders. The geometrization of E , denoted by E , is defined
as the product of partial orders

∏
i=1,...,N Ei, and is isomorphic to E . Every state

ε = (ε1, . . . , εN) ∈ E is sent to a point ε = (c(e1), . . . , c(eN)) in ZN . The set
of forbidden states F is mapped onto F . The forbidden states have an intuitive
geometric interpretation. To explain this, we need some additional notation.

Geometrically speaking, in RN , the geometrization E forms a non-uniform N -
dimensional grid G over the bounding box B = [0, c(>1)]× . . .× [0, c(>N)] ⊂ RN .
A point ε = (c(ε1), . . . , c(εN)) ∈ RN is called a grid point. Given a box
B = [l1, u1] × . . . × [lN , uN], its associated right-open box is defined as B′ =
{x | ∀i ∈ {1, . . . , N} : li ≤ xi < ui} where xi is the ith coordinate of the point
x. For every ε ∈ F , let box(ε) be the elementary box whose bottom left vertex
is ε. An elementary box is a box such that all its vertices are grid points and,
additionally, its interior does not contain any grid points. Then, the associated
right-open box of box(ε) is called the elementary forbidden box associated

116

with ε, denoted by obox(ε). The union of all such boxes PF =
⋃

ε∈F obox(ε) is
called the forbidden region (whose closure is indeed a non-convex polyhedron
with axis-parallel faces). Geometrically, schedules are trajectories that do not
touch the front boundary of the forbidden boxes. We can prove that a feasible
schedule never enters the forbidden region. Similarly, the allowed region is
defined as PA = B \ PF .

8

7

6

5

0

1

⊥B

Pb

>B

Vb

Va

Pa

0

⊥A

1 2

Pa Pb

4

Vb

9
Va >A

11

(4, 4) (9, 4)

(9, 10)

(9, 9)

(2, 0)(1, 0)

(11, 10)

(11, 11)

(11, 12)

Figure 5.1: The PV diagrams of the Swiss flag program: untimed (left) and timed
(right) versions.

The PV diagram of the Swiss flag program is shown in Figure 5.1 (left). The
intuitive meaning of the diagram is that a schedule for the program is represented
by a sequence of arrows from (⊥A,⊥B) to (>A,>B). Indeed, any possible schedule
is a particular order of resource actions of threads A and B. A schedule is shown
in the figure, drawn in solid arrows. All the other arrows, drawn in dotted lines,
are those that a schedule could follow. The black circles indicate the forbidden
states. For example, point (2, 1) is forbidden because its associated combination
of actions (Pb, Pb) means that both threads A and B access resource b at the same
time, which is not possible since the serving capacity of b is 1. The small black
squares in the figure mark the forbidden boxes. The “Swiss flag” name of the
example comes from the cross form of the union of these forbidden squares. An
advantage of such diagrams is that they allow to visualize special behaviors of
a program. In this example it is easy to see two special cases: point (1, 1) is a
deadlock and point (3, 3) is unreachable.

5.4 Timed PV programs and diagrams

We now introduce our timed version of PV programs and diagrams. This version
differs from the existing versions of timed PV programs and diagrams [61, 47],

117

which is discussed in Section 5.9, where we also explain the motivation of this
new version.

5.4.1 Timed PV programs

Task duration

Our version of timed PV programs is an enrichment of the classic PV program
model with a task duration between every two consecutive events of each thread.
Indeed, in practical real-time programming, one can estimate the duration of
the execution of the program code between two events. The estimation is usually
done to account for the worst cases; such a duration is thus a worst-case execution
time (WCET). So we associate with each event of a thread the duration (or the
WCET) of the task corresponding to the part of the program code which is run
between the occurrences of this event and of its direct successor. When event
e ∈ Ei occurs, we say that thread Ei starts task e. The task durations are defined
by a function d : E → R+, and for each thread Ei, d(>Ei

) = 0.

As an example, the following is a timed version of the Swiss flag program:

A = ⊥A.1.Pa.1.Pb.2.Vb.5.Va.2.>A,

B = ⊥B.1.Pb.4.Pa.1.Va.1.Vb.1.>B

The numbers between the actions are the task durations. For example, the first
number 1 in thread A is the duration of the task which is executed between its
beginning and its first action Pa.

Timed execution

The notion of strings, introduced in the untimed context, does not capture time
information. To this end, we introduce a notion of timed states and timed execu-
tions. A timed state is a pair µ = (ε, t) where ε ∈ E and t is a non-negative real
number. Given a timed state µ = (ε, t), it is called forbidden if ε is a forbidden
state. The meaning of (ε, t) is that at time point t the latest event on thread
Ei is εi. A sequence of timed states γ = µ1, . . . ,µm = (ε1, t1), . . . , (εm, tm) is
called a timed execution. A timed execution is feasible iff none of its states is
forbidden. In addition, a timed execution is said to be consistent iff the event
order and time constraints of all the threads are respected. This is formalized as
follows.

Definition 10. A timed execution γ = µ1, . . . ,µm = (ε1, t1), . . . , (εm, tm)
is consistent iff the following conditions are satisfied for each thread Ei, i ∈
{1, . . . , N}:

118

1. The sequence ε1
i , . . . , ε

m
i is a string.

2. For each j ∈ {2, . . . ,m − 1} such that εj
i 6= εj−1

i , let j′ be the smallest

index strictly greater than j such that εj′

i 6= εj
i . If such j′ exists, then

tj
′ − tj ≥ d(εj

i).

The duration of γ is defined by d(γ) = tm − t1. A feasible consistent timed

execution γ = µ1, . . . ,µm = (ε1, t1), . . . , (εm, tm) with ε1 = ⊥ and εm = > is
called a timed schedule.

The first condition guarantees that the required task order (or event order) of
each thread is respected. The second condition guarantees that the task duration
constraints are satisfied. It can be interpreted as follows: each time lapse between
two (different) consecutive events should be larger than the corresponding task
duration (specified in the timed PV program). The above definition implies the
time progress property of consistent timed executions since the sequence t1, . . . , tm

is strictly increasing.

5.4.2 Geometrization

For a timed PV program we could define a geometrization as in the untimed case,
since the involved orders are the same. However, it is more convenient to have
a diagram where one can visualize durations. We use the same notation “ ” for
the mapping from a timed PV program to a diagram. Each thread Ei is mapped
onto a subset of R, by specifying for each event e ∈ Ei an ordinate c(e). Note
that now we map program executions to trajectories in a subset of RN , instead
of ZN as in the untimed case, in order to exploit continuous geometric properties
of the diagram, as we shall see in Section 5.8. More concretely, we define a
geometrization where the diagram is scaled according to the task durations. The
ordinates are inductively defined to visually reflect the task durations as follows:{

c(⊥Ei
) = 0,

c(e) = c(predEi
(e)) + d(predEi

(e)) if e 6= ⊥Ei
.

For tasks with zero duration, a fixed length α > 0 is chosen. When the program
does not have any zero duration tasks, such a geometrization is called exact

scaling geometrization. The order of Ei is thus mapped to the order ≤ be-
tween the real numbers c(e), and Ei is the resulting total order ({c(e) | e ∈
|Ei|},≤). Again, this mapping is an isomorphism of total orders. The ge-
ometrization of E is defined as the product of partial orders E =

∏
i=1,...,N Ei

and is isomorphic to E .

119

Mapping States and Strings

The set F of forbidden states is mapped to the set F of forbidden points. A
geometrization of the timed version of the Swiss flag program is shown in Figure
5.1 (right), where the black circles indicate the forbidden states, and the white
circles indicate the allowed states. A string s is mapped to a sequence s of
grid points in the bounding box B. In view of exploiting continuous geometric
properties, we also define the continuous geometrization of an arc 〈ε, ε′〉 as the
directed line segment from vertex ε to vertex ε′ and denote it by 〈ε, ε′〉. The
reason for this choice is that there is a relation, which we shall show later, between
the feasible strings and the corresponding line segments.

3D example: the timed dining philosophers

To illustrate, we describe a timed version of the 3 philosophers problem. The
philosophers need their left and right forks to eat. Each forks is modeled by a
resource with serving capacity 1. We call these resources a, b, and c: the left
fork of philosopher A is a, its right fork is b, and so on (and the right fork of C is
a). We add a resource with serving capacity 2 (which we call room) to model the
access to a small thinking room which can contain no more than 2 philosophers at
a time. Each philosopher thinks in the thinking room, then walks to the eating
room and eats. Non-zero task durations are given for thinking, walking, and
eating. The program is the following:

A = 0. P room .5. V room .4. P a .0. P b .15. V a .0. V b .0
B = 0. P room .14. V room .6. P b .0. P c .5. V b .0. V c .0
C = 0. P room .9. V room .9. P c .0. P a .2. V c .0. V a .0

A geometrization of the program is shown in Figure 5.2 (left), where the points
corresponding to the ⊥ and > are marked with little white cubes. We also show,
in Figure 5.2 (right), the geometry of a more complex version where, in addition,
the three philosophers share a single anti-stress; and the philosophers B and C

share a single ashtray.

5.4.3 Duration of strings

Note that a string corresponds to a uncountable number of timed executions; we
define the duration of a string as the duration of the shortest timed executions
corresponding to the string. These timed executions indeed correspond to the
case where all the tasks take their WCET as effective duration, so this duration
is the worst-case response time WCRT of the string. Formally, the duration
of a string s, denoted by d(s), is computed by the following algorithm, whose
goal is to find “what time is at >s at least” when time is 0 at ⊥s and the

120

Figure 5.2: The three philosophers: (left) simple version; (right) enriched version

string is executed from ⊥s to >s. The algorithm uses N local clocks, one
for each thread, and one global clock. Let H denote the global clock, and
h the array (of size N) of the local clocks: h[i] is the local clock of thread
Ei. The algorithm also uses the notion of new events: for a string s and a state
ε ∈ s\{⊥s}, the set of new events, denoted by news(ε), that occur at ε is defined
as {εi (i = 1, . . . , N) | (preds(ε))i 6= εi}. First, all clocks, global and local, are
initialized to 0. Then we iterate over the sequence of states of s, beginning from
the state just after ⊥s and ending at >s.

Algorithm 8 Determining the duration of string s.

