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Abstract. The paper deals with the problem of computing schedules for multi-threaded real-time
programs. In [14] we introduced a scheduling method based on the geometrization of PV programs. In
this paper, we pursue this direction further by showing a property of the geometrization that permits
finding good schedules by means of efficient geometric computation. In addition, this geometric prop-
erty is also exploited to reduce the scheduling problem to a simple path planning problem originating
from robotics, for which we developed a scheduling algorithm using probabilistic path planning tech-
niques. These results enabled us to implement a prototype tool that can handle models with up to 100
concurrent threads.

1 Introduction

Increasing demands on new functions and features of embedded systems make these systems more and
more complex. Parallel programming is a way to handle their complexity, and embedded platforms can now
support such programming, such as in C or Java. On the other hand, a key feature of embedded systems is
that they interact with a physical environment in real time. But analyzing real-time behavior of concurrent
programs is a difficult task. Indeed when each part of such a program has its own real-time characteristics,
their interaction often makes the real-time behaviour of the whole program very complex. In this paper we
deal with a class of concurrent programs which consist of several threads that share some (data) resources.
Each resource has a limited capacity defined by the number of threads that it can serve at the same time.
The real-time characteristics of the threads are known, and we are interested in the behavior of the program
when all the threads run concurrently.

In particular, our goal is to find a good real-time schedule for such a program. More precisely, this schedule
specifies how the resources should be shared by the threads, so that the serving capacity of each resource
is respected and, in addition, the execution time of the program is as small as possible. To determine
such a schedule, one needs to resolve the conflicts between two or more threads that happen when their
simultaneous demand for the same resource exceeds the serving capacity of that resource. A resolution here
means a decision to which threads to give the resource and which threads have to wait until the resource is
released. Note that this program may be part of a larger program (for example, the body of an infinite loop).
In the design of an embedded system, an important advantage of such a schedule is that it guarantees that
all the program executions are deadlock free. Additionally, it provides a guaranteed worst case execution
time (also called worst-case response time), and from the schedule the designer can gain a lot of insight
about other properties of the program executions, such as the frequency and duration of waits.

The approach we use to solve this problem can be summarized by two main ideas. First, to model the
behavior of real-time multi-threaded programs, we use a timed extension of the PV programs. Second, the
scheduling problem is solved by combining an abstraction of program executions and the use of geometric
properties of the model. These ideas were initiated in our previous work [14], and this paper pursues this
direction further. Its main novelty is the discovery of a geometric property of PV programs, which makes
the search for good schedules more efficient via simple geometric computation. In addition, this geometric



property is also exploited to reduce the scheduling problem to a simple path planning problem in robotics,
for which we developed a randomized search algorithm, inspired by probabilistic path planning techniques.
These results enabled us to handle models with up to 100 concurrent threads.

The paper has three main parts. In the first part, we describe the PV program model, its geometric
representation and then formulate our scheduling problem. The definitions and notions introduced in this
part are necessary for the developments that follow. In the second part, we present the above mentioned
geometric property of the model and show how it is used to solve the scheduling problem. This constitutes
the main theoretical result of the paper. The last part is devoted to some experimental results, a discussion
on related work and some concluding remarks.

2 Timed PV Programs and Diagrams

In the paper, letters in bold are often used to denote vectors and subscripts to denote the components of a
vector, such as ai is the ith component of vector a. Supercripts are often used to denote the elements of a
sequence, such as ai is the ith element of sequence {a0, a1, . . . , am}.

In this section we describe how to model real-time behavior of multi-threaded programs using PV pro-
grams, a model introduced by Dijkstra [10]. The reader is referred to [15, 12, 17] and the references therein
for the results on the application of this model in the analysis of concurrent programs. We model each thread
as a process, and a set of threads running together is modeled as a PV program. In the PV vocabulary, P
stands for “lock”, and V stands for “unlock” or “release”; it is however important to emphasize that, in our
modeling framework, the actions “P” and “V” model the events of taking and releasing a resource, and they
do not necessarily mean locking and unlocking a resource in a concrete implementation. In other words, they
are used to specify resource usage constraints, that is some resources need to be used in a certain order and
within some amount of time. A classical PV program example, called the Swiss flag example, is as follows:

A = ⊥A.Pa.Pb.Vb.Va.>A, B = ⊥B .Pb.Pa.Va.Vb.>B (1)

where a and b are resources whose serving capacity is 1. We assume that the threads can always run
concurrently, that is a thread can run as soon as it gets all the required resources. Hence, in this example,
both threads A and B are assumed to have their own processor to run on. A model for the cases where the
threads have to share processors was proposed in [14]. In the following, we give the formal definition of the
model.

