
Form Methods Syst Des (2009) 34: 183–213
DOI 10.1007/s10703-009-0066-0

Coverage-guided test generation for continuous
and hybrid systems

Thao Dang · Tarik Nahhal

Published online: 7 February 2009
© Springer Science+Business Media, LLC 2009

Abstract In this paper, we describe a formal framework for conformance testing of con-
tinuous and hybrid systems, using the international standard ‘Formal Methods in Confor-
mance Testing’ FMCT. We propose a novel test coverage measure for these systems, which
is defined using the star discrepancy notion. This coverage measure is used to quantify the
validation ‘completeness’. It is also used to guide input stimulus generation by identifying
the portions of the system behaviors that are not adequately examined. We then propose a
test generation method, which is based on a robotic motion planning algorithm and is guided
by the coverage measure. This method was implemented in a prototype tool that can handle
high dimensional systems (up to 100 dimensions).

Keywords Hybrid systems · Model-based testing · Conformance testing · Test coverage ·
Test generation

1 Introduction

Hybrid systems have been recognized as a high-level model appropriate for embedded sys-
tems, since this model can describe, within one framework, the logical part and the con-
tinuous part of an embedded system.1 Due to the gap between the capacity of exhaustive
formal verification methods and the complexity of embedded systems in practice, testing is
still the most commonly used validation method in industry. Its success is probably due to
the fact that testing suffers less from the ‘state explosion’ problem. Indeed, the engineer can
choose the “degree of validation” by the number of tests. In addition, this approach can be
applied to the real system itself and not only to its model. Generally, testing of a reactive
system is carried out by controlling the inputs and checking whether its behavior is as ex-
pected. Since it is impossible to enumerate all the admissible external inputs to the hybrid

1The reader is refered to proceedings of the conferences HSCC—Hybrid Systems: Computation and Control
for more information about the recent developments.
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system in question, much effort has been invested in defining and implementing notions of
coverage that guarantee, to some extent, that the finite set of input stimuli against which the
system is tested is sufficient for validating correctness. For discrete systems, specified using
programming languages or hardware design languages, some syntactic coverage measures
can be defined, like exercising every statement or transition, etc. In this work, we treat con-
tinuous and hybrid systems that operate in a metric space (typically R

n) and where there is
not much inspiration coming from the syntax to the coverage issue. In fact, the continuous
dynamics of a hybrid system is succinctly described by a set of differential equations, and
this description, in comparison with program codes, often provides much less intuition about
the system’s behaviors. On the other hand, the metric nature of the state space encourages
more semantic notions of coverage, namely that all system trajectories generated by the in-
put stimulus form a kind of dense network in the reachable state space without too many big
unexplored ‘holes’.

In this work we adopt a model-based testing approach. This approach allows the engineer
to perform validation during the design, where detecting and correcting errors on a model
are less expensive than on an implementation. The main contributions of the paper can be
summarized as follows. We define a formal framework for conformance testing of contin-
uous and hybrid systems, using the international standard for formal conformance testing
FMCT [26]. We propose a test coverage measure for these systems, which is defined us-
ing the star discrepancy notion from statistics. This coverage measure is used to quantify
the validation ‘completeness’. It is also used to guide input stimulus generation by identify-
ing the portions of the system behaviors that are not adequately examined. We propose an
algorithm for generating tests from hybrid automata. This algorithm is based on the RRT
(Rapidly-exploring Random Tree) algorithm [15] from robotic motion planning and guided
by the coverage measure.

The rest of the paper is organized as follows. We first describe our conformance testing
framework and our test coverage measure. We then present the test generation algorithm and
show how to use the coverage measure to guide the test generation process. We also prove
the completeness property of the algorithm. Finally, we describe an implementation of the
algorithm and some experimental results. Before concluding, we discuss related work.

2 Model

Conformance testing provides a means to assess the correctness of an implementation with
respect to a specification by performing experiments on the implementation and observ-
ing its responses. When the specification is described by a formal model, the international
standard ‘Formal Methods in Conformance Testing’ (FMCT) [26] provides a framework of
conformance testing, which includes abstract concepts (such as conformance, test cases, test
execution, test generation), and the requirements on these concepts.

In this work, following the spirit of FMCT, we are interested in developing a conformance
testing framework for continuous and hybrid systems, using the hybrid automaton model [1].
Note that a continuous system can be modeled as a hybrid automaton with only one discrete
state. A hybrid automaton is an automaton augmented with continuous variables that evolve
according to some differential equations.

Definition 1 (Hybrid automaton) A hybrid automaton is a tuple A = (X ,Q,E,F, I, G, R)

where

− X is the continuous state space and is a bounded subset of R
n.
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− Q is a (finite) set of locations (or discrete states).
− E ⊆ Q × Q is a set of discrete transitions.
− F = {Fq | q ∈ Q} such that for each q ∈ Q, Fq = (fq,Uq) defines a differential equation:

ẋ(t) = fq(x(t), u(t))

where u(·) ∈ Uq is an admissible input function of the form u : R
+ → Uq ⊂ R

m. We
assume that all fq are Lipschitz continuous.2 The admissible input functions u(·) are
piecewise continuous.

− I = {Iq ⊆ X | q ∈ Q} is a set of staying conditions.
− G = {Ge | e ∈ E} is a set of guards such that for each discrete transition e = (q, q ′) ∈ E,

Ge ⊆ Iq .
− R = {Re | e ∈ E} is a set of reset maps. For each e = (q, q ′) ∈ E, Re : Ge → 2Iq′ defines

how x may change when A switches from q to q ′.
− The initial state of the automaton is denoted by (qinit, xinit).

All the guard sets Ge and staying sets Iq are assumed to be compact. A hybrid state is a
pair (q, x) where q ∈ Q and x ∈ X . The hybrid state space is S = Q × X . In the rest of the
paper, for brevity, we often use “state” to refer to a hybrid state. In location q , the evolution
of the continuous variables is governed by ẋ(t) = fq(x(t), u(t)).

A state (q, x) of A can change in two ways as follows: (1) by a continuous evolution,
the continuous state x evolves according to the dynamics fq while the location q remains
constant; (2) by a discrete evolution, x satisfies the guard condition of an outgoing transition,
the system changes the location by taking this transition and possibly changing the values of
x according to the associated reset map. More formally, continuous and discrete evolutions
are defined as follows.

Definition 2 (Continuous evolution) Given a real number h > 0 and an admissible input

function u(·) ∈ Uq , (q, x)
u(·),h→ (q, x ′) is a continuous evolution at the location q from the

hybrid state (q, x) to (q, x ′), iff x ′ = ξx,u(·)(h) and for all t ∈ [0, h] : ξx,u(·)(t) ∈ Iq , where
ξx,u(·)(t) is the solution of the differential equation at the location q with the initial condition
x and under the input u(·).

In other words, x ′ is reached from x under the input u(·) after exactly h time, and we say
that u(·) is admissible starting at (q, x) for h time.

Definition 3 (Discrete evolution) Given a transition e = (q, q ′) ∈ E, (q, x)
e→ (q ′, x ′) is a

discrete evolution iff x ∈ Ge and x ′ ∈ Re(x).

We say that (q ′, x ′) is reachable from (q, x) and the discrete transition e is admissible
at (q, x). Unlike continuous evolutions, discrete evolutions are instantaneous, which means
that they do not take time.

It is important to note that this model allows to capture non-determinism in both contin-
uous and discrete dynamics. The non-determinism in continuous dynamics is caused be the

2The function fq is Lipschitz continuous if there exists a constant K such that ∀x, y : ‖fq(x) − fq(y)‖ ≤
K‖x − y‖, where ‖ · ‖ is some norm of R

n. This condition ensures the existence and uniqueness of solutions
of the differential equations.
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uncertainty in the input function. For example, when the input is used to model some exter-
nal disturbances or modelling errors, we do not know the exact input function but only its
range. The non-determinism in discrete dynamics by the fact that at some states it is possible
for the system to stay at the current location or to switch to another one. In addition, multi-
ple transitions can be enabled at some states. This non-determinism is useful for describing
disturbances from the environment and imprecision in modelling and implementation. We
assume that the hybrid automata we consider are non-Zeno.3

3 Conformance testing

In this section, we define the main concepts of our testing framework. Our testing goal is to
make statements about the conformance relation between the behaviors of an implementa-
tion or, more generally, a system under test (SUT) and a specification. The specification is
formal and is modeled by a hybrid automaton. The conformance will be defined as a relation
�⊆ Ξ ×HA where Ξ is a set of SUTs of interest, and HA is a set of hybrid automata mod-
eling the specifications of interest. The systems under test are physical systems, but it can be
assumed that all the SUTs in Ξ can be described by a class of formal models, which is a set
HAs of hybrid automata. It is important to note that we assume that a model for each SUT
in Ξ exists but do not assume that we know it. This assumption enables us to include the
system under test in our formal framework and to express formally the conformance relation
� between the models of the SUTs and the specifications, that is � ⊆ HAs ×HA. Note that
here we use the same notation � for the relation between the real SUT and the specification
and the relation between the model of the SUT and the specification. A system under test
Sut ∈ Ξ is said to conform to a specification A ∈ HA if and only if the model As ∈ HAs of
Sut is related to A by �, that is, As � A.