For all i = 1, 2, . . . , N do h[i] := 0
H := 0
for each ε ∈ s, beginning from the state just after ⊥s and ending at >s do

/* Step (1): Update the global clock according to new events */
For all i s.t. εi ∈ news(ε) do H := max(H, h[i] + d(εi))

/* Step (2): Update the local clocks of the threads that have a new event. */
/* This syncronizes these local clocks. */
For all i s.t. εi ∈ news(ε) do h[i] := H

end for

In Step (1) of the algorithm, if thread Ei has a new event at ε, then d(εi)
time units have elapsed since time h[i], so the global time now must be at least
h[i] + d(εi). The “max” function is needed because it is possible that h[i] + d(εi)
is not greater than the last H recorded (see the example that follows).

Example The algorithm is illustrated with the schedule shown in Figure 5.1
(right). The vector-like annotations that accompany the trajectory indicate the

121

values of the local clocks during the execution of the algorithm. (The value of
the global clock is always the maximum of the values of the local clocks.) We
explain what happens at some particular states. The states are denoted by their
coordinates in the diagram. At state (4, 1) a new event happens to thread A and
to thread B. Thread A updates the global clock to 4 in step (1) of the algorithm,
and thread B does not update the global clock since 0 + 1 < 4. The global clock
H is now 4, and both local clocks are updated to 4. That is, the schedule specifies
that action Pb of thread B must not happen before action Vb of thread A, so since
A runs for 4 time units before executing Vb, B cannot execute Pb before that time
point. So B has a lapse of 4 time units for executing its task of duration 1. It
means that if it finishes this task before t = 4 (for example if it begins the task
at t = 0), it must wait for 3 time units until A releases resource b.

The final value of the global clock, 12, defines the WCRT of this schedule. Note
that if at a state, a new event happens to a thread, but the duration of the task
before this event is zero, then there is no change to be made to the clock of this
thread.

5.5 Threads sharing a limited number of avail-

able processors

We have defined the WCRT of a schedule assuming that the threads run con-
currently. But what does the WCRT of the schedule become when there are
only M < N available processors? This is the problem we tackle in the present
section. The problem of mapping N threads (or processes) onto M processors
has already been treated in [35], but in the untimed context. We are now in the
timed context and our goal is to find short schedules. We can distinguish two
approaches:

1. First compute an efficient schedule with the method shown in Section 5.7
above; and then compute a good mapping of this schedule onto the M pro-
cessors. The inconvenient of this method is that the best abstract schedules
do not necessarily perform well when M processors are shared, while some
schedules which are inefficient with N processors might perform well under
the constraint of M < N processors.

2. Take this processor constraint into account when computing a short sched-
ule. The advantage of this approach is that it is more precise. The inconve-
nient is that adding this constraint may lead to a state explosion problem.
In this section we examine this solution, because it gives some geometric
intuition about the mapping, and in addition, for many practical cases the
computational complexity is reasonable.

122

Processor Resource The idea is to use a resource with serving capacity M to
model the fact that M processors are shared between the threads. This modelling
assumes that the threads have no preference on which processor to run on, which
is reasonable in the case of an homogeneous architecture—all the processors are
identical. The advantage of using a resource is a drastic combinatorial simplifi-
cation: from the point of view of scheduling, we are only interested in knowing
which Q ≤ M (among the N) threads are running. So we do not need to tell
which processor each of these Q threads is running on. The distribution onto the
processors can be done after determining the schedule.

The essential idea of the solution is that the programmer indicates in his pro-
gram the releasing and re-accessing of the processor resource, which corresponds
to a proposition of preemption: the thread gives other threads a chance to take
the processor. Of course if the schedule which is eventually chosen does not
use this preemption opportunity, then in the implementation of the schedule the
thread does not need to preempt itself. The mechanism is illustrated with the
philosophers program of Section 5.4.2. Suppose that the programmer decides that
a philosopher makes a proposition of preemption just before entering the think-
ing room. We denote by p the resource for the processors. The corresponding
modified program of philosopher A is shown in Figure 5.3(a) (the modification is
similar for philosophers B and C), and the geometry of the new program is shown
in Figure 5.3(b). The accesses to p creates big boxes, and the propositions of

A = 0. Pp .

0. P room .5. V room .4.

Vp .0. Pp .0.

P a .0. P b .15. V a .0. V b .0

. Vp .0

B = ...

C = ...

(a) (b)

Figure 5.3: The three philosophers problem with two processors

premption create some “canyons” (of width α, which is equal to 1 in this exam-
ple) between these boxes. A trajectory must go through these canyons and avoid
the parts of the previous forbidden regions that still emerge from the new boxes
(here the bars from the forks). Notice that the forbidden box for room is now
included in the bottom left p-forbidden box (and is thus invisible). Indeed, the
room resource served to forbid concurrent access to the room by more than two
philosophers, which is no longer necessary since only two processors are available.

123

Since each philosopher accesses 2 times a processor (through a lock of p), we get
23 = 8 corresponding forbidden regions. Computationally it means that a thread
should not propose preemption too often. On the other hand, finding the opti-
mal schedule for all possible preemptions would imply proposing a preemption
between each event of the original program (which can be done automatically).
But this would induce an exponential number of forbidden regions for the pro-
cessor resource. On the other hand, this geometric approach can give new ideas
for optimizing the control of programs that run on a limited number of proces-
sors. For example, in the above example the geometry indicates that if the given
preemption is implemented, then the implementation can dispense with the room
resource.

5.6 Scheduling problem and abstraction of timed

executions

5.6.1 Scheduling problem

With the definition of the duration of a string in Section 5.4.3, we can now
formally state our scheduling problem as computing a timed schedule with the
shortest duration, which we simply call a shortest or optimal schedule. To this
end, we define an abstractions of timed schedules. We defer a discussion on related
models and problems, in particular timed automata and job-shop scheduling, to
Section 5.9.

We observe that if we are looking for a shortest schedule, enumerating all possi-
ble schedules is not feasible in general. Indeed, the combinatorial explosion comes
not only from the number of possible states, but also from the total number of
possible schedules from bottom to top. If we include the forbidden schedules
(which can pass through some forbidden states) to simplify computations, we get
the following numbers: for the timed Swiss flag example, 6 × 6 = 36 states and
1683 possible schedules; for the timed philosophers example, 8 × 8 × 8 = 512
states and 75494983297 possible schedules; for the enriched version of the timed
philosophers, 16× 18× 26 = 7488 states and more than 5× 1030 possible sched-
ules.2 Given this complexity problem, we propose to exploit the geometry of the
diagrams to construct an abstraction of shortest schedules. Before continuing,
we remark that due to the growing complexity of embedded systems, finding an
optimal schedule often requires prohibitive computation time, and hence a prob-
lem of great interest is to compute good or short schedules (that is, those close
to the optimal ones) in a reasonable time. This is indeed our practical goal, and
therefore although the theoretical results in the chapter addressed the optimality

2—5589092438965486974774900743393, to be precise.

124

criterion, we also proposed a practical non-exhaustive method to achieve a good
trade-off between computation time and optimality.

5.6.2 Discrete abstraction of timed executions

In our timed PV program model, a string can be thought of as a discrete abstrac-
tion of timed executions. Recall that the duration of a string is the duration
of a shortest (concrete) consistent timed execution corresponding to the string.
In other words, it is the duration of such a timed execution where all the resource
actions are taken as soon as possible. The algorithm described in Section 5.4.3
to determine the duration of a string can be seen as a constructive definition of
this notion.

Eager Strings We are now interested in strings with no unnecessary wait,
which are called eager strings. A thread waits out of necessity when its next
resource is unavailable. In Figure 5.1 (right), an example of a non-necessary wait
is a schedule that would go, for example, through points (4, 0) and (9, 0) before
going to (9, 1), which means that thread B waits until thread A releases resource
a before accessing resource b while resource b is already available. Notice that a
shortest schedule is necessarily eager; the other direction is however not true in
general; in Figure 5.1 (right), a string from ⊥ to > that would go above the cross
could be eager, but not optimal. Indeed, since thread A has to wait for resources
a and b to be unlocked by thread B, a shortest string that goes above the cross
has duration 5 + 1 + 9 = 15 time units.

The notion of bows that we introduce in the following is indeed a way to
abstract eager strings. The main idea is to see whether it is possible to make a
‘big’ step instead of small steps in a string.

Bows: abstractions of wait-rree strings Intuitively, a bow is an arc 〈ε, ε′〉
from A such that the longest side of the box in the geometrization whose bottom
left and top right corners correspond to ε and ε′ is equal to the duration of the
shortest strings from ε to ε′.

Definition 11. Given any arc 〈ε, ε′〉 from A, the stringing of 〈ε, ε′〉, which we
denote by 〈ε, ε′〉↘, is the set of all the strings from ε to ε′ that have the smallest
duration.

This set is not empty, since ε 4 ε′ implies that there is a sequence of small
steps from ε to ε′ in A. We call the tightened length of an arc 〈ε, ε′〉 from A,
the duration of any element of 〈ε, ε′〉↘. We extend notation d to sets of strings
that have the same duration, and we denote the tightened length of 〈ε′, ε〉 by
d(〈ε′, ε〉↘). This measure will be compared to the following distance.

125

Definition 12. The max-distance between two states ε, ε′ ∈ E with ε 4 ε′ is
defined as: ‖〈ε, ε′〉‖ = maxi=1,...,N(σ(εi) − σ(ε′i)), where for any thread Ei and
event e ∈ Ei: σ(e) =

∑
⊥Ei

@e′ve d(e).

Note that σ(e) 6= c(e) in general; c(e) is the ordinate of e for the geometrization,
while σ(e) is the “true ordinate” of e in term of the sum of the durations of the
tasks: the difference comes from the tasks that have a duration equal to zero,
and for which α > 0 is applied in the geometrization. Now we can define the
abstractions of wait-free-strings.

Definition 13. An arc 〈ε, ε′〉 from A where ε ≺ ε′ is a bow if d(〈ε, ε′〉↘) =
‖〈ε, ε′〉‖.