Resources and Threads. The shared resources are represented by a set < of resource names. Each
resource has a serving capacity3, which is represented by a function limit : < → N+. To model resource usage,
we consider two types of resource actions: taking and releasing a resource r ∈ <, denoted respectively by
Pr and Vr.

We consider a set of N threads: E1, . . . , EN . Each thread Ei is a total order of events. Each event e has
an associated resource action, for example Pr. The order relation of Ei is denoted by vEi

and is also written
simply v when the context is clear. Each thread Ei contains at least two special events: its start event
⊥Ei

and its end event >Ei
, which are respectively the bottom and top elements of the order. The threads

are assumed to be well-behaved, in the sense that each resource should be released before it is taken again
by the same thread. We say that thread Ei is accessing resource r at event e iff Pr has occurred before or
at e and, additionally, the corresponding release action Vr occurs (strictly) after e.

The running together of N threads is modeled by the product E =
∏

i=1,...,N Ei. We denote by 4 the
order of E , which is defined componentwise. An element of E is called a state and often denoted by the
letter ε, and thus εi is its event on thread Ei. We denote by ⊥ = (⊥E1 , . . . ,⊥EN

) the bottom state of E
and by > = (>E1 , . . . ,>EN

) its top state.
If B is a partial order and b, b′ ∈ B are such that b < b′, the pair of these elements is called an arc and

denoted by 〈b, b′〉. Also, if B is a total order and if b ∈ B and b 6= ⊥B , then predB(b) denotes the direct

3 In the PV vocabulary we say that the resource is protected by a semaphore.
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predecessor of b in B, that is predB(b) v b′ < b =⇒ b′ = predB(b). When the order is clear from the
context, we simply write pred(b). The notion of direct successors can be defined similarly.

Task duration. Our version of timed PV programs [14] is an enrichment of the classic PV program model
with a task duration between every two consecutive events of each thread. Indeed, in practical real-time
programming, one may estimate the duration of the execution of the program code between two events.
Such estimations are usually done to account for the worst cases; this duration is a worst-case execution time
(WCET). So we associate with each event of a thread the duration (or the WCET) of the task corresponding
to the part of the program code which is run between the occurrences of this event and of its direct successor.
When event e ∈ Ei occurs, we say that thread Ei starts task e. We denote by E the union

⋃
i=1,...,N |Ei| \

{>Ei
}, where |Ei| is the set of events of Ei. Thus, the task durations are given with a function d : E → R+,

and for every thread Ei, d(>Ei) = 0. In this work we do not consider tasks with duration 0. As an example,
the following is a timed version of the Swiss flag program:

A = ⊥A.1.Pa.1.Pb.2.Vb.5.Va.2.>A, B = ⊥B .1.Pb.4.Pa.1.Va.1.Vb.1.>B

The numbers between the actions are the task durations. For example, the first number 1 in thread A is the
duration of the task to be executed between the beginning of thread A and its first action Pa.

Forbidden States. A state ε ∈ E is said to be forbidden if at ε there is at least one resource to which the
number of concurrent accesses is greater than its limit, that is ∃r ∈ < :

∑
i=1,...,N accessingi(r, ε) > limit(r)

where accessingi(r, ε) = 1 if thread Ei is accessing resource r at εi and accessingi(r, ε) = 0 otherwise.
We denote by F the set of all forbidden states of E , and by A the set of all allowed states, which is the
complement of E .

Strings. An arc 〈ε, ε′〉 is called a small step if ∀ i ∈ {1, . . . , N} : pred(ε′i) vEi
εi vEi

ε′i.