The system under test often operates within some environment. In our testing framework,
a tester plays the role of the environment and it performs experiments on the SUT in order to
study the conformance relation between the SUT and the specification. Such an experiment
is called a test, and its specification is called a test case. A set of test cases is called a test
suite, and the process of applying a test to a system under test is called a test execution. The
tester works as follows (see Fig. 1). It emits the control inputs to the SUT and measures
the observation sequences in order to produce a verdict ν ∈ {P,F } where P means ‘pass’
(the observed behavior is allowed by the specification), F means ‘fail’ (the observed be-
havior is not allowed by the specification). We continue by giving a detailed description of
conformance relation. The problem of how to perform test executions and derive verdicts is
discussed at the end of this section.

Fig. 1 Test architecture

3A Zeno behavior can be described informally as the system making an infinite number of discrete transitions
in a finite amount of time.
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3.1 Conformance relation

Recall that the specification is modeled by a hybrid automaton A and the system under test
SUT by another hybrid automaton As . For brevity, when the context is clear, we often say
‘the system under test’ to mean the automaton As . To define the conformance relation, we
need the notions of inputs and observations.

3.1.1 Inputs

An input of the system which is controllable by the tester is called a control input; otherwise,
it is called a disturbance input. We consider the following input actions.

Continuous input action All the continuous inputs are assumed to be controllable by the
tester. Since we want to implement the tester as a computer program, we are interested
in piecewise-constant input functions; indeed, a computer cannot generate a function from
reals to reals. Hence, a continuous control action (ūq, h), where ūq is the value of the input
and h is the duration, specifies that the automaton continues with the continuous dynamics at
the location q under the input u(t) = ūq for exactly h time. We say that (ūq , h) is admissible
at (q, x) if the input function u(t) = ūq for all t ∈ [0, h] is admissible starting at (q, x) for
h time.

Discrete input actions The discrete transitions are partitioned into controllable corre-
sponding to discrete control actions and uncontrollable corresponding to discrete distur-
bance actions. The tester emits a discrete control action to specify whether the system should
take a controllable transition (among the enabled ones) or continue with the same continu-
ous dynamics. In the former case, it can also control the values assigned to the continuous
variables by the associated reset map. For simplicity of explanation, we will not consider
non-determinism caused by the reset maps. Hence, we denote a discrete control action by
the corresponding transition, such as (q, q ′).

We use the following assumption about the inputs: continuous control actions are of
higher priority than discrete actions. This means that after a continuous control action (ūq , h)

is applied, no discrete transitions can occur during h time, i.e. until the end of that continuous
control action. This assumption is not restrictive, from a modeling point of view. Indeed, by
considering all the possible values of h we can capture the cases where a discrete transition
can occur before the termination of a continuous control action.

In this work, we are only interested in testing non-blocking behaviors, we thus need the
notion of admissible input sequences. We write (q, x)

ι→ (q ′, x ′) to indicate that (q ′, x ′) is
reached after applying the input action ι to the state (q, x).

Definition 4 (Admissible input sequence) For a state (q, x), a sequence of input actions
ω = ι0, ι1, . . . , ιk is admissible at (q, x) if

− ι0 is admissible at (q, x), and

− for each i = 1, . . . , k, let (qi, xi) be the state such that (qi−1, xi−1)
ιi−1→ (qi, xi), then ιi is

admissible at (qi, xi).

The sequence (q, x), (q1, x1), . . . , (qk, xk) is called the trace starting at (q, x) under ω and
is denoted by τ((q, x),ω). The last state of τ((q, x),ω) is denoted by last(τ ((q, x),ω)).
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We also write (q, x)
ω→ (q ′, x ′) to indicate that (q ′, x ′) is reached from (q, x) after ω.

We also say that (q ′, x ′) is forward reachable from (q, x) and (q, x) is backward reachable
from (q, x). In the rest of the paper, we simply say ‘reachable’ to mean ‘forward reachable’;
‘backward reachable’ is explicitly stated.

By the assumption about the inputs, uncontrollable discrete transitions cannot occur dur-
ing a continuous control action. However, they can occur between control actions. Hence,
the result of applying a control action is non-deterministic. To determine all possible traces
that can be generated by applying a sequence of control actions, we need to define an ad-
missible sequence of control actions.

Given a state (q, x) and a control action c, let σ be a disturbance input sequence such
that c ⊕ σ , where ⊕ is the concatenation operator, is an admissible input sequence at (q, x).
The sequence σ is called a disturbance input sequence admissible after the control action c.
We denote by Λ(c, (q, x)) the set of all such disturbance input sequences.

To know whether a sequence of control actions is admissible, we need to know which
disturbance inputs are admissible after each control action. This means that we need to know
the successors after each control action. We first consider a sequence of two control actions
ωc = c0 c1. After accepting the control action c0 and all the disturbance input sequences
admissible after c0, the set of all possible successors of (q, x) is:

Υ (c0, (q, x)) = {(q ′, x ′) | ∃σ ∈ Λ(c0, (q, x)) : (q, x)
co⊕σ→ (q ′, x ′)}.

It should be noted that if the first c0 is admissible at (q, x) then Υ (c0, (q, x)) is not empty.
We use the same notation Λ for the set of all disturbance input sequences admissible after
the control action sequence ωc = c0 c1:

Λ(ωc, (q, x)) =
⋃

(q ′,x′)∈Υ (c0,(q,x))

Λ(c1, (q
′, x ′)).

Therefore, we can now determine the set of all input sequences that can occur when we
apply the control sequence ωc = c0 c1. We denote this set by Σ(ωc, (q, x)), which can be
defined as follows:

Σ(ωc, (q, x)) = {c0 ⊕ σ0 ⊕ c1 ⊕ σ1 | σ0 ∈ Λ(c0, (q, x))

∧ ∃(q ′, x ′) ∈ Υ (c0, (q, x)) : σ1 ∈ Λ(c1, (q
′, x ′))}.

For a sequence ωc of more than two control actions, the set Σ(ωc, (q, x)) can be defined
similarly.

Definition 5 (Admissible control action sequence) A control action sequence ωc is admissi-
ble starting at (q, x) iff Σ(ωc, (q, x)) is not empty. The set of traces starting at (q, x) after an
admissible control action sequence ωc is Tr((q, x),ωc) = {τ((q, x), σ ) | σ ∈ Σ(ωc, (q, x))}.

Intuitively, this means that an admissible control action sequence, when being applied to
the automaton, does not cause it to be blocked. We denote by SC(A) the set of all admissible
control action sequences for the hybrid automaton A starting at the initial state (qinit, xinit).

3.1.2 Observations

We use the following assumptions about the observability of the hybrid automata A and As :
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− The locations of the hybrid automata A and As are observable.
− We assume a subset Vo(A) and Vo(As) of observable continuous variables of A and As

respectively. In addition, we assume that Vo(A) ⊆ Vo(As), which means that an observ-
able continuous variable of A is also an observable variable of As .

Since not all the continuous variables are observable, we need the following projection op-
erator. The projection of a continuous state x of A on the observable variables Vo(A) is
denoted by π(x,Vo(A)). The projection can be then defined for a trace as follows. The
projection of a trace τ = (q0, x0), (q1, x1), (q2, x2), . . . on Vo(A) is

π(τ,Vo(A)) = (q0,π(x0,Vo(A))), (q1,π(x1,Vo(A))), (q2,π(x2,Vo(A))), . . . .

A pair (q,π(x,Vo(A)), where q is a location and x is the continuous state of the automa-
tion A, is called an observation.

Definition 6 (Observation sequence) Let ω be an admissible control action sequence start-
ing at the initial state (qinit, xinit) of A. The set of observation sequences associated with ω

is SO(A,ω) = {π(τ,Vo(A)) | τ ∈ Tr((qinit, xinit),ω)}.

3.1.3 Conformance relation

In the definition of the conformance relation between a system under test As and a specifi-
cation A, we assume that the set of all admissible control action sequences of A is a subset
of that of As , that is SC(A) ⊆ SC(As). This assumption assures that the system under test
can admit all the control action sequences that are admissible by the specification.

Definition 7 (Conformance) The system under test As is conform to the specification A,
denoted by A � As , iff

∀ω ∈ SC(A) : π(SO(As ,ω),Vo(A)) ⊆ SO(A,ω).

Intuitively, the system under test As is conform to the specification A if under every
admissible control action sequence, the set of observation sequences of As is included in
that of A. Note that we have assumed earlier that SC(A) ⊆ SC(As), that is a control action
sequence which is admissible for A is also admissible for As . Detecting the cases where the
physical SUT does not admit some inputs that are allowed by the specification requires the
ability to identify the states of the system from the observations. We do not consider this
problem in this work.