Geometrically speaking, the max-distance ‖〈ε, ε′〉‖ is the longest side of the
box whose bottom left and top right vertices are ε and ε′. It is easy to see
that one cannot expect to obtain a string from ε and ε′ with duration shorter
than ‖〈ε, ε′〉‖ since it is exactly the time needed to execute the longest thread
without waiting (i.e. without interruption). On the other hand, if there is at least
one string from ε and ε′ with duration equal to ‖〈ε, ε′〉‖, then the arc 〈ε, ε′〉 is
called a bow. As an example, in Figure 5.1 (right), the arc 〈(9, 0), (11, 6)〉 is a
bow. Indeed, its max distance is 6, and the shortest feasible string from (9, 0)
to (11, 6) goes directly along the arrow. More formally, this means letting the
threads A and B start the resource actions Va and ⊥B, and letting them run
continuously until the thread B releases the resource a by the action Pa. This is
possible because to execute this string, no common resources need to be used by
both the threads. We note that there is an idle period on the thread A because
the time needed to finish the task between Va and >A is 2 but the time needed
for the thread B to finish the task between ⊥B and Va is 6.

As another example, the arc 〈(0, 1), (9, 8)〉 is not a bow. Indeed, the latter has
the max-distance ‖〈(0, 1), (9, 8)〉‖ = 9, while its tightened length is 13 since a
shortest string (0, 1), (1, 6), (2, 7), (9, 8) exchanges resource b at point (1, 6), and
thread A has to wait until this exchange for at least 4 time units.

Remark 1. Given a feasible string s consisting of two consecutive small steps
〈ε, ε′〉 and 〈ε′, ε′′〉, let d(s) denote the duration of s. Then, d(s) ≤ ‖〈ε, ε′〉‖ +
‖〈ε′, ε′′〉‖.

The above remark can be explained with a simple program that has 2 concurrent
threads. We first determine the smallest time δ needed to follow the first small
step 〈ε, ε′〉 = 〈(ε1, ε2), (ε

′
1, ε

′
2)〉. If εi 6= ε′i, we know that at least [c(ε′i) − c(εi)]

time units have passed on thread Ei. Suppose that ε1 = ε′1 and ε2 6= ε′2. Since
no new event has occurred on E1, the lower bound of the time lapse on E1 is 0,
and thus the global time lapse δ = [c(ε′2) − c(ε2)]. We proceed with the second
small step 〈ε′, ε′′〉 and consider the following two cases:

126

• Case 1: No new event has occurred on E1, the lower bound of the time
lapse on thread E1 is still 0, and the smallest time needed to follow these
two consecutive steps is [c(ε′′2)− c(ε′2)] + [c(ε′2)− c(ε2)].

• Case 2: A new event occurred on E1, which allows us to know that the lower
bound of the time lapse on thread E1 is [c(ε′′1) − c(ε′1)]. If again ε′′2 6= ε′2,
combining the lower bounds of the time lapses on both threads, the smallest
time lapse of these two consecutive steps is max{[c(ε′′1) − c(ε′1)], [c(ε

′′
2) −

c(ε′2)] + [c(ε′2) − c(ε2)]}. By definition, this is exactly the duration of the
string s. We can see that d(s) ≤ maxi{c(ε′i)−c(εi)}+maxi{c(ε′′i)−c(ε′i)} =
‖〈ε, ε′〉‖+ ‖〈ε′, ε′′〉‖.

The intuition behind this is that only when an event e occurs on a thread we can
determine a lower bound of the time lapse on this thread since the occurrence
of the previous event. This lower bound imposes a constraint on the global time
at event e. When a new event simultaneously occurs on two or more threads,
the global time is determined by combining the constraints imposed by all these
threads, and we say that in this situation these threads ‘synchronize’. Hence, the
way of describing the time constraints of each thread on a separate dimension
in a timed PV program can be thought of as de-synchronizing them, and the
threads need to be re-synchronized only when their interaction affects the global
behavior.

Critical Potential Exchange Points We define critical potential exchange
points, the only points where an eager string can wait. A potential exchange

point is an element ε ∈ A where a resource can be exchanged: there exist at
least one resource r ∈ < and two indices i, j such that εi = Vr and εj = Pr. We
use the term “potential” because in order to be a real exchange point, it must be
the element of a string s with εi, εj ∈ news(ε).

Definition 14. A potential exchange point which has accessing(r, ε) = limit(r)
for some resource r is called a critical potential exchange point (“CPEP”
for short).

In the Swiss flag example of Figure 5.1 (right), CPEPs are indicated by circled
addition symbols. We sometimes call these states ‘exchange states’ for short.
It is possible to characterize these states geometrically. We can prove that their
geometrizations are indeed the boundary points belonging to at least one positive
face of the forbidden polyhedron. Note that every face of the forbidden polyhe-
dron is parallel to one of the axes, and a face is called positive if its normal vector
points to the positive direction of the axis.

127

5.6.3 The abstraction graph

We are now ready to define our abstraction of all the eager strings (and hence
also of all the shortest schedules). It is the graph having CPEPs, plus ⊥ and
>, has nodes and bows as arrows. We call it the abstraction graph. We
denote by C the union of all CPEPs with {⊥,>}. The abstraction graph is the
weighted graph defined as the binary relation G ⊆ C × C which is characterized
by: εG ε′ ⇐⇒ 〈ε, ε′〉 is a bow; and each arc (ε, ε′) of G has weight (or cost)
‖〈ε, ε′〉‖.

For ε, ε′ ∈ C with ε 4 ε′, we denote by 〈̂ε, ε′〉 the set of the shortest paths in
G from ε to ε′. The length (or the cost) of a path in the graph G is the sum of

the weights of its edges. By abuse of notation, we denote by l(〈̂ε′, ε〉) the length

(or the cost) of any of the paths in 〈̂⊥,>〉. Graph G has an important property:

Theorem 12. The duration of a shortest schedule from ⊥ to > is the length of

a shortest path in G from ⊥ to >: d(〈⊥,>〉↘) = l(〈̂⊥,>〉).

Proof. The proof is long so we only sketch it here. The full proof can be found
in the technical report [57].

• The abstraction of an eager string s with ⊥s,>s ∈ C, which we denote
by s↗, is defined as the path in G which is constituted of all the CPEPs
contained in s. (Since s is eager, bows exist between the CPEPs.)

• Let 〈ε, ε′〉 ∈ A, with ε, ε′ ∈ C. We prove that there exists a string s ∈
〈ε, ε′〉↘ which is such that l(s↗) = d(s). (The proof is by induction on
the number of CPEPs in s↗.)

• We then prove that for such a string, s↗ is among the shortest paths in G
from ε to ε′.

• Take a ρ in 〈⊥,>〉↘, such that l(ρ↗) = d(ρ) (which is possible by the first
above result). By the second above result, ρ↗ is among the shortest paths
from ⊥ to >.

Thus d(〈⊥,>〉↘) = d(ρ) = l(ρ↗) = l(〈̂⊥,>〉).

The intuitive meaning of the theorem can be explained as follows. It shows
a special property of the shortest paths of G: if π is a shortest path, then the
length (or the cost) of π is the duration of a shortest schedule, and π is an
abstraction of this schedule. The problem of searching for a shortest schedule is
thus reformulated as that of finding a shortest path in the graph G. To construct
the abstraction graph, it suffices to consider the critical exchange states. The

128

existence of a bow between two such states indicates that there exists an eager
feasible string or ‘direct route’ between these two states.

Note that the number of CPEPs is much smaller than the number of states in
E ; hence the shortest paths in G from ⊥ to > are easier to compute. However,
this abstraction is useful only if one can efficiently determine whether an arc is a
bow. Checking the condition given in Definition 13 could be complicated since it
requires computing the tightened length d(〈ε, ε′〉), which is not trivial if one wants
to avoid enumerating all feasible strings connecting ε to ε′. In the following, we
propose two methods to do so. The first method uses a spatial decomposition of
the allowed region into boxes. Essentially, if a box does not contain any forbidden
points, then any arc whose geometrization is inside the box is a bow. The second
method exploits a property of the geometrization, which we explain in Section 5.8.
This property allows us to quickly find long bows (i.e. long direct routes), using
path planning techniques, and thus to speed up the search for a short schedule.
The following section discusses the first method.

5.7 Scheduling using a spatial decomposition

The construction of graph G has two parts: 1) find the CPEPs; 2) find the bows
between these points. Then a shortest path in graph G from ⊥ to > is computed.
We remark that this approach automatically finds a deadlock-free path. Indeed,
if a path in G leads to a deadlock point, no bow goes from it; and a shortest path
from ⊥ to > is, above all, a path from ⊥ to >, and hence contains no deadlock.

The method presented here uses the geometry of the model for the construction.
It is worth emphasizing that this method does not depend on the coordinates c(e),
in the sense that it can be used for the function c defined in the untimed, because
we use the structure of the geometry of the forbidden boxes and not the distances
in the embedding. The distances become important in the second method where
an exact scaling geometrization is required, as we shall show later.

Notice that is it possible, after finding a satisfying path from ⊥ to >, to actually
construct a concrete (eager) string corresponding to this path. The construction
operates bow by bow: for each bow 〈ε, ε′〉 construct a wait-free string abstracted
by it. For this, start from ε and follow an adjacent small step to an ε′′ which
increases the least the duration, among those that have not ε′′i A ε′i for some i,
and iterate until ε′ is reached.

Computing the Critical Potential Exchange Points

The CPEPs are points on the boundary the forbidden regions. In dimension
2, they are the bottom-right and top-left points of the forbidden regions. In

129

dimension 3, they are all points on some edges of the boundary. In Figure 5.1
(right), the CPEPs are indicated with the circled addition symbols.

We compute the forbidden regions from the timed PV program and use the
geometric characterization of the CPEPs, described in the previous section, to
identify them.

Computing the bows of the abstraction graph

A simple method to determine whether an arc 〈ε, ε′〉 is a bow is to determine the
tightened length of the arc by enumerating all the strings from ε to ε′ and check
the condition of Definition 13. However, this method is clearly very expensive,
and to remedy this we will exploit some properties of the geometrization. We
propose a method to find arcs that are necessarily bows, using a decomposition
of forbidden-point-free regions. Using this approach we may not find a shortest
schedule but we can find a good schedule.

Definition 15. A decomposition of an orthogonal polyhedron P is a set DP =
{B1, . . . , Bk} where each Bi (i ∈ {1, . . . , k}) is a full-dimensional box such that
the following conditions are satisfied:

1. For all i ∈ {1, . . . , k} the vertices of Bi are grid points.

2. P =
⋃

i∈{1,...,k}Bi.

3. For all i, j ∈ {1, . . . , k}, i 6= j, the boxes Bi and Bj are non-overlapping,
that is their interiors do not intersect with each other.