Definition 1. A string s is a total suborder of E such that for each state ε in s\{⊥s}, the arc 〈preds(ε), ε〉
is a small step.

Note that we define a string as a subset of E . A string that does not contain a forbidden state and hence
does not induce any resource access conflicts, is called a feasible string. We remark that in our previous
work [14], a string is defined as a subset of A and thus all strings are by definition feasible. The idea of not
restricting to elements of A is to separate time constraints and resource constraints in order to model time
more explicitly, as we shall show later.

Timed execution. The above notion of strings does not capture time information. To this end, we introduce
the notion of timed state and timed execution. A timed state is a pair µ = (ε, t) where ε ∈ E and t is a
non-negative real number. Given a timed state µ = (ε, t), it is called forbidden if ε is a forbidden state.
The meaning of (ε, t) is that at time point t the latest event on thread Ei is εi.

A sequence of timed states γ = µ1, . . . ,µm = (ε1, t1), . . . , (εm, tm) is called a timed execution. It
specifies the exact time points at which the threads perform the resource actions. A timed execution is
feasible iff none of its elements is forbidden. In addition, a timed execution is said to be consistent iff
the event order and time constraints of all the threads are respected.

Definition 2. A timed execution γ = µ1, . . . ,µm = (ε1, t1), . . . , (εm, tm) is consistent iff the following
conditions are satisfied for each thread Ei, i ∈ {1, . . . , N}:
1. The sequence ε1

i , . . . , ε
m
i is a string.

2. For each j ∈ {2, . . . ,m − 1} such that εj
i 6= εj−1

i , let j′ ∈ {1, . . . ,m − 1} be the smallest index strictly
greater than j such that εj′

i 6= εj
i . If such j′ exists, then tj

′ − tj ≥ d(εj
i ).

The duration of γ is defined by d(γ) = tm−t1. A feasible consistent timed execution γ = µ1, . . . ,µm =
(ε1, t1), . . . , (εm, tm) with ε1 = ⊥ and εm = > is called a timed schedule.

The first condition guarantees that the required task order (or event order) of each thread is respected, and
the second condition guarantees that the task duration constraints are satisfied. The above definition implies
the time progress property of a consistent timed execution since its sequence t1, . . . , tm is strictly increasing.
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Scheduling problem. We can now formally state our scheduling problem as computing a timed schedule
with the shortest duration, which we simply call a shortest or optimal schedule. To find such a timed
schedule, we use strings to abstract timed schedules and geometric properties of PV diagrams to compute
this abstraction. This will be discussed in the rest of this section. We defer a discussion on related models
and problems, in particular timed automata and job-shop scheduling, to Section 5.

Before continuing, we remark that due to the complexity of real-life systems, finding an optimal schedule
often requires prohibitive computation time, and hence a problem of great interest is to compute good
or short schedules (that is, those close to the optimal ones) in a reasonable time. This is indeed our
practical goal, and therefore although the theoretical results in the paper address the optimality criterion,
we also propose a practical non-exhaustive method to achieve a good trade-off between computation time
and optimality.

2.1 Geometrization
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Fig. 1. The PV diagram of the timed Swiss flag program

Each PV program has a geometric representation which is its PV diagram. The PV diagram of the Swiss
flag program is shown in Figure 1. In this diagram, a schedule can be represented by a sequence of small steps
from (⊥A,⊥B) to (>A,>B). The figure shows a feasible schedule drawn in solid arrows. The black circles
indicate the forbidden states. For example, point (2, 1) is forbidden because its associated combination of
actions (Pb, Pb) means that both threads are accessing resource b at the same time, which is not possible
since the serving capacity of b is 1. An important advantage of such diagrams is that they allow to ‘visualize’
special behaviors of a program, for example we can see two special cases: point (1, 1) corresponds to a
deadlock and point (4, 6) to unreachable state.