Note that we use the trace inclusion to define conformance relation. In the literature
of conformance testing for discrete systems, more complex relations are considered, for
example input-output conformance relation (see [25]).

3.2 Test cases and test executions

In our framework, a test case is represented by a tree where each node is associated with an
observation and each path from the root with an observation sequence. Each edge of the tree
is associated with a control action. A physical test execution can be described as follows:

− The tester applies a test ζ to the system under test Sut .
− It measures and records a number of observations.
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− The observations are measured at the end of each continuous control action and after
each discrete (disturbance or control) action.

This procedure is denoted by exec(ζ, Sut ) which leads to an observation sequence, or a set
of observation sequence if multiple runs of ζ are possible due to non-determinism. The
above test execution process uses a number of implicit assumptions. First, observation mea-
surements take zero time, and in addition, no measurement error is considered. Second, the
tester is able to realize exactly the continuous input functions, which is often impossible in
practice due to actuator imprecision. Under these assumptions, one can only test the confor-
mance of a model of the system under test to the specification in discrete time. Considering
these issues in order to address the actual testing of real systems under test is part of our
future work.

We will focus on the case where each test execution involves a single run of a test case.
The remaining question is how to interpret the observation sequences in order to produce a
verdict. Let Ω denote the observation sequence domain. We thus define a verdict function:
v : Ω → {pass, fail}. Note that an observation sequence must cause a unique verdict. The
observation sequences in Ω are grouped into two disjoint sets: the set Op of observation
sequences that cause a ‘pass’ verdict, the set Of that cause a ‘fail’ verdict. Therefore, saying
‘The system under test Sut passes the test ζ ’ formally means v(exec(ζ, Sut )) = pass. This
can then be extended to a test suite.

We now discuss some important requirements for a test suite. A test suite Ts is called
complete if for a given specification A ∈ HA:

Sut � A ⇐⇒ Sut passes Ts. (1)

This means that a complete test suite can distinguish exactly between all conforming and
non-conforming systems. In practice, it is generally impossible to fulfill this requirement,
which often involves executing an infinite test suite. A weaker requirement is soundness.
A test suite is sound if a system does not pass the test suite, then the system is non-
conforming. We can see that this requirement is weaker than completeness, since it cor-
responds only to the left-to-right implication in (1).

After defining all the important concepts, it now remains to tackle the problem of gener-
ating test cases from a specification model. In particular, we want the test suites to satisfy the
soundness requirement. A hybrid automaton might have an infinite number of infinite traces;
however, the tester can only perform a finite number of test cases in finite time. Therefore,
we need to select a finite portion of the input space of the specification A and test the confor-
mance of the system under test As with respect to this portion. The selection is done using a
coverage criterion that we formally define in the next chapter. Hence, our testing problem is
formulated as to automatically generate a set of test cases from the specification automaton
to satisfy this coverage criterion.

4 Test coverage

Test coverage is a way to evaluate testing quality. More precisely, it is a way to relate the
number of tests to carry out with the fraction of the system’s behaviors effectively explored.
As mentioned earlier, the classic coverage notions mainly used in software testing, such
as statement coverage and branch coverage, path coverage (see for example [25, 29]), are
not appropriate for the trajectories of continuous and hybrid systems defined by differen-
tial equations. However, geometric properties of the hybrid state space can be exploited to
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Fig. 2 Illustration of the star
discrepancy notion

define a coverage measure which, on one hand, has a close relationship with the properties
to verify and, on the other hand, can be efficiently computed or estimated. In this work, we
are interested in state coverage and focus on a measure that describes how ‘well’ the visited
states represent the reachable set of the system. This measure is defined using the star dis-
crepancy notion in statistics, which characterises the uniformity of the distribution of a point
set within a region. Note that the reachable sets of hybrid systems are often non-convex with
complex geometric form, therefore considering only corner cases does not always cover
the behaviors that are important for reachability properties, especially in high dimensions.
Hence, for a fixed number of visited states (which reflects the computation cost to produce
a test suite), we want the visited states to be equidistributed over the reachable set as much
as possible, since this provides a good representation of all possible reachable states.

4.1 Star discrepancy

We first briefly recall the star discrepancy. The star discrepancy is an important notion in
equidistribution theory as well as in quasi-Monte Carlo techniques (see for example [3]).
Recently, it was also used in probabilistic motion planning to enhance the sampling unifor-
mity [12].

Let P be a set of k points inside B = [l1,L1] × · · · × [ln,Ln]. Let J be the set of all sub-
boxes J of the form J = ∏n

i=1[li , βi] with βi ∈ [li ,Li] (see Fig. 2). The local discrepancy
of the point set P with respect to the sub-box J is defined as follows:

D(P,J ) =
∣∣∣∣
A(P,J )

k
− vol(J )

vol(B)

∣∣∣∣

where A(P,J ) is the number of points of P that are inside J , and vol(J ) is the volume of
the box J .

Definition 8 (Star discrepancy) The star discrepancy of a point set P with respect to the
box B is defined as:

D∗(P, B) = sup
J∈J

D(P,J ). (2)

It is not hard to prove the following property of the star discrepancy [24].

Proposition 1 The star discrepancy of a point set P with respect to a box B satisfies 0 <

D∗(P, B) ≤ 1.

Intuitively, the star discrepancy is a measure for the irregularity of a set of points. A large
value D∗(P, B) means that the points in P are not much equidistributed over B. When the
region is a box, the star discrepancy measures how badly the point set estimates the volume
of the box.
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Fig. 3 Faure sequence of 100
points. Its star discrepancy value
is 0.048

Fig. 4 Halton sequence of 100
points. The star discrepancy
value is 0.05

Example To show an intuitive meaning of the star discrepancy, we use some sequences of
100 points inside a 2-dimensional unit box. The first example is the Faure sequence [13], a
well-known low-discrepancy sequence (see Fig. 3). As we can observe from the figure, this
set of points ‘covers well’ the box, in the sense that the points are well-equidistributed over
the box. Its star discrepancy value is 0.048. The second example is the Halton sequence [28]
shown in Fig. 4, which is also a well-known low discrepancy sequence. The value of the
star discrepancy of the Halton sequence is about 0.050, indicating that the Faure sequence
is more equidistributed than the Halton sequence. The star discrepancy values of these two
sequences are however close, and indeed visually it is hard to see from the figures which one
is better equidistributed. We now give another example which is a sequence of 100 points
generated by a pseudo-random function provided by the C library system. This sequence is
shown in Fig. 5, from which we can observe that this sequence is not well-equidistributed
over the box. This is confirmed by its star discrepancy value 0.1. The star discrepancy is thus
a meaningful measure that can characterize the uniformity quality of a point set distribution.
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Fig. 5 A sequence of 100 points
generated by a pseudo-random
function in the C library. Its star
discrepancy value is 0.1

This makes the star discrepancy suitable to be a test coverage measure for continuous and
hybrid systems.

4.2 Coverage estimation

To evaluate the coverage of a set of states, we need to compute the star discrepancy of a point
set, which is not an easy problem (see for example [7]). Many theoretical results for one-
dimensional point sets are not generalizable to higher dimensions, and among the fastest
algorithms, the one proposed in [7] has time complexity O(k1+d/2). In this work, we do
not try to compute the star discrepancy but approximate it by estimating a lower and upper
bound. These bounds as well as the information obtained from their estimation are then used
to decide which parts of the state space have been ‘well explored’ and which parts need to
be explored more. This estimation is done using a method published in [24]. Let us briefly
describe this method for computing the star discrepancy D∗(P, B) of a point set P w.r.t. a
box B. Although in [24] the box B is [0,1]n, we extended it to the case where B can be any
full-dimensional box.

Intuitively, the main idea of this estimation method is to consider a finite box partition
of the box B, instead of considering an infinite number of all sub-boxes as in the definition
of the star discrepancy. Let B = [l1,L1] × · · · × [ln,Ln]. In what follows, we often call this
box B the bounding box. We define a box partition of B as a set of boxes Π = {b1, . . . ,bm}
such that

⋃m

i=1 bi = B and the interiors of the boxes bi do not intersect. Each such box is
called an elementary box. Given a box b = [α1, β1] × · · · × [αn,βn] ∈ Π , we define b+ =
[l1, β1] × · · · × [ln, βn] and b− = [l1, α1] × · · · × [ln, αn] (see Fig. 6 for an illustration).

For any finite box partition Π of B, the star discrepancy D∗(P, B) of the point set P with
respect to B satisfies: C(P,Π) ≤ D∗(P, B) ≤ B(P,Π) where the upper and lower bounds
are:

B(P,Π) = max
b∈Π

max

{
A(P,b+)

k
− vol(b−)

vol(B)
,

vol(b+)

vol(B)
− A(P,b−)

k

}
, (3)

C(P,Π) = max
b∈Π

max

{∣∣∣∣
A(P,b−)

k
− vol(b−)

vol(B)

∣∣∣∣,
∣∣∣∣
A(P,b+)

k
− vol(b+)

vol(B)

∣∣∣∣

}
. (4)



194 Form Methods Syst Des (2009) 34: 183–213

Fig. 6 Illustration of the boxes
b− and b+

The imprecision of this approximation is the difference between the upper and lower bounds,
which can be bounded by B(P,Π) − C(P,Π) ≤ W(Π) where

W(Π) = max
b∈Π

(vol(b+) − vol(b−))/vol(B). (5)

Thus, one needs to find a partition Π such that this difference is small.