Note that the vertices of the boxes in a decomposition are not necessarily
CPEPs. If all the vertices of a box are grid points then it is called a grid box.
Additionally, if a grid box does not contain any other grid boxes, then it is called
elementary box. We distinguish two types of decompositions: given a decomposi-
tion DP = {B1, . . . , Bk}, DP is called elementary if all Bi are elementary boxes;
DP is called compact if there exists no pair of Bi and Bj with i 6= j such that
Bi∪Bj is a grid box. Intuitively, in a elementary decomposition none of its boxes
can be split into smaller grid boxes, and in a compact decomposition no pair of
its boxes forms a grid box. Note that there exists a unique elementary decom-
position of a given orthogonal polyhedron, however there may be many different
compact decompositions.

We use decompositions to construct the abstraction graph G. Let DPA
be a

decomposition of the allowed polyhedron PA. We first recall the observation we
use to reduce the complexity of the search for bows: a line segment connecting
two vertices of a box Bi ∈ DPA

corresponds to a bow. It is however clear that
even when DPA

is the elementary decomposition, the set of all such edges does

130

not allow to cover all possible bows since two vertices of two different boxes might
also form a bow. However, if our goal is to find a path with the shortest duration
it is not necessary to construct the whole graph G but we need to include all the
CPEPs and bows that form such a path. It can be proved that there exists a
decomposition such that the vertices of its boxes are enough to discover a shortest
path. We call such a decomposition an effective decomposition, and it is of great
interest to find such a decomposition, which is our ongoing work.

The essential idea of our current method for computing a compact decompo-
sition of orthogonal polyhedra is as follows. From a given starting box we try
to merge it with other elementary boxes, along one or more axes, so as to max-
imize the volume of the resulting box. To do so, we make use of the efficient
algorithms for Boolean operations and membership testing developed based on a
compact and canonical representation of such polyhedra (see [27]). In some cases
the criterion of maximizing the volume of merged boxes may not be the best one
with respect to including a shortest path in the graph. Alternative criteria are
merging as many as possible boxes along a fixed axis. Intuitively, a shortest path
tends to approach the diagonal between the bottom left and top right corners of
the box B while avoiding the forbidden regions; hence, we can combine different
merging criteria depending on the relative position to the forbidden regions.

Experimental results

We demonstrate in this section the effectiveness of the method. We implemented
the above described method in a prototype tool. To compute the forbidden
regions we use a program written in the language Maude [34]. The execution
time for this computation is negligible. The program for the decomposition into
allowed boxes, the construction of the abstraction graph from them, and the
computation of a shortest path from ⊥ to > in the graph is written in C++. The
decomposition is rather fast, and most of the execution time for this program is
spent in the construction of the graph from the allowed boxes, due to the number
of vertices we use, as we explain in the following. We present in Figure 5.4 some
experiments with this program.

We first tested with a set of the philosophers problem, in various dimensions. In
one example, there are N forks, one per philosopher, and a thinking room which
can take only N − 1 philosophers. Then, we take the same example, but with a
small thinking room (“s.th.-r”) which can contain only bN/2c philosophers. We
also tested the method with the enriched version of the philosophers problem
(“enr. phil.”), whose geometry is shown in Figure 5.2 (right). Program “enr.
phil. 4D” is when a fourth philosopher is added alongside the three philosophers
of the latter program. Program “more enr. phil.” is when still more actions are
added to the threads of “enr. phil.”. We also experimented with the program of

131

program dim #states #forbid #allowed #nodes #edges t (sec.)
3 phil. 3 512 4 35 151 773 0.58
4 phil. 4 4096 5 107 743 7369 17.38
5 phil. 5 32768 6 323 3632 67932 571.12
6 phil. 6 262144 7 971 na na na
3 phil. s.th.-r. 3 512 6 59 227 1271 1.50
4 phil. s.th.-r. 4 4096 8 199 1147 13141 60.24
5 phil. s.th.-r. 5 32768 15 1092 na na na
6 phil. s.th.-r. 6 262144 21 3600 na na na
enr. phil. 3 7488 26 390 1468 7942 51.01
enr. phil. 4D 4 119808 44 5447 na na na
more enr. phil. 3 29568 137 1165 4616 30184 461.18
3 phil. 2 procs 3 1728 12 78 352 2358 2.56

Figure 5.4: Results on some timed philosophers examples.

Section 5.5 (“3 phil. 2 procs”), whose geometry is shown in Figure 5.3. In the
table, “na” stands for “not available” – the computation was not finishing in less
than 10 minutes. We used a PC with a 2.40 GHz Xeon processor, 1 Go of memory
and 2 Go of swap. One can observe that the number of allowed boxes is very
reasonable compared with the number of states. The number of nodes reflects the
fact that in our current prototype we add in the graph some of the vertices of the
allowed boxes which are not CPEPs, to compensate for the fact that we do not
currently include inter-allowed-box bows: thus we can find paths whose length
approximate (conservatively) the weight of inter-box bows. The advantage of this
approach is that any decomposition can serve to find a relatively good schedule;
its inconvenient is that the number of considered vertices for a box is of order 2N ,
so that the number of threads is the main obstacle in our current implementation.

In the case of the enriched 3 philosophers program of Section 5.4.2 (whose
image is shown in Figure 5.2 (left)) the durations of the threads are 24, 25 and 20
respectively and the found schedule has duration 39, which is good. In the case of
the enriched version of Figure 5.2 (right), the threads have respective durations
83, 94, and 95, and the found schedule has duration 160, which is also good in
view of the many forbidden regions which bar the direct way.

5.8 Scheduling using a continuous geometric prop-

erty

In this section we describe the second method to compute the abstraction graph
and short schedules. This method is based on a property of the exact scal-

132

ing geometrization. It is important to note that, unlike the first method using
decomposition, this method is applicable only for the programs which do not
involve any zero-duration tasks. However, as the experimental results indicate,
this method is more time efficient than the first method.

5.8.1 Continuous geometric property

The following theorem states an important property of bows in relation with the
Euclidean intersection in the exact scaling geometrization. This property enables
us to efficiently determine whether an arc is a bow.

Theorem 13. Let 〈ε, ε′〉 be an arc from A. If 〈ε, ε′〉 ∩ PF = ∅ where PF is the
forbidden region, then 〈ε, ε′〉 is a bow.

As mentioned earlier, the tightened length d(〈ε′, ε〉) cannot be smaller than
‖〈ε, ε′〉‖. This means that to prove the theorem, it suffices to find a concrete
feasible string from ε to ε′ whose duration is exactly ‖〈ε, ε′〉‖. By definition
of the duration of a string, this also means finding a feasible timed execution
with the required duration. The idea of the proof is to construct such a timed
execution that we call a witness timed execution. This is done by a clipping
procedure explained in the following.

5.8.2 Constructing a witness timed execution

Clipping Let {xj}1≤j≤m be the sequence of all intersecting points of the di-

rected line segment 〈ε, ε′〉 with the grid planes. A grid plane is a hyper-plane
which is parallel to one of the axes and contains at least one grid point. We
denote this by {xj}1≤j≤m = clipG(〈ε, ε′〉) and call this sequence the clipping of

〈ε, ε′〉 on the grid G.

An example of clipping is shown in Figure 5.5 where x1,x2, . . . ,x7 is a se-
quence of intersecting points. We derive a timed execution from this clipping
by mapping each intersecting point to a timed state. Note the time value of a
timed state is the absolute time lapse from the beginning of the execution, and
in order to determine this absolute time lapse one needs to consider the time
lapses relative to the occurrence of the events. This is captured by the notion of
relatively-timed events.

Relatively-timed Events We first remark that a grid point can be directly
mapped back to a state in E ; however, an intersecting point in the clipping is not
necessarily a grid point. Note that a state in E corresponds to the moment where
all the threads take a resource action. An intersecting point which is not a grid

133

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� �� �
� �� �

B

x1 = ε

x7 = ε′

e1 ⊕ βe1

x2

x6

b(xj ,xj+1)

Figure 5.5: Geometric realization

point indeed corresponds to a situation where not all the threads simultaneously
perform a resource action.

Given e ∈ Ei and a real number β ∈ [0, d(e)) where d(e) is the duration of task
e, e ⊕ β denotes the relatively-timed event at which at least β time units have
elapsed since the occurrence of the event e (or since task e is started); β is called
the relative time lapse of e⊕β. Intuitively, regarding thread Ei, e⊕β is a fictious
event because its occurrence is not associated with any resource actions by Ei;
however, as we shall see later, it is used to indicate a time point at which at least
one or more other threads perform a resource action. Then, the set of relatively-
timed events of thread Ei is: Υi = {e⊕β | e ∈ |Ei| ∧ β ∈ [0, d(e))} where |Ei| is
the set of events of Ei. For each relatively-timed event ρ = e⊕ β ∈ Υi, event(ρ)
gives the associated event e.

We associate with each relatively-timed event e ⊕ β an ordinate c(e ⊕ β) =
c(e)+β. Hence, an event e ∈ Ei can be indeed written as a relatively-timed event
of the form e⊕0. The definition of order on the relatively-timed events in Υi can
be defined as: e vΥi

e′ iff c(e) ≤ c(e′).

Remark 2. With respect to a thread, the difference between the relative time
lapse β of a relatively-timed event e ⊕ β and the time component t of a timed
state (ε, t) (defined in Section ??) is that the latter is an absolute time (i.e. the
time lapse from the beginning of the execution), while the former is a relative
time (i.e. the time lapse from the occurrence of the last event, which is e).

Relatively-timed states A vector of relatively-timed events υ = (υ1, . . . ,υN)
where υi ∈ Υi is called a relatively-timed state. We denote events(υ) =

134

(event(υ1), . . . , event(υN)). The order 4 on relatively-timed states is defined
componentwise, namely υ 4 υ′ iff ∀i ∈ {1, . . . , N} : υi vΥi

υ′
i, or equivalently

∀i ∈ {1, . . . , N} : c(υi) ≤ c(υ′
i).

Let us explain the intuitive meaning of relatively-timed states. At relatively-
timed state υ = (ε1 ⊕ β1, . . . , εN ⊕ βN), if the relative time lapse βi = 0, then
thread Ei is performing the action associated with event(υi); if βi > 0, thread
Ei is performing no resource action and, in addition, at least βi time units have
elapsed since the occurrence of εi. By “performing no resource action” we mean
that the thread does not take or release a resource, but it might continue the
current task if this task is not yet finished.