We now formalize the geometric representation. We use the notation “ ” for the mapping. Each thread Ei

is mapped onto a subset of R by specifying for each event e ∈ Ei an ordinate c(e). Hence, roughly speaking,
a geometrization is a mapping of its executions to trajectories in a subset of RN . In [14], we introduced a
geometrization which maps the product of the threads Ei (1 ≤ i ≤ N) to ZN . We also proposed a method to
find short schedules using this geometrization. This method does not depend on the scaling of the diagram,
that is the task durations need not be modeled precisely. To exploit its geometric properties further, in this
paper we use a geometrization where the diagram is scaled according to the task durations, which is called
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exact scaling geometrization. The ordinates are chosen so as to visually reflect the task durations. More
formally, the ordinates are defined inductively as follows:{

c(⊥Ei) = 0,
c(e) = c(predEi

(e)) + d(predEi
(e)) if e 6= ⊥Ei .

The order of Ei is thus mapped to the order ≤ between the real numbers c(e), and Ei is the resulting
total order ({c(e) | e ∈ |Ei|},≤). This mapping is clearly an isomorphism of total orders. The geometrization
of E is defined as the product of partial orders E =

∏
i=1,...,N Ei and is isomorphic to E .

Mapping states. Geometrically speaking, in RN , the geometrization E forms a non-uniform N -dimensional
grid G over the bounding box B = [0, c(>1)] × . . . × [0, c(>N )] ⊂ RN . Every state ε = (ε1, . . . , εN ) ∈ E is
mapped to ε = (c(ε1), . . . , c(εN )) ∈ RN which is a grid point.

The set F of forbidden states is mapped to the set F of forbidden points, which have an intuitive
geometric interpretation. Given a box B = [l1, u1] × . . . × [lN , uN ], its associated right-open box is defined
as B′ = {x | ∀i ∈ {1, . . . , N} : li ≤ xi < ui} where xi is the ith coordinate of the point x. For every
ε ∈ F , let box(ε) be the elementary box whose bottom left vertex is ε. An elementary box is a box such
that all its vertices are grid points and additionally its interior does not contains any grid points. Then, the
associated right-open box of box(ε) is called the elementary forbidden box associated with ε, denoted by
obox(ε). The union of all such boxes PF =

⋃
ε∈F obox(ε) is called the forbidden region (whose closure is

indeed a non-convex polyhedron with axis-parallel faces). In Figure 1 the forbidden region has the form of
the Swiss flag. Due to the time progress property of timed schedules, we can prove that a feasible schedule
never enters the forbidden region. Similarly, the allowed region is defined as PA = B \ PF .

Mapping strings. A string s is mapped to a sequence s of grid points in the bounding box B. In view of
exploiting continuous geometric properties, we also define the continuous geometrization of an arc 〈ε, ε′〉 as
the directed line segment from vertex ε to vertex ε′ and denote it by 〈ε, ε′〉. The reason for this choice is
that there is a relation between the feasible strings and the corresponding line segments that we shall show
later.

2.2 Discrete abstraction of timed executions

In our timed PV program model, a string can be thought of as a discrete abstraction of timed executions.
Indeed, one string corresponds to a uncountable number of timed executions. We define the duration of a
string as the duration of a shortest consistent timed execution corresponding to the string. In other words,
it is the duration of such a timed execution where all the resource actions are taken as soon as possible.
In [14], we showed an algorithm to determine the duration of a string, which can be seen as a constructive
definition of this notion.

In particular, we are interested in strings with no unnecessary wait, which are called eager strings. A
thread waits out of necessity when its next resource is unavailable. In Figure 1, an example of a non-necessary
wait is a schedule that would go, for example, through points (4, 0) and (9, 0) before going to (9, 1), which
means that thread B waits until thread A releases resource a before accessing resource b while resource b is
already available. Notice that a shortest schedule is necessarily eager; the other direction is however not true
in general. The notion of bow that we describe in the following is indeed a way to abstract eager strings.
The main idea is to see whether it is possible to make a ‘big’ step instead of small steps as in the definition
of strings.

Definition 3. Given an arc 〈ε, ε′〉 from A,

– The tightened length of the arc 〈ε, ε′〉, denoted by d(〈ε′, ε〉), is the duration of a shortest feasible
string from ε to ε′ if at least one such feasible string exists; otherwise, d(〈ε′, ε〉) = +∞.

– The max distance of 〈ε, ε′〉 is ‖〈ε, ε′〉‖ = maxi=1,...,N (c(ε′i)− c(εi)).