4.3 Hybrid systems test coverage

Since a hybrid system can only evolve within the staying sets of the locations, we are inter-
ested in the coverage with respect to these sets. For simplicity we assume that all the staying
sets are boxes.

Definition 9 (Test coverage) Let P = {(q,Pq) | q ∈ Q ∧ Pq ⊂ Iq} be the set of states. The
coverage of P is defined as:

Cov(P) = 1

‖Q‖
∑

q∈Q

1 − D∗(Pq, Iq)

where ‖Q‖ is the number of locations in Q.

If a staying set Iq is not a box, we can take the smallest oriented box that encloses it
and apply the star discrepancy definition in (2) to that box after an appropriate coordinate
transformation. We can see that a large value of Cov(P) indicates a good space-covering
quality. If P is the set of states visited by a test suite, our objective is to maximize Cov(P).

5 Test generation

Our test generation is based on a randomized exploration of the reachable state space of
the system. It is inspired by the Rapidly-exploring Random Tree (RRT) algorithm, which
is a successful motion planning technique for finding feasible trajectories of robots in an
environment with obstacles (see [15] for a survey). More precisely, we extend the RRT
algorithm to hybrid systems. Furthermore, we combine it with a guiding tool in order to
achieve a good coverage of the system’s behaviors we want to test. To this end, we use the
coverage measure defined in the previous section.
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Algorithm 1 Test generation algorithm hRRT
k = 1
T k.init(sinit) � sinit: initial state
repeat

sgoal = SAMPLING(S) � S : hybrid state space
sk

near = NEIGHBOR(T k, sk
goal)

(sk
new, uk

qnear
) = CONTINUOUSSUCC(sk

near, h) � h: time step
DISCRETESUCC(T k, sk

new)

k + +
until k ≥ kmax

In this section, we describe the extension of the RRT algorithm to hybrid system, which
we call the hRRT algorithm. The combination of the hRRT algorithm with the guiding tool
will be explained in the next section.

The algorithm stores the visited states in a tree, the root of which corresponds to the
initial state. The construction of the tree is summarized in Algorithm 1.

The tree constructed at the kth iteration is denoted by T k . The function SAMPLING sam-
ples a hybrid state sk

goal = (qk
goal, x

k
goal) to indicate the direction towards which the tree is

expected to evolve. Then, a starting state sk
near = (qk

near, x
k
near) is determined as a neighbor of

sk
goal. The definition of the distance between two hybrid states will be given later. Expanding

the tree from sk
near towards sk

goal is done as follows:

− The function CONTINUOUSSUCC tries to find the input uk
qnear

such that, after one time
step h, the current continuous dynamics at qk

near takes the system from sk
near towards

sgoal, and this results in a new continuous state xk
new. A new edge from snear to sk

new =
(qk

near, x
k
new), labeled with the associated input uk

qnear
, is then added to the tree. To find

sk
new, when the set U is not finite it can be sampled, or one can solve a local optimal

control problem.
− Then, from sk

new, the function DISCRETESUCC computes its successors by all possible
discrete transitions and add them in the tree.

The algorithm terminates after some maximal number of iterations. Another possible ter-
mination criterion is that a satisfactory coverage value is reached. In the classic RRT algo-
rithms, which work in a continuous setting, only xgoal needs to be sampled, and a commonly
used sampling distribution of xgoal is uniform over X . In addition, the point xnear is defined
as a nearest neighbor of xgoal in some usual distance, such as the Euclidean distance. In our
hRRT algorithm, the goal state sampling is not uniform and the function SAMPLING plays
the role of guiding the exploration via a biased sampling of xgoal. This will be discussed
in detail later, and in the following we show how to compute the other functions of the
algorithm.

5.1 Hybrid distance and computation of neighbors

As mentioned earlier, in most versions of the RRT algorithm, where the state space is a
subset of R

n, the query of nearest neighbors often uses the Euclidean distance. Defining a
metric for the hybrid state space is difficult, due to the discrete component of a hybrid state.
In this section we propose an approximate distance between two hybrid states, which will
be used in the function NEIGHBOR of the hRRT algorithm.
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Given two hybrid states s = (q, x) and s ′ = (q ′, x ′), if they have the same discrete com-
ponent, that is, q = q ′, we can use some usual metric in R

n, such as the Euclidean metric.
When q �= q ′, it is natural to use the average length of the trajectories from one to another.
Note that this way, the hybrid distance we define is not symmetric. We present first some
useful definitions and notations.

Given two sets A and B in R
n, we can define the average distance between A and B ,

denoted by d(A,B), as a distance (such as the Euclidean distance) between their geometric
centroids. If a set A models a physical object with uniform density, then the geometric
centroid of a set A coincides with its center of mass. If the set A is a bounded convex
polyhedron with a set of vertices V = {v1, . . . , vJ }, then the centroid of A is vc = 1

J

∑J

j=1 vj .

Definition 10 (Average length of a path) Let γ = (q1, q2), . . . , (qm−1, qm) be a discrete path
in the hybrid automaton A, the average length of γ , denoted by len(γ ), is

len(γ ) =
m−2∑

i=1

d(R(qi ,qi+1)(G(qi ,qi+1)), G(qi+1,qi+2))

where d is the average distance between two sets.

We recall that R(qi ,qi+1) and G(qi ,qi+1) are respectively the reset function and the guard
associated with the transition from qi to qi+1.

Definition 11 (Average length of trajectories) Let γ = (q1, q2), . . . , (qm−1, qm) be a discrete
path from location q1 = q to qm = q ′ in the automaton A. Let s = (q, x) and s ′ = (q ′, x ′)
be two hybrid states. Then, we define the average length of trajectories from s = (q, x) to
s ′ = (q ′, x ′) following the path γ as:

lenγ (s, s ′) = d(x,f G(γ )) + len(γ ) + d(x ′, lR(γ ))

where f G(γ ) = G(q1,q2) is the first guard of γ , and lR(γ ) = R(qm−1,qm)(G(qm−1,qm)) is the set
resulting from applying the reset map of the last transition to its guard set.

Example Figure 7 illustrates the above definitions. We consider a path γ = e1, e2 where
e1 = (q, q1) and e2 = (q1, q

′).

− The average length of the path γ is simply the distance between the image of the first
guard G(q,q1) by the first reset function R(q,q1) and the second guard G(q1,q ′). This distance
is shown in the middle figure.

Fig. 7 Illustration of average
length of trajectory
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− The average length of trajectories from s = (q, x) to s ′ = (q ′, x ′) following the path γ

is the sum of three distances (shown in Fig. 7 from left to right): the distance between
x and the first guard G(q,q1), the average length of the path, and the distance between
R(q1,q ′)(G(q1,q ′)) and x ′.

Now we are ready to define the hybrid distance from s to s ′. Let Γ (q, q ′) be the set of
all discrete paths from q to q ′ in the hybrid automaton A.

Definition 12 (Hybrid distance) Given two hybrid states s = (q, x) and s ′ = (q ′, x ′), the
hybrid distance from s to s ′, denoted by dH (s, s ′), is defined as follows:

− If q = q ′, then dH (s, s ′) = ‖x − x ′‖ where ‖ · ‖ is some norm in R
n.

− If q �= q ′, there are two cases:
– If Γ (q, q ′) �= ∅, then dH (s, s ′) = minγ∈Γ (q,q ′) lenγ (s, s ′). The path γ that minimizes

lenγ (s, s ′) is called the shortest path from s to s ′.
– Otherwise, dH (s, s ′) = ∞.

It is easy to see that the hybrid distance dH is only a pseudo metric since it does not satisfy
the symmetry requirement. Indeed, the underlying discrete structure of a hybrid automaton
is a directed graph. In the above definition, we can use any metric in R

n. In this work, we
will use the Euclidean distance and the notation ‖ · ‖ denotes this distance.

Then, in each iteration of hRRT, the function NEIGHBOR can be computed as follows.
A neighbor of the goal state sgoal is:

snear = arg min
s∈V

dH (s, sgoal)

where V is the set of all the states stored at the vertices of the tree.

5.2 Computing continuous and discrete successors

We first describe the function CONTINUOUSSUCC. If the states snear and sgoal have the same
location component, we want to expand the tree from xnear towards xgoal as closely as possi-
ble, using the continuous dynamics at that location.