Given two relatively-timed states υ,υ′ ∈ Υ such that υ 4 υ′, then 〈υ,υ′〉 is
called a small timed step if events(υ) = events(υ′) or 〈events(υ), events(υ′)〉
is a small step. In other words, υ and υ′ may have the same associated events
but differ in the relative time lapse vector.

Definition 16. If 〈υ,υ′〉 is a small timed step, the time lapse between υ and υ′

is defined as: ∆(υ,υ′) = maxi∈{1,...,N}{c(υ′
i)− c(υi)}.

The meaning of a small timed step 〈υ,υ′〉 is that following the arc 〈υ,υ′〉
involves letting each thread Ei start the task υi and run for exactly ∆(υ,υ′)
time. If there exists a thread Ei such that c(υ′

i)− c(υi) < ∆(υ,υ′), we say that
when taking the small step 〈υ,υ′〉 the thread Ei ‘has to wait’ because the time
lapse required for the thread Ei to reach event(υ′

i) from event(υi) is smaller than
∆(υ,υ′).

Mapping points to relatively-timed states Given a real number y ∈ [0, c(>i)],
let e be the event in thread Ei and e′ is its direct successor such that c(e) ≤ y and
c(e′) > y. Such an ordinate c(e) is denoted by byc. Then, we define Ni(y) = e⊕β
where β = y − byc.

As an example, in Figure 5.5, the first coordinate of the point x2 is mapped to
Ni(x

2
1) = e1 ⊕ β.

Definition 17. 1. Given a point x = (x1, . . . , xN) ∈ B, the map N of points
to relatively-timed states is defined as: N(x) = (N1(x1), . . . ,NN(xN)).

2. Given a sequence of points {xj}1≤j≤m, N({xj}1≤j≤m) = {υj}1≤j≤m where
υj = N(xj) for all j.

Witness timed execution construction Using the map N, from the clipping
clipG(〈ε, ε′〉) = {xj}1≤j≤m we construct the following sequence of relatively-
timed states: φ = υ1, . . . ,υm = N(x1), . . . ,N(xm). It is not hard to see that

135

each arc 〈υi,υi+1〉 is a small timed step and event(υ1), . . . , event(υm) is a string.
Then, from φ we construct a timed execution as follows:

γ = (event(υ1), t1), . . . , (event(υm), tm) (5.3)

such that t1 = 0 and for j > 1 : tj =
∑

k=2,...,j ∆(υk−1,υk). It is easy to verify
that the timed execution γ is consistent.

To summarize, the construction of a witness timed execution for a bow 〈ε, ε′〉
consists of three steps. In the first step, the clipping of the geometrization 〈ε, ε′〉
gives a sequence of intersecting points, each of which corresponds to a moment
where at least one thread performs a resource action. In the second step, the in-
tersecting points are mapped to a sequence of relatively-timed states that specify
the time lapses necessary to evolve from one state to another in this sequence.
These time lapses indeed represent the local time constraints of each thread. In
the last step, we combine all the local time constraints to derive the global time
constraints in the timed execution γ.

5.8.3 Proof of Theorem 13

To prove that γ is a witness timed execution, we need to prove that: γ is feasible
and its duration is indeed ‖〈ε, ε′〉‖.

We begin by proving the first part, that is, γ does not induce any resource
conflicts. Due to space limitation, we present only the main idea of the proof: if
a point x is non-forbidden, then the state events(N(x)) is non-forbidden (see [38]
for a detailed proof). The intuitive meaning of this is that with respect to resource
usage, a relatively-timed event e ⊕ β ∈ Υi with β ∈ (0, d(e)) is equivalent to
e ∈ Ei, since during the time interval between the occurrences of e⊕ 0 and e⊕ β
no resources have been taken or released by thread Ei.

We proceed to prove that the duration of γ is ‖〈ε, ε′〉‖. The following inter-
mediate result is a direct consequence of the definition of the duration of a timed
execution.

Lemma 13. The duration of the timed execution defined in (5.3) is

d(γ) = tm − t1 =
∑

1≤j≤m−1

∆(υj,υj+1).

Geometrically speaking, Definition 16 implies that ∆(υj,υj+1) is equal to the
length of the longest side of the box that has xj as its bottom left vertex and xj+1

136

as its top right vertex, denoted by b(xj,xj+1) (see Figure 5.5 for an example).
Let k be the dimension corresponding to the longest side of the box b(x1,xm).
Note that this box has 〈ε, ε′〉 as diagonal. It is easy to see that k is also the
dimension corresponding to the longest side of each box b(xj,xj+1). Combining
this with Lemma 13, we have

d(γ) =
∑

1≤j<m

∆(υj,υj+1)

=
∑

1≤j<m

c(υj+1
k)− c(υj

k)

= c(υm
k)− c(υ1

k) = c(ε′k)− c(εk) = ‖〈ε, ε′〉‖

The proof of Theorem 13 is now complete.

Remark 3. The proof of the theorem also provides a method for concretizing
strings. Hence, after finding a shortest path in the abstraction graph, one can use
the construction in the proof to define a concrete shortest timed schedule.

Intersection test Before continuing we briefly discuss how we implemented
the intersection test. In [57] the forbidden region PF is represented as a non-
convex orthogonal polyhedron [27]. This representation has the advantage of
being compact since one needs to keep only one polyhedron. However, due to its
complexity (depending on the number of vertices and faces that is exponential
in dimension), the test of intersection between a line segment and PF may be
expensive in high dimensions. We therefore represent the forbidden region as
a list of the forbidden boxes (each box corresponds to the constraints involving
the limited number of accesses to a resource). Then, we test the intersection
between the line segment with each box separately using an extension of ray
tracing techniques to general dimensions. Since a box can be represented by 2N
linear constraints, the complexity of this test is polynomial in dimension N .

5.8.4 Finding a good schedule via path planning

Randomized Search

Using the bow condition in Theorem 13, we can construct the abstraction graph
and then search for a shortest path of the graph. The main problem with this
approach is that the number of critical exchange states, which is much smaller
than the number of all the states, still grows exponentially with the dimension.
We thus propose a non-exhautive solution that uses a randomized search, inspired

137

by the RRT (Rapidly Explored Random Tree), which is one of the successful
path planning methods in robotics (see [81] for a survey on the RRT method).
Indeed, in the geometrization framework, given two points corresponding to two
critical exchange states, by Theorem 13, if the line segment connecting these
two points does not intersect with the forbidden region, then a feasible schedule
with no unnecessary wait between two states exists (and we can compute it).
The problem of constructing the abstraction graph is thus similar to a path
planning problem, namely computing a collision-free path between a start point
and a goal point in an environment with known obstacles. The constraints on
the solution path in the path planning problem arise from the geometry of the
obstacles and in our scheduling problem from the geometry of the forbidden
region. While the RRT approach, to construct the paths, considers all the points
in the obstable-free space, using Theorem 12 only the critical exchange states
need to be considered. In addition, the paths we are interested in should satisfy
the time progress condition; therefore, the resulting path planning problem is
indeed a simple motion planning problem3 where the robot’s motion is governed
by the constant derivative dynamics of a clock. This dynamics is easily handled
by considering the arcs (which by definition satisfy the time progress condition).
In general, the path and motion planning problems are hard, for example the
problem of finding a shortest path in 3 dimensions is known to be NP-hard [86].
It is however important to note the simplicity of the obstacles in our problem:
they are in fact axis-aligned boxes. Additionally, since our practical goal is to
quickly find a good schedule, the good coverage properties of the RRT approach
allows achieving a good trade-off between the computation time and the quality
of the results.

The method we propose is summarized in Algorithm 9. Essentially, we random-
ize the selection of the critical exchange states. In order to avoid enumerating
all such states, the randomized selection is done as follows. Let BF be the set
of all forbidden boxes, hence the forbidden region can be written as PF =

⋃
BF .

We first randomly choose a box in BF and then randomly choose a vertex of BF .
The procedure is repeated until the sampled vertex is a critical exchange state.
The test of critical exchange states is done using the geometric charaterization
of these points, mentioned in the previous section.

When a new critical exchange point xg is selected, we call it a (current) goal
point. We then find the the graph a nearest neighbor xn in the max-distance such
that xg and xn is an arc (due to the time progress condition). The computation
of the function feasibleBest is as follows. It checks whether the line segment
from xn to xg intersects with the forbidden region. If this intersection is empty,
x = xg and a new edge from xn to xg is added in the graph, otherwise it tries
to grow the graph from xn towards the goal point xg as far as possible, which

3In a path planning problem, the dynamics of robots are not considered.

138

Algorithm 9 Randomized search

C = {⊥,>}, k = 0
repeat
box = random(BF)
xg = random(Vertices(box))
if (xg 6∈ C ∧ xg is a critical exchange point) then
xn = Neighbor(G, xg)
x = feasibleBest(xn, xg)
if (x 6= xn) then

newEdge(G, xn, x)
end if
k + +

end if
π = ShortestPath(G,⊥,>)

until (k = Kmax)

results in x 6= xg. When the number of nodes reaches Kmax which is a user-
defined parameter, the algorithm searches for a shortest path in the graph and
stops if there is no request to proceed by the user.

An important ingredient of Algorithm 9 is the search for a nearest neighbor
in the graph G. To do so, we additionally store the coordinates of points in a
kd-tree [52] while the bows are still stored as the edges of the graph G. Due to
the use of the max-distance, the operations on the kd-tree we construct is slightly
different than those on classic kd-trees. Nonetheless, due to space limitation we
do not describe these computations, which can be found in [38]. When running
the above algorithm, the graph grows towards the end point >; it is also possible
to simultaneously grow the graph towards both > and ⊥.

In addition, we can prove that when every goal point has a strictly positive
probability of being sampled, then the probability that the algorithm discovers
a given schedule is always strictly positive. This property is called ‘complete
resolution’ in the context of RRTs (see for example [30]). Moreover, it is possible
to biase the exploration using the intuitions provided by the geometrization.
Indeed, the max-distance and the Euclidian distance are closely related with
respect to the definition of duration. For example, a schedule that is close in the
Euclidian distance to the diagonal of the bounding box (i.e. connecting ⊥ and >)
is likely to be a short schedule. Therefore, one can use the Euclidian distance as a
measure to define a non-uniform sampling of the goal points. More precisely, we
can define a heuristics which favors the sampling of the critical exchange states
that are close to the diagonal of the bounding box in the Euclidian distance.