5



– The arc 〈ε, ε′〉 is called a bow iff d(〈ε, ε′〉) = ‖〈ε, ε′〉‖.

Geometrically speaking, the max distance ‖〈ε, ε′〉‖ is the longest side of the box whose bottom left and
top right vertices are ε and ε′. It is easy to see that one cannot expect to obtain a string from ε and
ε′ with duration shorter than ‖〈ε, ε′〉‖ since it is exactly the time needed to execute the longest thread
without waiting (i.e. without interruption). On the other hand, if there is at least one string from ε and
ε′ with duration equal to ‖〈ε, ε′〉‖, then the arc 〈ε, ε′〉 is called a bow. As an example, in Figure 1, the
arc 〈(9, 0), (11, 6)〉 is a bow, while the arc 〈(0, 1), (9, 8)〉 is not. Indeed, the latter has the max distance
‖〈(0, 1), (9, 8)〉‖ = 9, while its tightened length is 13 since a shortest string (0, 1), (1, 6), (2, 7), (9, 8) exchanges
resource b at point (1, 6), and thread A has to wait until this exchange for at least 4 time units.

Remark 1. Given a feasible string s consisting of two consecutive small steps 〈ε, ε′〉 and 〈ε′, ε′′〉, let d(s)
denote the duration of s. Then, d(s) ≤ ‖〈ε, ε′〉‖+ ‖〈ε′, ε′′〉‖.

The above remark can be explained with a simple program that has 2 concurrent threads. We first determine
the smallest time δ needed to follow the first small step 〈ε, ε′〉 = 〈(ε1, ε2), (ε′1, ε

′
2)〉. If εi 6= ε′i, we know that

at least [c(ε′i) − c(εi)] time units have passed on thread Ei. Suppose that ε1 = ε′1 and ε2 6= ε′2. Since no
new event has occurred on E1, the lower bound of the time lapse on E1 is 0, and thus the global time lapse
δ = [c(ε′2)− c(ε2)]. We proceed with the second small step 〈ε′, ε′′〉 and consider the following two cases:

– Case 1: No new event has occurred on E1, the lower bound of the time lapse on thread E1 is still 0, and
the smallest time needed to follow these two consecutive steps is [c(ε′′2)− c(ε′2)] + [c(ε′2)− c(ε2)].

– Case 2: A new event occurred on E1, which allows us to know that the lower bound of the time lapse
on thread E1 is [c(ε′′1) − c(ε′1)]. If again ε′′2 6= ε′2, combining the lower bounds of the time lapses on
both threads, the smallest time lapse of these two consecutive steps is max{[c(ε′′1) − c(ε′1)], [c(ε

′′
2) −

c(ε′2)] + [c(ε′2) − c(ε2)]}. By definition, this is exactly the duration of the string s. We can see that
d(s) ≤ maxi{c(ε′i)− c(εi)}+ maxi{c(ε′′i )− c(ε′i)} = ‖〈ε, ε′〉‖+ ‖〈ε′, ε′′〉‖.

The intuition behind this is that only when an event e occurs on a thread we can determine a lower bound
of the time lapse on this thread since the occurrence of the previous event. This lower bound imposes a
constraint on the global time at event e. When a new event simultaneously occurs on two or more threads,
the global time is determined by combining the constraints imposed by all these threads, and we say that in
this situation these threads ‘synchronize’. Hence, the way of describing the time constraints of each thread
on a separate dimension in a timed PV program can be thought of as de-synchronizing them, and the threads
need to be re-synchronized only when their interaction affects the global behavior. ut

To define the abstraction of eager strings, we additionally need the notion of critical exchange states, which
are states where an eager string should wait. An exchange state is an element ε ∈ A where a resource
can be exchanged, that is there exists at least one resource r ∈ < and two indices i, j such that εi = Vr

and εj = Pr. An exchange state ε such that ∃r : accessing(r, ε) = limit(r) is called a critical exchange
state. In the Swiss flag example, the critical exchange states are indicated by circled addition symbols. We
sometimes call these states ‘exchange states’ for short. It is possible to characterize these states geometrically.
We can prove that their geometrizations are indeed the boundary points of the forbidden polyhedron that
belong to at least one positive face [9]. Note that every face of the forbidden polyhedron is parallel to one of
the axes, and a face is called positive if its normal vector points to the positive direction of the axis.