When the states snear and sgoal are at different locations, let γ be the shortest path from
snear to sgoal. It is natural to make the system follow this path. Therefore, we want to steer the
system from xnear towards the first guard of γ . In both of the two cases, one needs to solve an
optimal control problem with the objective of minimizing the distance to some target point.
This problem is difficult especially for systems with non-linear continuous dynamics. Thus,
we can trade some optimality for computational efficiency. When the input set U is not finite,
we sample a finite number of inputs and pick from this set a best input, that makes the system
approach the boundary of the guard of γ as much as possible. In addition, we can prove
that by appropriately sampling the input set, the completeness property of our algorithm is
preserved (see Sect. 7). It is important to emphasize that the function CONTINUOUSSUCC

needs to assure that the trajectory segment from xnear stays in the staying set of the current
location.

The computation of discrete successors in DISCRETESUCC, which involves testing a
guard condition and applying a reset map, is rather straightforward.
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5.3 Test cases and verdicts

The tree constructed by the hRRT algorithm can be used to extract a test suite. In addition,
when applying such test cases to the system under test, the tree can be used to compare the
observations from the real systems and the expected observations in the tree. This allows a
decision whether the system satisfies the conformance relation.

6 Coverage-guided test generation

In this section we propose a tool for guiding the test generation algorithm. This tool is based
on the coverage measure defined using the star discrepancy. The goal of the guiding tool is
to use the sampling process to bias the evolution of the tree towards the interesting region
of the state space, in order to rapidly achieve a good coverage quality. In each iteration, we
use the information of the current coverage to improve it. Indeed, the coverage estimation
provides not only an approximate value of the current coverage, but also the information
about which regions need to be explored more.

Sampling a goal state sgoal = (qgoal, xgoal) in the hybrid state space S consists of two
steps:

1. Sample a goal location qgoal from the set Q of all the locations, according to some prob-
ability distribution.

2. Sample a continuous goal state xgoal inside the staying set Iqgoal of the location qgoal.

6.1 Location sampling

Recall that we want to achieve a good testing coverage quality, which is equivalent to a
small value of the star discrepancy of the points visited at each location. More concretely, in
each iteration, we want to bias the goal state sampling distribution according to the current
coverage of the visited states. To do so, we first sample a location and then a continuous
state. Let P = {(q,Pq) | q ∈ Q ∧ Pq ⊂ Iq} be the current set of visited states. The location
sampling distribution depends on the current continuous state coverage of each location:

Pr[qgoal = q] = D∗(Pq, Iq)∑
q ′∈Q D∗(Pq ′ , Iq ′)

where the notation Pr is used for probabilities. As we have shown earlier, the star discrep-
ancy is approximated by a lower bound and an upper bound. We thus compute the above
probability Pr[qgoal = q] using these bounds and then taking the mean of the results.

6.2 Continuous state sampling

We now show how to sample xgoal, assuming that we have already sampled a location
qgoal = q . In the remainder of the paper, to give geometric intuitions, we often call a contin-
uous state a point. In addition, since all the staying sets are assumed to be boxes, we denote
the staying set Iq by the box B and denote the current set of visited points at the location q

simply by P instead of Pq . Let k be the number of points in P . Let Π be a finite box partition
of B that is used to estimate the star discrepancy of P . The sampling process consists of two
steps. In the first step, we sample an elementary box bgoal from the set Π ; in the second step
we sample a point xgoal in bgoal uniformly, as shown in Algorithm 2. The elementary box
sampling distribution in the first step is biased in order to optimize the coverage. Guiding is
thus done via the goal box sampling process. The next section is devoted to this problem.
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Algorithm 2 Continuous goal state sampling
procedure SAMPLING( )

bgoal = BOXSAMPLING(Π)

xgoal = UNIFORMSAMPLING(bgoal)

return xgoal

end procedure

6.3 Goal box sampling

Let Π be the box partition used in the coverage estimation, and we denote by P the cur-
rent set of visited states. The objective is to define a probability distribution over the set of
elementary boxes of Π . This probability distribution is defined at each iteration of the test
generation algorithm. Essentially, we favor the selection of a box if adding a new state in
this box allows to improve the coverage of the visited states. This is captured by a potential
influence function, which assigns to each elementary box b in the partition a real number
that reflects the change in the coverage if a new state is added in b. The current coverage is
given in form of a lower and an upper bound. In order to improve the coverage, we aim at
reducing both of the bounds.

6.3.1 Reducing the lower bound

We associate with each box b ⊆ Π a number A∗(b) such that

vol(b)

vol(B)
= A∗(b)

k

where vol denotes the volume of a set. Intuitively, A∗(b) represents the required number of
points in the box b so that the ratio between the number of points in b and the total number
of points is exactly the ratio between the volume of b and that of the bounding box.

Let A(P,b) be the number of points of P which are inside b. We denote

ΔA(b) = A(P,b) − A∗(b). (6)

The sign of ΔA(b) reflects a ‘lack’ or an ‘excess’ of points in the box b, and its absolute
value indicates how significant the lack or the excess is.

Now for a given elementary box b ∈ Π , we can rewrite the local lower bound of the star
discrepancy D∗(P, B) of the point set P as

c(b) = 1

k
max{|ΔA(b+)|, |ΔA(b−)|}.

Hence, using the formula (4), the lower bound of the star discrepancy D∗(P, B) becomes

C(P,Π) = max
b∈Π

{c(b)}.

Our strategy to reduce the lower bound C(P,Π) is based on the impact of adding a new
point in each box b on |ΔA(b+)| and |ΔA(b−)| and thus on C(P,Π).

We observe that adding a point in b reduces |ΔA(b+)| if ΔA(b+) < 0 and increases
|ΔA(b+)| otherwise. However, doing so does not affect ΔA(b−) (see Fig. 8). Thus, we define
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Fig. 8 Illustration of the boxes
b− and b+

a function reflecting the potential influence on the lower bound as follows:

ξ(b) = 1 − ΔA(b+)/k

1 − ΔA(b−)/k
, (7)

and we favor the selection of b if the value ξ(b) is large. Note that for any box b inside B,
we have 1 − ΔA(b)/k > 0.

The interpretation of the function ξ is as follows. If ΔA(b+) is negative and its absolute
value is large, the ‘lack’ of points in b+ is significant. In this case, ξ(b) is large, meaning
that the selection of b is favored. On the other hand, if ΔA(b−) is negative and its absolute
value is large, then ξ(b) is small, because it is preferable not to select b in order to increase
the chance of adding new points in b−.

6.3.2 Reducing the upper bound

We can rewrite the definition of the upper bound given by (3) as follows:

B(P,Π) = 1

k
max
b∈Π

Δm
A(b) (8)

where Δm
A(b) = max{Δc

A(b),Δo
A(b)}. Using (6), we can write

Δc
A(b) = A(P,b+) − A∗(b−)

and

Δo
A(b) = A∗(b+) − A(P,b−).

Since the value of Δm
A is determined by comparing Δc

A with Δo
A. After straightforward

calculations, the inequality Δc
A(b) − Δo

A(b) ≤ 0 is equivalent to

Δc
A(b) − Δo

A(b) = ΔA(P,b+) + ΔA(P,b−) ≤ 0.

Therefore,

Δm
A(b) =

{
Δo

A(b) if ΔA(b+) + ΔA(b−) ≤ 0,

Δc
A(b) otherwise.

(9)
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Again, we observe that adding a point in b increases Δc
A(b), but this does not affect

Δo
A(b). To reduce Δo

A(b) we need to add points in b−. Hence, if b is a box in Π that maxi-
mizes Δc

A in (8), it is preferable not to add more points in b but in the other elementary boxes
where the values of 1

k
Δm

A are much lower than the current value of B(P,Π), in particular
those inside b−.

Using the same reasoning for each box b locally, the smaller |ΔA(P,b+) + ΔA(P,b−)|
is, the smaller sampling probability we give to b. Indeed, as mentioned earlier, if Δm

A(b) =
Δc

A(b), increasing Δc
A(b) directly increases Δm

A(b). On the other hand, if Δm
A(b) = Δo

A(b),
increasing Δc

A(b) may make it greater than Δo
A(b) and thus increase Δm

A(b), because small
|ΔA(P,b+) + ΔA(P,b−)| implies that Δc

A(b) is close to Δo
A(b).

We define two functions reflecting the global and local potential influences on the upper
bound:

βg(b) = B(P,Π) − Δm
A(b)

k

and

βl(b) = βg(b)
|ΔA(P,b+) + ΔA(P,b−)|

k
.

We can verify that βg(b) and βl(b) are always positive.
Finally, we combine these functions with ξ in (7) (which describes the potential influence

on the lower bound) to obtain a potential influence function on both of the bounds:

ν(b) = κξ ξ(b) + κgβg(b) + κlβl(b)

where κξ , κg , and κl are non-negative weights that can be user-defined parameters.

Box probability distribution We are now ready to define a probability distribution for the
boxes in the box partition Π . We define the probability of selecting b ∈ Π as follows:

Pr[bgoal = b] = ν(b)∑
b∈Π ν(b)

.

Let us summarize the developments so far. We have shown how to sample a goal hybrid
state. This sampling method is not uniform but biased in order to achieve a good coverage of
the visited states. From now on, the algorithm hRRT in which the function SAMPLING uses
this coverage-guided method is called the gRRT algorithm, which means ‘guided hRRT’.