139

Experimental results

We have implemented the above algorithm for randomized search together with
a possibility of biased explorations. The experimental results obtained using the
prototype tool on a number of examples are shown in the tables of Figure 5.7 and
Figure 5.8. We also include in Figure 5.6 an illustrative picture of the forbidden
region and the computed schedule (in white line) of a 3-dimensional example. The
first set of examples contains a number of timed versions of the Dining Philoso-
phers problem in various dimensions, which we call the timed N -philosophers
problems. The second set contains some well-known job-shop scheduling (JSS)
benchmarks. The durations of the schedules obtained using our prototype tool are
shown in the column “Duration” of the tables. The goal of this experimentation
is to evaluate the scalability and the precision of our geometric approach.

Figure 5.6: Schedule for a 3D example

Since there are variants of job-shop problems, we first briefly describe the
problems we solved. In these problems, each job is a sequence of operations,
one on a machine, and the serving capacity of each machine is 1. Indeed, the
machines can be modeled by resources and the jobs by threads. Note that
the constraints in job-shop scheduling are rather specific. When a machine is
needed by two different jobs Ei and Ej, their simultaneous access to this ma-
chine corresponds to the following forbidden box: [c(⊥1), c(>1)]×[c(εi), c(εi+1)]×
[c(εj), c(εj+1)] . . . [c(⊥N), c(>N)] where εi and εj are the events of taking the re-
source in question by thread Ei and thread Ej, and εi+1 and εj+1 are the events
of releasing this resource. This box covers the whole range of the bounding box
on the dimensions of all other threads Ek with k 6= i and k 6= j. On the other
hand, the JSS problems are by definition deadlock-free. Note that a general timed
PV program allows nested resource actions and thus are richer than these JSS
models. However, to test the performance of our approach, we did not try to
exploit this particularity and treated the job-shop scheduling problems as if they

140

program Dim #forb. boxes Duration CPU time (s)
20 phil. 20 20 100 64
50 phil. 50 50 304 248
80 phil. 80 80 490 625
100 phil. 100 100 608 921

Figure 5.7: Computation results for some timed N -philosophers problems

were problems with more complex types of constraints.

Concerning the timed N -philosophers problems, we do not know their optima,
but the computed solutions are clearly non-trivial and appear good in compar-
ison with the worst-case upper bound estimation. On the JSS problems, this
method found fairly good schedules in reasonable CPU time. On some of these
JSS problems the optima were found. In operation research, there exist numerous
methods in operation research specific for JSS (see for example [89]) and recently
verification techniques for timed automata were also used to solve the JSS prob-
lems. These timed automata based methods employ sophisticated search-order
strategies, such as branch-and-bound or using estimates of remaining costs [20, 2].
Our experimental results on JSS problems are not as good as the results obtained
by these methods, but they are still reasonably comparable.

In summary, we observe that this method is efficient for quickly finding a rea-
sonable solution of large problems. On the other hand, the number of forbidden
boxes is a leading factor for complexity (since it not only determines the number
of critical exchange states but also the number of intersection tests to perform).
In a JJS problem with M machines and J jobs, the number of forbidden boxes is
equal to 1

2
MJ(J + 1) and thus grows quadraticaly with the number of jobs (i.e.

the dimension). Therefore, this method is suitable for the problems which could
be in high dimension but with a reasonable number of forbidden boxes.

5.9 Related works

Timed PV diagrams We now discuss the relationship between our model and
some other versions of timed PV diagrams.

• The work [47], which presents a timed version of PV programs and dia-
grams, attempts to model multiple clocks, as in timed automata [10]. In
the approach of [47], time is modeled as an additional dimension – one per
clock. Thus, in the case of one clock and three threads, a 4-dimensional
space is studied. In this chapter we consider each thread dimension as as a
“local time dimension” and define the synchronization of these local times.

141

Prog #j, #m #forb. Duration Known CPU time
boxes optimum (s)

ft06 6, 6 90 56 55 66
ft10 10, 10 450 992 930 318
abz6 10, 5 225 1142 943 851
la01 10, 5 225 666 666 646
la05 10, 5 225 596 593 87
la16 10, 10 450 1047 945 247
la19 10, 10 450 1050 842 42
la20 10, 10 450 989 902 125
la24 15, 10 450 1048 935 269
abz9 20, 15 2850 820 679 310

Figure 5.8: Results for some JSS problems

• The work [61] exploits the dimension of each process as a time dimension.
In this aspect, this work is close to ours. However there are important
differences. First, the definitions in [61] are given in a continuous setting,
and therefore topological spaces are considered, such that the duration of
a schedule is described with an integral. In our work, it is possible to stay
in the discrete domain, and the definition of the duration of a schedule is
given by an algorithm on a discrete structure. Also, due to the fact that
the definitions in [61] are tied to geometry implies, zero delays between two
consecutive actions in a process (such as, two successive locks, which often
happens in programs that share resources) are not possible since the two
actions cannot be distinguished in the geometry. Note that our method
using decomposition can handle zero delays. This is of particular interest if
one considers that the practical delay, on most architectures, between two
consecutive locks, is too small to be modeled as a non-zero value.

Timed automata A large class of real-time systems can be adequately mod-
eled with timed automata [10], and the problem of scheduling using timed au-
tomata has been studied in a number of publications [12, 1, 77, 20, 6, 73, 93, 2]
and more general optimality criteria (other than execution time) are also consid-
ered in some of these work (for example [12, 77, 20]). It is easy to see that timed
automata are more expressive than timed PV programs since the former allow
to describe more complex synchronization mechanisms. In addition, a timed PV
program can be directly rewritten as a product of timed automata. Each au-
tomaton corresponds to a thread and its locations represent the events in our
model. Its transitions representing the time constraints have the guards of the
form x > d(e) (where x is a clock variable) and clock resets. Thus, using timed
automata, one could address the scheduling problem for more complex real-time

142

systems.

Naturally, the geometry resulting from the time constraints in timed automata
is more complex than that in timed PV programs. Indeed, in a timed automa-
ton each time constraint is represented by a half-space that could have a slope
following the derivatives of the clocks, while in a timed PV program, the half-
spaces are all axis-parallel. As mentioned earlier, the reason for this is that in a
timed PV program each thread is described separately on one dimension, which
can be thought of as a way of ‘desynchronizing’ them, and then when analyzing
the global behavior, the ‘synchronization’ of local time constraints is handled by
using the max-distance. Hence, the geometrization of the product of the threads
is, on one hand, very easy to construct, and on the other hand provides a lot
of useful insight. The computation is performed on boxes, a geometric object
simpler than zones in timed automata. Moreover, the geometry of a PV diagram
permits modular combination of its discrete properties (such as to identify special
points that contribute to the optimal schedules) and continuous properties (such
as to test feasibility of some long direct paths). However, it should be noted that
for special cases, such as JSS, one can derive efficient heuristics without manip-
ulating zones (see for example [2]). Finally, we remark that from a semantics
point of view, the idea of ‘desynchronizing’ the threads in our approach is close
to the local semantics for networks of timed automata given in [23]. In this work,
this semantics is used to address the problem of checking reachability properties
using partial order reduction techniques.

5.10 Conclusion and future work

To summarize, we defined a timed version of PV programs and diagrams which
can be used to model a large class of multithreaded programs sharing resources.
We also introduced the notion of the worst-case response time of a schedule of
such programs. This framework was then used to find efficient schedules for
multithreaded programs.

In particular, to tackle the complexity problem, we define an abstraction of
the shortest schedules and we show how to exploit the geometry of PV diagrams
to construct this abstraction and compute efficient schedules. This work demon-
strates an interesting interplay between discrete and continuous properties of
concurrent real-time programs. Indeed our framework is based on a combination
of techniques from different domains: concurrent processes, geometric models,
and motion planning. The originality of our work is the way to exploit discrete
and continuous properties of the model in order to transform the scheduling
problem to a set of subproblems: graph search, computational geometry and
path planning, for which well-developed techniques are available. The paper also
shows the computational advantages of PV programs. In fact, their geometry

143

is simple enough to benefit from efficient geometric computations on boxes. An
experimental implementation allowed us to validate the scheduling methods we
proposed and provided encouraging results. We intend to continue this work in
various directions. One direction is to extend the model towards more complex
specifications, such as those with deadlines and branching. Our future work will
explore the following directions.

• When developing a real-time system one is often interested in the worst-
case response time of the whole program, if it is part of a larger system, for
any schedule. As a definition, this WCRT could be given as the duration
of the eager schedule that has the longest duration. We conjecture that we
could use abstraction graph G for computing the longest eager schedule by
computing the longest path in a subgraph of G. Defining this subgraph is
a topic of our future research.

• We are currently investigating the problem of adding deadlines in our
model. This extension is not straightforward since the “symmetry” with
the lower bounds to durations of tasks (the WCET) is not trivial. We also
intend to examine the possibility of lifting to the timed case the existing
studies on the geometry of loops [49] or branching in PV programs.

• Another direction is to focus on problems with particular geometry (such
as the JSS problems). Indeed, it is possible to include optimization that
exploits the special structure of the forbidden boxes in these problems.
Studying properties of other geometrizations including non-exact-scaling
ones is also an interesting theoretical problem to address.

144

Bibliography

[1] Y. Abdeddaim and O. Maler. Job-shop scheduling using timed automata.
In Proc. of the 13th Int. Conf. on Computer Aided Verification (CAV 2001),
LNCS 2102, pages 478–492. Springer, 2001.

[2] Yasmina Abdeddaim, Eugene Asarin, and Oded Maler. Scheduling with
timed automata. Theor. Comput. Sci., 354(2):272–300, 2006.

[3] V. Acary, O. Bonnefon, and P. Denoyelle. Automatic circuit equation
formulation for nonsmooth electrical circuits. Technical report, BIPOP-
INRIA, ANR VAL-AMS Report, Jan 2008.

[4] V. Acary and F. Pérignon. Siconos: A software platform for modeling, simu-
lation, analysis and control of non smooth dynamical system. In Proceedings
of MATHMOD 2006, 5th Vienna Symposium on Mathematical Modelling,
Vienna, 2006. ARGESIM Verlag, Vienna, 2006 ISBN 3-901608-30-3.

[5] Thierry Jéron Ahmed Khoumsi and Hervé Marchand. Test cases generation
for nondeterministic real-time systems. In Formal Approaches to Software
Testing, 2004.