The abstraction of all the eager strings (and hence also of all the shortest schedules) is the graph that
has all the critical exchange states together with ⊥ and > as nodes and bows as edges. We call this graph
the abstraction graph. More formally, we denote by C the union of all the ctritical exchange states and
{⊥,>}. The abstraction graph is the weighted graph defined by the binary relation G ⊆ C × C satisfying:
εG ε′ ⇐⇒ 〈ε, ε′〉 is a bow; and the cost (or weight) of the edge from ε to ε′ is the max distance ‖〈ε, ε′〉‖.
The cost of a path in the graph G is the sum of the costs of its edges. For ε, ε′ ∈ C with ε 4 ε′, we denote
by l(ε, ε′) the duration of a shortest (or the least costly) path in G from ε to ε′, and this duration is +∞
if there is no path from ε to ε′. The following theorem [14] states an important property of the abstraction
graph G.
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Theorem 1 (Abstraction graph). The duration of a shortest schedule from ⊥ to > is the cost of a shortest
path in G from ⊥ to >, that is d(〈⊥,>〉) = l(⊥,>).

The intuitive meaning of the theorem can be explained as follows. It shows a special property of the shortest
paths of G: if π is a shortest path, then the cost of π is the duration of a shortest schedule, and π is a
abstraction of this schedule. The problem of searching for a shortest schedule is thus reformulated as that of
finding a shortest path in the graph G. To construct the abstraction graph, it suffices to consider the critical
exchange states. The existence of a bow between two such states indicates that there exists an eager feasible
string or ‘direct route’ between these two states.

Computationally speaking, this abstraction is useful only if one can efficiently determine whether an arc
is a bow. Checking the condition given in Definition 3 could be complicated since it requires computing
the tightened length d(〈ε, ε′〉), which is not trivial if one wants to avoid enumerating all feasible strings
connecting ε to ε′. In [14] we proposed a method to do so using a spatial decomposition of the allowed region
into boxes. Essentially, if a box does not contain any forbidden points, then any arc whose geometrization is
inside the box is a bow. In this work, we intend to exploit the geometrization further in order to be able to
quickly find long bows (i.e. long direct routes) allowing to speed up the search for short schedules.

3 Discrete abstraction in relation with geometrization

The following theorem states an important property of bows in relation with the Euclidean intersection in
the exact scaling geometrization. This property enables us to efficiently determine whether an arc is a bow
in order to construct the abstraction graph.

Theorem 2. Let 〈ε, ε′〉 be an arc from A. If 〈ε, ε′〉 ∩ PF = ∅ where PF is the forbidden region, then 〈ε, ε′〉
is a bow.

As mentioned earlier, the tightened length d(〈ε′, ε〉) cannot be smaller than ‖〈ε, ε′〉‖. This means that
to prove the theorem, it suffices to find a concrete feasible string from ε to ε′ whose duration is exactly
‖〈ε, ε′〉‖. By definition of the duration of a string, this also means finding a feasible timed execution with
the required duration. The idea of the proof is to construct such a timed execution that we call a witness
timed execution. This is done by a clipping procedure explained in the following.

3.1 Constructing a witness timed execution

Clipping. Let {xj}1≤j≤m be the sequence of all intersecting points of the directed line segment 〈ε, ε′〉 with
the grid planes. A grid plane is a hyper-plane which is parallel to one of the axes and contains at least one grid
point. We denote this by {xj}1≤j≤m = clipG(〈ε, ε′〉) and call this sequence of intersecting points the clipping
of 〈ε, ε′〉 on the grid G. An example of clipping is shown in Figure 2 where x1,x2, . . . ,x7 is a sequence of
intersecting points. We derive a timed execution from this sequence of intersecting points by mapping each
intersecting point to a timed state. Note the time value of a timed state is the absolute time lapse from the
beginning of the execution, and in order to determine this absolute time lapse one need to consider the time
lapses relative to the occurrence of the events. This is captured by the notion of relatively-timed events.