7 Reachability completeness

The probabilistic completeness is an important property of the RRT algorithm, which is
stated as follows.

Theorem 1 If a feasible trajectory from the initial state xinit to the goal state xgoal exists,
then the probability that the RRT algorithm finds it tends to 1 as the number k of iterations
tends to infinity.

The proof of this result can be found in [14, 15]. Although the interest of this theorem is
mainly theoretical, since it is impossible in practice to perform an infinite number of itera-
tions, this result is a way to explain the good space-covering property of the RRT algorithm.
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An arising question is whether our test generation algorithm, built upon the RRT algorithm,
preserves this property. This is indeed true, which we prove in this section.

We first remark that in the path and motion planning context, the proofs of the complete-
ness of the RRT algorithms often assume that the whole free configuration space is ‘control-
lable’ in the sense that it is possible to reach any point in the free configuration space from
the initial point (see for example [14]). In the hybrid state space S = Q × X , generally not
all the points are reachable from the initial state sinit. Indeed, if this were true, the verification
problem would be solved. But we can still prove the completeness with respect to the com-
putation of the reachable set. We call this property the reachability completeness. The proof
of this result follows the idea of the proof in [5]. However, the lack of the above-mentioned
controllability assumption makes the proof more complicated.

We first introduce some assumptions about the hybrid systems we consider, under which
the completeness property of our algorithms is proven.

7.1 Sufficient conditions for reachability completeness

We first observe from the completeness proof for continuous systems that the following
conditions are sufficient for its validity: (C1) there is a non-null probability that each state
in V k is selected to be sk

near , and (C2) there is a non-null probability that ‘each reachable
direction’ is selected.

The satisfaction of these conditions guarantees that for any reachable state s there is a
non-null probability that the new state sk+1

new reduces the distance from the tree to s. In fact, the
selection of sk

goal controls the growth of the tree by determining both the starting state sk
near

and the direction of the expansion in each iteration. In addition, for a continuous system, that
is a hybrid automaton with Q = {q}, if the control set Uq is finite and for each u ∈ Uq the
probability that the input value u is selected in each iteration k is positive, then the condition
(C2) is satisfied. In addition, the reachable set needs to satisfy some neighborhood property
which we will detail later in Assumption 1.

We now derive similar conditions for hybrid automata. A set of hybrid states Y =
{(q,Yq) | q ∈ Q ∧ Yq ⊆ X } is said to have positive volume (or measure) if for all q ∈ Q

the volume (or measure) of Yq is positive. We denote the volume of Y by vol(Y ).

Definition 13 (Full coverage sampling condition) For every k > 0 and every set Y ⊆ S with
positive volume, if the probability that in each iteration sk

goal ∈ Y is strictly positive, that is,

∀k > 0 ∀Y ⊆ S Pr[sk
goal ∈ Y ] > 0,

then we say that the sampling process satisfies the full coverage sampling condition.

It is easy to see that a simple uniform sampling method (that is, uniformly sampling a
location q from the set Q of all locations and then uniformly sampling a continuous state in
the staying set of the location q) satisfies this condition.

We can prove that for hybrid automata the full coverage sampling condition guarantees
that the condition (C1) is satisfied. To guarantee the condition (C2) for such systems, in
addition to the above-mentioned condition that each admissible continuous input value u

has a non-null probability of being selected in each iteration, we need further conditions to
guarantee that every reachable discrete transition has a non-null probability of being visited
by the algorithm. This is formally described in the following.
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We denote by Rj the reachable set defined recursively as follows:

Rj = {s ′ ∈ Tr(s,ω) | ω ∈ S̃C ∧ s ∈ Rj−1}; j = 1,2, . . . , (10)

with R0 = {sinit}. In this definition, S̃C is the set of all admissible control sequences that
either contain only continuous control actions, or start with a discrete control action which
is followed by only continuous control actions. Recall that Tr(s,ω) is the set of traces from
s under the control action sequence ω. Intuitively, R0 contains only the initial state, and Rj

contains all the states reachable from Rj−1 by one discrete transition (if possible) and then
let time pass. We denote by R

j
e the set of all the states in Rj at which the transition e is

enabled.
To state the completeness result, we need to introduce some notions. For a reachable state

s ∈ S , we define the set Reachb(s) of reachable states leading to s as follows:

Reachb(s) = {s ′ ∈ S | ∃ω ∈ SC(A) : s ′ ∈ τ((q, x),ω) ∧ s = last(τ ((q, x),ω))}. (11)

Given a state s = (q, x) ∈ S and a real number ε > 0, we denote by Ball(s, ε) = {(q, x) |
x ∈ Ballc(x, ε)} where Ballc(x, ε) ⊆ R

n is the ball centered at x with radius ε.
Given a set Y ⊆ S , if ∀s ∈ Y ∀ε > 0 : vol(Y ∩ Ball(s, ε)) > 0, we say that Y satisfies the

positive volume neighborhood property.

Definition 14 (Neighborhood) Given a state s = (q, x) ∈ S and a real number ε > 0, we
define the ε-neighborhood of s as N (s, ε) = {s ′ ∈ S | dH (s ′, s) ≤ ε}.

From now on, we restrict our attention to a class of hybrid automata and prove the com-
pleteness property for such systems under the following assumptions.4

Assumption 1

− (H1) The function SAMPLING Algorithm 1 satisfies the full coverage sampling property.
− (H2) For all q ∈ Q, the set Uq is finite. In addition, for all q ∈ Q, for all u ∈ Uq , for

all k > 0 Pr[uk = u] > 0 (where uk is the value of the continuous input function that is
applied at the kth iteration).

− (H3) For every reachable state s, the set Reachb(s) of reachable states leading to s (de-
fined in (11) satisfies the positive volume neighborhood property.

− (H4) For all j > 0 and for all e ∈ E, if R
j
e �= ∅ then R

j
e satisfies the positive volume

neighborhood property.

As we will see later, the first three assumptions (H1), (H2), and (H3) guarantee the reach-
ability completeness for the continuous dynamics of the hybrid automaton A. The assump-
tion (H4) guarantees the completeness for its discrete transitions, that is a transition e, if
reachable, always has a chance to be visited by the algorithm.

7.2 Reachability completeness result

We proceed with the main result concerning the completeness property preservation of our
test generation algorithm for the hybrid automata which satisfy Assumption 1.

4We use the letter ‘H’ to emphasize that these conditions are for hybrid automata.
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Theorem 2 (Reachability completeness) Let V k be the set of states stored at the vertices of
the tree T k at the kth iteration. Given ε > 0 and a reachable state s = (q, x), the probability
that there exists a state s ′ ∈ V k such that s ′ is in the ε-neighborhood of s approaches 1 when
k approaches infinity, that is

lim
k→∞

Pr[∃s ′ ∈ V k : s ′ ∈ N (s, ε)] = 1. (12)

The proof of this theorem is presented in Appendix.
In the classic RRT algorithms for continuous systems, in each iteration the starting point

for expansion is a nearest neighbor of the goal point. Finding an exact nearest neighbor
is expensive, especially in high dimensions. We can derive a variant of the RRT algorithm
which has lower complexity. Indeed, to determine the starting states we can use approximate
nearest neighbors, provided that the condition (H1) is satisfied.

8 Implementation and experimental results

The current implementation of the above described algorithms works for hybrid automata
where continuous dynamics can be non-linear. The staying sets of the locations are boxes.
The transition guard set are convex-polyhedra. The reset maps can be non-linear.

8.1 Implementation

In addition to the tree that is used to store the explored executions, to facilitate the compu-
tation of geometric operations, such as finding a neighbor, we store the points reachable by
the dynamics at each location using a data structure similar to a k-d tree [19]. Each node
of the tree has exactly two children. Each internal node is associated with the information
about a partitioning plane: its axis i and position c, and the partitioning plane is thus xi = c

(where xi is the ith coordinate of x). The additional information associated with a leaf is a
set of visited points. Each node thus corresponds to an elementary box resulting from a hier-
archical box-partition of the state space. The box of the root of the tree is B. The tree and the
partition of a 2-dimensional example is shown in Fig. 9, where the axes of the partitioning
planes are specified by the horizontal and vertical bars inside the nodes. In the following, we
briefly describe the main operations in the test generation algorithms. A detailed description
of the implementation can be found in [21].

Approximate neighbors Since the computation of exact nearest neighbors is expensive
(even in a continuous setting), we approximate a neighbor of x as follows: find the ele-
mentary box b which contains at least one visited point and, in addition, is closest to x (note
that some elementary boxes may not contain any visited points). Then, we find a point in b

which is closest to x. It is easy to see that b does not necessarily contain a nearest neighbor
of x. We use this approximation because, on one hand the sampling distribution reflects the
boxes we want to explore, and on the other hand, it has lower complexity. In addition, this
approximation preserves the completeness.