[6] K. Altisen, G. Gossler, and J. Sifakis. Scheduler modelling based on the
controller synthesis paradigm. Journal of Real-Time Systems, Special issue
on control-theoretical approaches to real-time computing, 23:55–84, 2002.

[7] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic anal-
ysis of hybrid systems. Theoretical Computer Science, 138(1):3–34, 1995.

[8] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivan, C. Kumar, I. Lee, P. Mishra,
G. Pappas, and O. Sokolsky. Hierarchical modeling and analysis of embed-
ded systems, 2002.

[9] R. Alur, T. Dang, and F. Ivancic. Reachability analysis via predicate ab-
straction. In M. Greenstreet and C. Tomlin, editors, Hybrid Systems: Com-
putation and Control, LNCS 2289. Springer-Verlag, 2002.

145

[10] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[11] R. Alur, T.A. Henzinger, G. Lafferriere, and G. Pappas. Discrete abstrac-
tions of hybrid systems. Proc. of the IEEE, 2000.

[12] R. Alur, S. La Torre, and G. Pappas. Optimal paths in weighted timed au-
tomata. In Proc. of Fourth Int. Workshop on Hybrid Systems: Computation
and Control, LNCS 2034, pages 49–62, 2001.

[13] E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate reachability
analysis of piecewise-linear dynamical systems. In B. Krogh and N. Lynch,
editors, Hybrid Systems: Computation and Control, LNCS 1790, pages 20–
31. Springer-Verlag, 2000.

[14] E. Asarin and T. Dang. Abstraction by projection. In R. Alur and G. Pap-
pas, editors, Hybrid Systems: Computation and Control, LNCS 2993, pages
32–47. Springer-Verlag, 2004.

[15] E. Asarin, T. Dang, and A. Girard. Reachability analysis of nonlinear
systems using conservative approximation. In Oded Maler and Amir Pnueli,
editors, Hybrid Systems: Computation and Control, LNCS 2623, pages 20–
35. Springer-Verlag, 2003.

[16] E. Asarin, T. Dang, and A. Girard. Hybridization methods for the analysis
of nonlinear systems. Acta Informatica., 43(7):451–476, 2007.

[17] E. Asarin, T. Dang, and O. Maler. The d/dt tool for verification of hy-
brid systems. In Computer Aided Verification, LNCS 2404, pages 365–370.
Springer-Verlag, 2002.

[18] P. M. Aziz, H. V. Sorensen, and J. van der Spiegel. An overview of sigma-
delta converters. Signal Processing Magazine, IEEE, 13(1):61–84, 1996.

[19] J. Beck and W. W. L. Chen. Irregularities of distribution. In Acta Arith-
metica, UK, 1997. Cambridge University Press.

[20] G. Behrmann and A. Fehnker. Efficient guiding towards cost-optimality
in UPPAAL. In Proceedings of the 7th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, LNCS 2031,
Springer, 2001.

[21] C. Belta, L. C. G. J. M. Habets, and V. Kumar. Control of multi-affine
systems on rectangles with an application to gene transcription control. In
Proceedings of CDC, 2003.

146

[22] C. Belta, J. Schug, T. Dang, V. Kumar, G.J. Pappas, H. Rubin, and P. Dun-
lap. Stability and reachability analysis of a hybrid model of luminescence
in the marine bacterium vibrio fisheri. In Proceedings of CDC, 2001.

[23] Johan Bengtsson, Bengt Jonsson, Johan Lilius, and Wang Yi. Partial order
reductions for timed systems. In International Conference on Concurrency
Theory, pages 485–500, 1998.

[24] Saddek Bensalem, Marius Bozga, Moez Krichen, and Stavros Tripakis.
Testing conformance of real-time applications by automatic generation of
observers. Electr. Notes Theor. Comput. Sci., 113:23–43, 2005.

[25] A. Bhatia and E. Frazzoli. Incremental search methods for reachability
analysis of continuous and hybrid systems. In HSCC, pages 142–156, 2004.

[26] O. Botchkarev and S. Tripakis. Verification of hybrid systems with linear
differential inclusions using ellipsoidal approximations. In B. Krogh and
N. Lynch, editors, Hybrid Systems: Computation and Control, LNCS 1790,
pages 73–88. Springer-Verlag, 2000.

[27] O. Bournez, O. Maler, and A. Pnueli. Orthogonal polyhedra: Represen-
tation and computation. In Proc. of Hybrid Systems: Computation and
Control (HSCC’99), LNCS 1569, pages 46–60. Springer, March 1999.

[28] S. Boyd and S. Vandenberghe. Convex optimization. Cambridge University
Press, 2004.

[29] M. Branicky, M. Curtiss, J. Levine, and S. Morgan. Sampling-based reach-
ability algorithms for control and verification of complex systems. In Thir-
teenth Yale Workshop on Adaptive and Learning Systems, 2005.

[30] P. Cheng and S. M. LaValle. Resolution complete rapidly-exploring random
trees. In In Proc. IEEE Int’l Conference on Robotics and Automation, pages
267–272, 2002.

[31] A. Chutinan and B.H. Krogh. Verification of polyhedral invariant hybrid
automata using polygonal flow pipe approximations. In F. Vaandrager
and J. van Schuppen, editors, Hybrid Systems: Computation and Control,
LNCS 1569, pages 76–90. Springer-Verlag, 1999.

[32] Edmund M. Clarke, Ansgar Fehnker, Zhi Han, Bruce H. Krogh, Joël
Ouaknine, Olaf Stursberg, and Michael Theobald. Abstraction and
counterexample-guided refinement in model checking of hybrid systems.
Int. J. Found. Comput. Sci., 14(4):583–604, 2003.

147

[33] F. Clauss and I.Yu. Chupaeva. Application of symbolic approach to the
bernstein expansion for program analysis and optimization. Program. Com-
put. Softw., 30(3):164–172, 2004.

[34] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. Talcott. Maude 2.0 Manual. SRI International, 2003.

[35] R. Cridlig and E. Goubault. Semantics and analysis of Linda-based lan-
guages. In Proc. of WSA’93, LNCS 724. Springer, 1993.

[36] T. Dang. Approximate reachability computation for polynomial systems.
In HSCC, pages 138–152, 2006.

[37] T. Dang, A. Donze, and O. Maler. Verification of analog and mixed-signal
circuits using hybrid systems techniques. In Alan J. Hu and Andrew K.
Martin, editors, FMCAD’04 - Formal Methods for Computer Aided Design,
LNCS 3312, pages 21–36. Springer-Verlag, 2004.

[38] T. Dang and Ph. Gerner. On scheduling using pv programs. Technical
report, Verimag, IMAG, April 2006.

[39] T. Dang and O. Maler. Reachability analysis via face lifting. In T.A. Hen-
zinger and S. Sastry, editors, Hybrid Systems: Computation and Control,
LNCS 1386, pages 96–109. Springer-Verlag, 1998.

[40] T. Dang and T. Nahhal. Model-based testing of hybrid systems. Technical
report, Verimag, IMAG, Nov 2007.

[41] T. Dang and D. Salinas. Computing set images of polynomias. Technical
report, VERIMAG, June 2008.

[42] Thao Dang and Tarik Nahhal. Coverage-guided test generation for continu-
ous and hybrid systems. Formal Methods in System Design, 34(2):183–213,
2009.

[43] E. W. Dijkstra. Co-operating sequential processes. In F. Genuys, editor,
Programming Languages, pages 43–110. Academic Press, New York, 1968.

[44] David Dobkin and David Eppstein. Computing the discrepancy. In SCG
’93: Proceedings of the ninth annual symposium on Computational geome-
try, pages 47–52, New York, NY, USA, 1993. ACM Press.

[45] C. Lubich E. Hairer and M. Roche. The numerical solution of differential-
algebraic systems by runge kutta methods. In Lecture Notes in Mathematics
1409. Springer-Verlag, 1989.

148

[46] J. Esposito, J. W. Kim, and V. Kumar. Adaptive RRTs for validating
hybrid robotic control systems. In Proceedings Workshop on Algorithmic
Foundations of Robotics, Zeist, The Netherlands, July 2004.

[47] U. Fahrenberg. The geometry of timed PV programs. In Electronic Notes
in Theoretical Computer Science, volume 81. Elsevier, 2003.

[48] L. Fajstrup, E. Goubault, and M. Raussen. Detecting deadlocks in concur-
rent systems. In Proc. CONCUR’98, pages 332–347, 1998.

[49] L. Fajstrup and S. Sokolowski. Infinitely running concurrent processes with
loops from a geometric viewpoint. In Electronic Notes in Theoretical Com-
puter Science, volume 39. Elsevier, 2001.

[50] Henri Faure. Discrepance de suites associees à un système de numeration.,
1978.

[51] I.A. Fotiou, P. Rostalski, P.A. Parrilo, and M. Morari. Parametric optimiza-
tion and optimal control using algebraic geometriy methods. International
Journal of Control, 79(11):1340–1358, 2006.

[52] Volker Gaede and Oliver Günther. Multidimensional access methods. ACM
Computing Surveys, 30(2):170–231, June 1998.

[53] J. Garloff. Application of bernstein expansion to the solution of control
problems. In University of Girona, pages 421–430, 1999.

[54] J. Garloff, C. Jansson, and A.P. Smith. Lower bound functions for polyno-
mials. Journal of Computational and Applied Mathematics, 157:207–225,
2003.

[55] J. Garloff and A.P. Smith. An improved method for the computation
of affine lower bound functions for polynomials. In C. A. Floudas and
P. M. Pardalos, editors, Frontiers in Global Optimization, Series Noncon-
vex Optimization and Its Applications, pages 135–144. Kluwer Academic
Publ.,Boston, Dordrecht, New York, London, 2004.

[56] J. Garloff and A.P. Smith. A comparison of methods for the computation
of affine lower bound functions for polynomials. In C. Jermann, A. Neu-
maier, and D. Sam, editors, Global Optimization and Constraint Satisfac-
tion, LNCS, pages 71–85. Springer, 2005.

[57] P. Gerner and T. Dang. Computing schedules for multithreaded real-time
programs using geometry. In Y. Lakhnech and S. Yovine, editors, Joint In-
ternational Conferences on Formal Modelling and Analysis of Timed Sys-
tems FORMAT and Formal Techniques in Real-Time and Fault-Tolerant
Systems FTRTFT, LNCS 3253, pages 325–342. Springer-Verlag, 2004.

149

[58] A. Girard. Approximate solutions of ODEs using piecewise linear vector
fields. In Proc. CASC’02, 2002.

[59] A. Girard. Reachability of uncertain linear systems using zonotopes. In
Hybrid Systems : Computation and Control, LNCS 3414, pages 291–305.
Springer, 2005.

[60] E. Goubault. Schedulers as abstract interpretations of higher-dimensional
automata. In Proc. of PEPM’95 (La Jolla). ACM Press, June 1995.

[61] E. Goubault. Transitions take time. In Proc. of ESOP’96, LNCS 1058,
pages 173–187. Springer, 1996.

[62] E. Goubault. Geometry and concurrency: A user’s guide. Mathematical
Structures in Computer Science, 10(4), August 2000.

[63] Darius Grabowski, Daniel Platte, Lars Hedrich, and Erich Barke. Time
constrained verification of analog circuits using model-checking algorithms.
Electr. Notes Theor. Comput. Sci., 153(3):37–52, 2006.

[64] M.R. Greenstreet and I. Mitchell. Integrating projections. In T.A. Hen-
zinger and S. Sastry, editors, Hybrid Systems: Computation and Control,
LNCS 1386, pages 159–1740. Springer-Verlag, 1998.

[65] M.R. Greenstreet and I. Mitchell. Reachability analysis using polygonal
projections. In F. Vaandrager and J. van Schuppen, editors, Hybrid Sys-
tems: Computation and Control, LNCS 1569, pages 76–90. Springer-Verlag,
1999.

[66] P. A. V. Hall H. Zhu and J. H. R. May. Software unit test coverage and
adequacy. ACM Computing Surveys (CSUR), 29(4):366–427, December
1997.

[67] F. He, L. F. Yeung, and M. Brown. Discrete-time model representation for
biochemicql pathway systems. IAENG International Journal of Computer
Science, 34(1), 2007.

[68] D. Henrion and J.B. Lasserre. Gloptipoly: Global optimization over poly-
nomials with matlab and sedumi. In Proceedings of the IEEE Conference
on Decision and Control, 2002.

[69] I. T. Jolliffe. Principal Component Analysis. Springer, 2002.

[70] D.W. Jordan and P. Smith. Nonlinear Ordinary Differential Equations.
Oxford Applied Mathematics and Computer Science. Oxford University
Press, 1987.

150

[71] A. Agung Julius, Georgios E. Fainekos, Madhukar Anand, Insup Lee, and
George J. Pappas. Robust test generation and coverage for hybrid systems.
In HSCC, pages 329–342, 2007.

[72] J. Kim, J. Esposito, and V. Kumar. Sampling-based algorithm for testing
and validating robot controllers. Int. J. Rob. Res., 25(12):1257–1272, 2006.

[73] Chr. Kloukinas, Ch. Nakhli, and S. Yovine. A methodology and tool sup-
port for generating scheduled native code for real-time java applications.
In R. Alur and I. Lee, editors, Proc. of the Third Int. Conf. on Embedded
Software (EMSOFT 2003), LNCS 2855, pages 274–289, 2003.

[74] J. Kuffner and S. LaValle. RRT-connect: An efficient approach to single-
query path planning. In Proc. IEEE Int’l Conf. on Robotics and Automation
(ICRA’2000), San Francisco, CA, April 2000.

[75] A. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability anal-
ysis. In B. Krogh and N. Lynch, editors, Hybrid Systems: Computation
and Control, LNCS 1790, pages 202–214. Springer-Verlag, 2000.

[76] M. Kvasnica, P. Grieder, M. Baoti, and M. Morari. Multi-parametric tool-
box (mpt). In Hybrid Systems: Computation and Control, volume LNCS
2993, pages 448–462. Springer, 2004.

[77] K. Larsen, G. Behrmann, E. Brinksma, T. S. Hune A. Fehnker, P. Petter-
son, and J. Romijn. As cheap as possible: Efficient cost-optimal reachability
for priced timed automata. In In Proceedings of CAV, LNSC 2102, pages
493–505. Springer, 2001.

[78] Kim G. Larsen, Marius Mikucionis, and Brian Nielsen. Online testing of
real-time systems using UPPAAL: Status and future work. In E. Brinksma,
W. Grieskamp, J. Tretmans, and E. Weyuker, editors, Perspectives of
Model-Based Testing, volume 04371 of Dagstuhl Seminar Proceedings:,
September 2004.

[79] S. LaValle and J. Kuffner. Rapidly-exploring random trees: Progress and
prospects, 2000. In Workshop on the Algorithmic Foundations of Robotics.

[80] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In-
ternational Journal of Robotics Research, 20(5):378–400, May 2001.

[81] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress
and prospects. In B. R. Donald, K. M. Lynch, and D. Rus, editors, Algo-
rithmic and Computational Robotics: New Directions, pages 293–308, 2001.

151

[82] S.M. LaValle, M.S. Branicky, and S.R. Lindemann. On the relationship
between classical grid search and probabilistic roadmaps. Intl. Journal of
Robotics Research, 23(7-8):673–692, August 2004.

[83] S. R. Lindemann and S. M. LaValle. Incrementally reducing dispersion
by increasing Voronoi bias in RRTs. In Proceedings IEEE International
Conference on Robotics and Automation, 2004.

[84] I. Mitchell and C. Tomlin. Level set method for computation in hybrid
systems. In B. Krogh and N. Lynch, editors, Hybrid Systems: Computation
and Control, LNCS 1790, pages 311–323. Springer-Verlag, 2000.

[85] Ian M. Mitchell and Jeremy A. Templeton. A toolbox of Hamilton-Jacobi
solvers for analysis of nondeterministic continuous and hybrid systems. In
Hybrid Systems: Computation and Control, LNCS. Springer-Verlag, 2005,
to appear.

[86] J. S. B. Mitchell and M Sharir. New results on shortest paths in three
dimensions. In Proc. 20th Annual ACM Symposium on Computational Ge-
ometry, pages 124–133, 2004.

[87] B. Mourrain and J. P. Pavone. Subdivision methods for solving polynomial
equations. Technical report, INRIA Research report, 5658, August 2005.

[88] T. Nahhal and T. Dang. Test coverage for continuous and hybrid systems.
In CAV, pages 454–468, 2007.

[89] Wim Nuijten and Claude Le Pape. Constraint-based job shop scheduling
with Ilog scheduler. J. Heuristics, 3(4):271–286, 1998.

[90] G. Pappas, G. Lafferriere, and S. Yovine. A new class of decidable hybrid
systems. In F. Vaandrager and J. van Schuppen, editors, Hybrid Systems:
Computation and Control, LNCS 1569, pages 29–31. Springer-Verlag, 1999.

[91] E. Plaku, L. Kavraki, and M. Vardi. Hybrid systems: From verification
to falsification. In W. Damm and H. Hermanns, editors, International
Conference on Computer Aided Verification (CAV), volume 4590, pages
468–481. Lecture Notes in Computer Science, Springer-Verlag Heidelberg,
Berlin, Germany, 2007.

[92] Stephen Prajna and Ali Jadbabaie. Safety verification of hybrid systems
using barrier certificates. In Rajeev Alur and George J. Pappas, editors,
Hybrid Systems: Computation and Control, volume 2993 of Lecture Notes
in Computer Science, pages 477–492. Springer, 2004.

152

[93] J. I. Rasmussen, K. G. Larsen, and K. Subramani. Resource-optimal
scheduling using priced timed automata. In Proc. of the 10th Int. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2004), pages 220–235, 2001.

[94] S. Sankaranarayanan, H. Sipma, and Z. Manna. Scalable analysis of linear
systems using mathematical programming. In Verification, Model-Checking
and Abstract-Interpretation (VMCAI 2005), LNCS 3385. Springer, 2005.

[95] Sriram Sankaranarayanan. Mathematical analysis of programs. Technical
report, Standford, 2005. PhD thesis.

[96] H.-P. Seidel. Polar forms and triangular B-spline surfaces. In Blossoming:
The New Polar-Form Approach to Spline Curves and Surfaces, SIGGRAPH
’91 Course Notes 26, ACM SIGGRAPH, pages 8.1–8.52, 1991.

[97] L. Tan, J. Kim, O. Sokolsky, and I. Lee. Model-based testing and moni-
toring for hybrid embedded systems. In proceedings of IEEE Internation
Conference on Information Reuse and Integration (IRI’04), 2004.

[98] I. Tchoupaeva. A symbolic approach to bernstein expansion for program
analysis and optimization. In In 13th International Conference on Compiler
Construction, CC 2004, pages 120–133. Springer, 2004.

[99] Eric Thiémard. An algorithm to compute bounds for the star discrepancy.
J. Complexity, 17(4):850–880, 2001.

[100] A. Tiwari and G. Khanna. Series of abstractions for hybrid automata. In
C. Tomlin and M.R. Greenstreet, editors, Hybrid Systems: Computation
and Control, LNCS 2289, pages 465–478. Springer-Verlag, March 2002.

[101] Ashish Tiwari and Gaurav Khanna. Nonlinear systems: Approximating
reach sets. In Hybrid Systems: Computation and Control, volume 2993 of
Lecture Notes in Computer Science, pages 600–614. Springer, 2004.

[102] C. Tomlin, I. Mitchell, A. Bayen, and M. Oishi. Computational techniques
for the verification of hybrid systems. Proceedings of the IEEE, 91(7):986–
1001, 2003.

[103] Jan Tretmans. A formal approach to conformance testing. In Proceedings of
the IFIP TC6/WG6.1 Sixth International Workshop on Protocol Test sys-
tems VI, pages 257–276, Amsterdam, The Netherlands, The Netherlands,
1994. North-Holland Publishing Co.

[104] Jan Tretmans. Testing concurrent systems: A formal approach. In CON-
CUR ’99: Proceedings of the 10th International Conference on Concurrency
Theory, pages 46–65, London, UK, 1999. Springer-Verlag.

153

[105] S. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review,
38(1):49–95, 1996.

[106] X. Wang and F. Hickernell. Randomized halton sequences, 2000.

[107] A. Yershova, L. Jaillet, T. eon, and S. LaValle. Dynamic-domain rrts:
Efficient exploration by controlling the sampling domain, 2005.

154