Update the discrepancy estimation After adding a new point x, we need to update the
estimation of the star discrepancy. More concretely, we need to find all the elementary boxes
b such that the new point has increased the number of points in the corresponding boxes b−

and b+. These boxes are indeed those which intersect with the box Bx = [x1,L1] × · · · ×



Form Methods Syst Des (2009) 34: 183–213 205

Fig. 9 Illustration of the update of the star discrepancy estimation

[xn,Ln]. In addition, if b is a subset of Bx , the numbers of points in both b+ and b− need
to be incremented; if b intersects with Bx but is not entirely inside Bx , only the number
of points in b+ needs to be incremented. Searching for all the elementary boxes that are
affected by x can be done by traversing the tree from the root and visiting all the nodes the
boxes of which intersect with Bx . In the example of Fig. 9, the box Bx is the dark rectangle,
and the nodes of the trees visited in this search are drawn as dark circles.

Box splitting When the difference between the lower and upper bounds in the star dis-
crepancy estimation is large, some boxes need to be split as indicated by (5). Additionally,
splitting is also needed for efficiency of the neighbor computation.

8.2 Experimental results

We implemented the test generation algorithm using C++ in a prototype tool, and the results
reported here were obtained by running the tool on a 1.4 GHz Pentium III.

8.2.1 Linear systems

First, to demonstrate the time efficiency of gRRT, we use a set of examples of linear systems
in various dimensions

ẋ = Ax + u.

In this experiment, we did not exploit the linearity of the dynamics and the tested systems
were randomly generated: the matrix A is in Jordan canonical form, each diagonal value of
which is randomly chosen from [−3,3] and the input set U contains 100 values randomly
chosen from [−0.5,0.5]n. We fix a maximal number kmax = 50000 of visited states.

In terms of coverage, the star discrepancy values of the states generated by gRRT and
the classic RRT algorithm are shown in Table 1, which indicates that our gRRT algorithm
achieved a better coverage quality. These discrepancy values were computed for the final
sets of visited states, using a partition optimal w.r.t. to the imprecision bound in (5). Note
that in each iteration of our test generation algorithm, we do not compute such a partition
because it is very expensive. This is also the reason why we could not compare the coverage
for higher dimensional systems, since a precise coverage estimation using optimal partitions
is too expensive for such systems.

Table 2 shows the time efficiency of gRRT for linear systems of dimensions up to 100.
The results obtained on a 2-dimensional system are visualized in Fig. 10.
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Fig. 10 Results (with the same
number of visited states) obtained
using the gRRT algorithm (top)
and the RRT algorithm (bottom)

Table 1 Discrepancy results
obtained for some linear systems
using gRRT and RRT

dimn Lower bound Upper bound

gRRT RRT gRRT RRT

3 0.451 0.546 0.457 0.555

5 0.462 0.650 0.531 0.742

10 0.540 0.780 0.696 0.904

8.2.2 Aircraft collision avoidance system

To illustrate the application of our algorithm to hybrid systems, we use the aircraft collision
avoidance problem [18], which is a well-known benchmark in the hybrid systems literature.
In this paper, the authors treated the problem of collision avoidance of two aircrafts. To show
the scalability of our approach we consider the same model with N aircrafts.
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Table 2 Computation time of
gRRT for some linear systems dimn Time (min)

5 1

10 3.5

20 7.3

50 24

100 71

Fig. 11 Aircraft behavior in the
three modes [18]

Fig. 12 System dynamics for the three modes

As shown in Fig. 11, all the aircrafts are at a fixed altitude. Each aircraft i has three states
(xi, yi, θi) where xi and yi describe the position and θi is the relative heading of the aircraft.
Each aircraft begins in straight flight at a fixed relative heading (mode 1).

As soon as two aircrafts are within the distance R between each other, they enter mode 2.
In this mode each aircraft makes an instantaneous heading change of 90 degrees, and begins
a circular flight for π time units. After that, they switch to mode 3 and make another instan-
taneous heading change of 90 degrees and resume their original headings from mode 1.

The dynamics of the system are shown in Fig. 12. The guard transition between mode 1
and mode 2 is given by Dij < R, which means that the aircraft i is at R distance from the
aircraft j . The dynamics of each aircraft is as follows:

ẋi = v cos(θi) + dxi,

ẏi = v sin(θi) + dyi,

θ̇i = ω.
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Fig. 13 Eight-aircraft collision avoidance (50000 visited states, computation time: 10 min)

The continuous inputs are dxi and dxi describing the external disturbances on the aircrafts
(such as wind):

dxi = d1 sin(θi) + d2 cos(θi),

dyi = −d1 cos(θi) + d2 sin(θi),

and −δ ≤ d1, d2 ≤ δ.

Results For N aircrafts, the system has 3N + 1 continuous variables (one for modeling
a clock). For the case of N = 2 aircrafts, when the collision distance is 5, no collision was
detected after visiting 10000 visited states, and the computation time was 0.9 min. The result
for N = 8 aircrafts with the disturbance bound δ = 0.06 is shown in Fig. 13, where we show
the projected positions of the eight aircrafts on a 2-dimensional space. For this example,
the computation time for 50000 visited states was 10 min and a collision was found. For
a similar example with N = 10 aircrafts, the computation time was 14 min and a collision
was also found.

8.2.3 A robotic vehicle benchmark

This example is adapted from the robotic navigation system benchmark [22]. We consider
a car with the following continuous dynamics with 5 variables: ẋ = v cos(θ), ẏ = v sin(θ),
θ̇ = v tan(φ)/L, v̇ = u0, φ̇ = u1 where x, y, θ describe the position and heading of the car,
v is its speed and φ is its steering angle. The car can be in one of three car modes (smooth
car, smooth unicycle, smooth differential drive). In this work, we consider only the smooth
car mode.
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The inputs of the system are u0 and u1 which are respectively the acceleration and steer-
ing control. The system uses a hybrid control law with 3 driver modes. In the first driver
mode, called RandomDriver, the control inputs are selected uniformly at random between
their lower and upper bounds. In the second driver mode, called StudentDrive, when the
speed is low, u0 is randomly chosen as in first mode; otherwise, the strategy is to reduce
the speed. In the third driver mode, called HighwayDrive, the strategy is to reduce the speed
when it is high and increase it when it is low. A detailed description of this control law can
be found in [22].

Rather than to analyze a realistic navigation system model, we use this example to test
the efficiency of our algorithms on a hybrid system with a larger number of locations. To this
end, we created from this system two models. The terrain is partitioned into K rectangles
using a regular grid G = {0, . . . ,Kx − 1} × {0, . . . ,Ky − 1}. Each rectangle is associated a
driver mode. The first model is a hybrid automaton with KxKy locations and the system can
only switch between the locations corresponding to adjacent rectangles.

In the second model, we allow more complicated switching behavior by letting the sys-
tem jump between some rectangles which are not necessarily adjacent. The rectangle cor-
responding to the grid point (i, j) ∈ G is Rij = [ilx, j ly] × [(i + 1)lx, (j + 1)ly] where lx
and ly are the sizes of the grid in the x and y coordinates. The absolute index of Rij is an
integer defined as follows: ι(Rij ) = iKy + j . From the rectangle Rij with even absolute in-
dex, we allow a transition to Rmn such that ι(Rmn) = (ι(Rij ) + J ) mod (KxKy) (where
J > 0 and mod is the modulo division). The guard set at Rij is the right-most band
of width εg , that is [(i + 1)lx − εg, j ly] × [(i + 1)lx, (j + 1)ly]. After switching to Rmn,
the car position (x, y) is reset to a random point inside the square of size εr defined as
[mlx, (n + 1)ly − εr ] × [mlx + εr , (n + 1)ly].

We compared the results obtained for the two models using the gRRT algorithm and the
hRRT algorithm. In this experimentation the hRRT algorithm uses a uniform sampling (both
over the discrete and continuous state space). Since we want to focus on the performance
of the guiding tool, the two algorithms use the same hybrid distance definition and imple-
mentation. The parameters used in this experimentation are: lx = ly = 20, lx = ly = 20, the
car position (x, y) ∈ [−100,100] × [−100,100], εg = εr = 6, J = 6. The number of loca-
tions in the hybrid automata is 100. For the first model without jumps, in terms of coverage
efficiency, the algorithms are comparable. For the model with jumps, gRRT systematically
produced better coverage results. However, gRRT is not always better than hRRT in terms
of the number of covered locations. This is due to our coverage definition using the average
of the continuous-state coverages of all the locations.

In terms of time efficiency, we now report the computation time of gRRT for the exper-
imentations with various maximal visited states. For the first model, the computation times
of gRRT are: 4.7 s for 10000 states in the tree, 1 min 26 s for 50000 states, 6 min 7 s for
100000 states. For the second model, the computation times of gRRT are: 4.2 s for 10000
states in the tree, 2 min 5 s for 50000 states, 4 min 40 s for 100000 states, and 20 min 22 s
for 150000 states.

9 Related work

Classical model-based testing frameworks use Mealy machines or finite labeled transition
systems and their applications include testing of digital circuits, communication protocols
and software. Recently, these frameworks have been extended to real-time systems and hy-
brid systems. Here we only discuss related work in hybrid systems testing. The paper [23]
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proposed a framework for generating test cases from simulation of hybrid models specified
using the language CHARON [2]. In this work, the test cases are generated by restrict-
ing the behaviors of an environment automaton to yield a deterministic testing automaton.
A test suite can thus be defined as a finite set of executions of the environment automa-
ton. It is mentioned in the paper that to achieve a desired coverage, non-determinism in the
environment automaton is resolved during the test generation using some randomized algo-
rithm. However, this coverage as well as the randomized algorithm were not described in
detail. Besides testing a real system, another goal of this work is to apply tests to models,
as an alternative validation method. In [11], the testing problem is formulated as to find a
piecewise constant input that steers the system towards some set, which represents a set of
bad states. To our knowledge, there is no other work in developing a formal framework for
conformance testing that follows the standards of FMCT (Formal Methods in Conformance
Testing) as closely as the framework we proposed.

The RRT algorithm has been used to solve a variety of reachability-related problems such
as hybrid systems planning, control, verification and testing (see for example [4, 8, 9, 11, 22]
and references therein). Here we only discuss a comparison of our approach with some exist-
ing RRT-based approaches for the validation of continuous and hybrid systems. Concerning
the problem of defining a hybrid distance, our hybrid distance is close to that proposed
in [11]. The difference is that we use the centroids of the guard sets to define the distance
between these sets, while the author of [11] uses the minimal clearance distance between
these sets, which is harder to compute. To overcome this difficulty, the author proposed to
approximate this clearance distance by the diameter of the state space. An advantage of our
hybrid distance is that it captures better the average cases, allowing not to always favor the
extreme cases. Note also that our hybrid distance dH does not take into account the system
dynamics. It is based on the spatial positions of the states. In [11] the author proposed a time-
based metric for two hybrid states, which can be seen as an approximation of the minimal
time required to reach from one state to another, using the information on the derivatives of
the variables. Another distance proposed in [11] is called specification-based. This distance
is typically defined with respect to some target set specifying some reachability property. It
can be however observed that for many systems, this ‘direct’ distance may mislead the ex-
ploration due to the controllability of the system. In [8, 11] and in our hRRT algorithm, the
problem of optimally steering the system towards the goal states was not addressed. In other
words, the evolution of the tree is mainly determined by the selection of nearest neighbors.
In [9], the problem of computing optimal successors was considered more carefully, and
approximate solutions for linear dynamics as well as for some particular cases of non-linear
dynamics were proposed. The authors of [22] proposed a search on a combination of the
discrete structure and the coarse-grained decomposition of the continuous state space into
regions, in order to determine search directions. This can be thought of as an implicit way
of defining a hybrid distance as well as a guiding heuristics.

Concerning test coverage for continuous and hybrid systems, in [8] the authors proposed
a coverage measure based on a discretized version of dispersion, since the dispersion is
very expensive to compute. Roughly speaking, the dispersion of a point set with respect to
various classes of range spaces, such as balls, is the area of the largest empty range. This
measure is defined over a set of grid points with a fixed size δ. The spacing sg of a grid point
g is the distance from g to the nearest visited state by the test if it is smaller than δ, and
sg = δ otherwise. Let S be the sum of the spacings of all the grid points. This means that the
value of S is the largest when the set of visited state is empty. Then, the coverage measure
is defined in terms of how much the vertices of the tree reduce the value of S. It is important
to note that while in our work, the coverage measure is used to guide the simulation, in [8] it
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is used as a termination criterion. The paper [10] addresses the problem of robust testing by
quantifying the robustness of some properties under parameter perturbations. This work also
considers the problem of how to generate test cases with a number of initial state coverage
strategies.

Concerning guided exploration, sampling the configuration space has been one of the
fundamental issues in probabilistic motion planning. Our idea of guiding the test genera-
tion via the sampling process has some similarity with the sampling domain control [27].
As mentioned earlier, the RRT exploration is biased by the Voronoi diagram of the vertices
of the tree. If there are obstacles around such vertices, the expansion from them is limited
and choosing them frequently can slow down the exploration. In the dynamic-domain RRT
algorithm, the domains over which the goal points are sampled need to reflect the geometric
and differential constraints of the system, and more generally, the controllability of the sys-
tem. In [17], another method for biasing the exploration was proposed. The main idea of this
method is to reduce the dispersion in an incremental manner. This idea is thus very close to
the idea of our guiding method in spirit; however, their concrete realizations are different.
This method tries to lower the dispersion by using K samples in each iteration (instead of a
single sample) and then select from them a best sample by taking into account the feasibility
of growing the tree towards it. Finally, we mention that a similar idea was used in [8] where
the number of successful iterations is used to define an adaptive biased sampling. To sum up,
the novelty in our guiding method is that we use the information about the current coverage
of the visited states in order to improve the coverage quality.

10 Conclusion

The main contributions of the paper can be summarized as follows. We proposed a formal
framework for conformance testing of hybrid systems, using the international standard for
formal conformance testing [26]. This framework allows, on one hand, to formally reason
about the conformance relation between a system under test and a specification, and on
the other hand, to develop test generation algorithms. Besides the main concepts in the
framework of conformance testing, we addressed the test coverage problem. We proposed
a novel coverage measure, which is useful not only as a criterion to evaluate testing quality
but also to guide the test generation process. Our coverage-guided test generation algorithms
are based on a combination of the ideas from robotic path planning, equidistribution theory,
algorithmic geometry, and numerical simulation. The experimental results obtained using
an implementation of the test generation algorithm show its scalability to high dimensional
systems and good coverage quality.

A number of directions for future research can be identified. First, we are interested in
defining a measure for trace coverage. Partial observability also needs to be considered.
Convergence rate of the exploration in the test generation algorithm is another interesting
theoretical problem to tackle. This problem is particular hard especially in the verification
context where the system is subject to uncontrollable inputs. Finally, we intend to apply the
results of this research to validation of analog and mixed-signal circuits, a domain where
testing is a widely used technique.

Appendix

Proof of the Reachability Completeness Theorem (Theorem 2) We first prove the following
intermediate result: given a reachable set R with positive volume, the probability that there
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exists k > 0 such that V k ∩ R �= ∅ is non-null. Recall that V k is the states at the vertices
of the tree at iteration k. We observe that since the whole set R is reachable and each set
Rj defined in (10) has positive volume (by the condition (H3)), there must exist j > 0 such
that the intersection R ∩ Rj has positive volume. It thus suffices to prove that for any set
P j ⊆ Rj with positive volume,

Pr[∃k > 0 : V k ∩ P j �= ∅] > 0. (13)

Let Wj be the set of all sequences of discrete transitions that steer the system from the
initial state sinit = (qinit, xinit) to P j . If Wj is empty, which means that P j is reached only
by the continuous dynamics at the location qinit. Note that, using the conditions (H1), (H2)
and (H3) and the idea of the completeness proof5 for the continuous systems [14], we can
prove that for any reachable set Y at location qinit with positive volume, there is a non-null
probability that after some k > 0 iterations V k ∩ Y is non-empty (that is, the set Y is visited
by the algorithm). Hence, (13) can be proven.

We consider now the case where Wj is not empty. By the definition of Rj in (10), the
length of each sequence in Wj is at most j . To prove (13), it suffices to show that there is a
non-null probability that a sequence in Wj is visited by the algorithm after k > 0 iterations.
To do so, let p = e1, e2, . . . , el be a sequence in Wj . The transition e1 from the initial loca-
tion can be visited if its guard set can be reached. By the condition (H4), the set of reachable
states enabling the transition e1 satisfies the positive volume neighborhood property. Again,
combining this with the completeness proof for continuous systems, we can conclude that
there is a non-null probability that the guard set of e1 is visited by the algorithm. Similarly,
we can prove the same for the subsequent transitions of p. Consequently, there is a non-null
probability that the sequence p is visited by the algorithm after k > 0 iterations.

We proceed with the proof of the theorem. We define the set

Breach(s) = Reachb(s) ∩ N (s, ε). (14)

Recall that Reachb(s) is the backward reachable set from s, defined as in (11). Using the
assumption (H3), the set Breach(s) has positive volume.

We define the distance from s = (q, x) to V k as dk(s) = mins′∈V k dH (s ′, s). Let Dk(s) be
a random variable whose value is dk(s).

Let k ≥ 0 be an integer such that V k does not contain a vertex inside Breach(s). Because
the whole set Breach(s) is reachable, using the above intermediate result, we have

Pr[∃k′ ≥ k : V k′ ∩ Breach(s) �= ∅] > 0.

Note that the fact V k′
contains a state in Breach(s) implies that dk′

(s) < dk(s), since none
of the states in V k is in Breach(s). In addition, dk(s) is non-increasing with respect to k;
therefore there exists a strictly positive constant c such that Dk′

(s) − Dk(s) > c. Therefore,
limk→∞ Pr[dk(s) ≤ ε] = 1, which means that limk→∞ Pr[∃s ′ ∈ V k : s ′ ∈ N (s, ε)] = 1. This
establishes the proof of the theorem. �
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