Relatively-timed events. We first remark that a grid point can be directly mapped back to a state in
E ; however, an intersecting point in the clipping is not necessarily a grid point. Note that a state in E
corresponds to the moment where all the Ei take a resource action. An intersecting point which is not a grid
point indeed corresponds to a situation where not all the threads simultaneously perform a resource action.

Given e ∈ Ei and a real number β ∈ [0, d(e)) where d(e) is the duration of task e, e ⊕ β denotes the
relatively-timed event at which at least β time units have elapsed since the occurrence of the event e (or
since task e is started); β is called the relative time lapse of e⊕β. Intuitively, regarding thread Ei, e⊕β is a
fictious event because its occurrence is not associated with any resource actions by Ei; however, as we shall
see later, it is used to indicate a time point at which at least one or more other threads perform a resource
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Fig. 2. Geometric realization

action. Then, the set of relatively-timed events of thread Ei is: Υi = {e⊕ β | e ∈ |Ei| ∧ β ∈ [0, d(e))} where
|Ei| is the set of events of Ei. For each relatively-timed event ρ = e⊕ β ∈ Υi, event(ρ) gives the associated
event e.

We associate with each relatively-timed event e ⊕ β an ordinate c(e ⊕ β) = c(e) + β. Hence, an event
e ∈ Ei can be indeed written as a relatively-timed event of the form e ⊕ 0. The definition of order on the
relatively-timed events in Υi can be defined as: e vΥi e′ iff c(e) ≤ c(e′).

Remark 2. With respect to a thread, the difference between the relative time lapse β of a relatively-
timed event e ⊕ β and the time component t of a timed event (e, t) (defined in Section 2) is that the
latter is an absolute time (i.e. the time lapse from the beginning of the execution), while the former is a
relative time (i.e. the time lapse from the occurrence of the last event, which is e).

Relatively-timed states. A vector of relatively-timed events υ = (υ1, . . . ,υN ) where υi ∈ Υi is called a
relatively-timed state. We denote events(υ) = (event(υ1), . . . , event(υN )). The order 4 on relatively-
timed states is defined componentwise, namely υ 4 υ′ iff ∀i ∈ {1, . . . , N} : υi vΥi

υ′i, or equivalently
∀i ∈ {1, . . . , N} : c(υi) ≤ c(υ′i).

Let us explain the intuitive meaning of relatively-timed states. At relatively-timed state υ = (ε1 ⊕
β1, . . . , εN ⊕ βN ), if the relative time lapse βi = 0, then thread Ei is performing the action associated with
event(υi); if βi > 0, thread Ei is performing no resource action and, in addition, at least βi time units have
elapsed since the occurrence of εi. It should be noted that by “performing no resource action” we mean that
the thread does not take or release a resource but it might continue the current task if this task is not yet
finished.

Given two relatively-timed states υ,υ′ ∈ Υ such that υ 4 υ′, then 〈υ,υ′〉 is called a small timed step
if events(υ) = events(υ′) or 〈events(υ), events(υ′)〉 is a small step. In other words, υ and υ′ may have the
same associated events but differ in the relative time lapse vector.

Definition 4. If 〈υ,υ′〉 is a small timed step, the time lapse between υ and υ′ is defined as: ∆(υ,υ′) =
maxi∈{1,...,N}{c(υ′i)− c(υi)}.

The meaning of a small timed step 〈υ,υ′〉 is that following the arc 〈υ,υ′〉 involves letting each thread Ei start
the task υi and run for exactly ∆(υ,υ′) time. If there exists a thread Ei such that c(υ′i)− c(υi) < ∆(υ,υ′),
we say that when taking the small step 〈υ,υ′〉 the thread Ei ‘has to wait’ because the time lapse required
for the thread Ei to reach event(υ′i) from event(υi) is smaller than ∆(υ,υ′).
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Mapping points to relatively-timed states. Given a real number y ∈ [0, c(>i)], let e be the event in
thread Ei and e′ is its direct successor such that c(e) ≤ y and c(e′) > y. Such an ordinate c(e) is denoted by
byc. Then, we define \i(y) = e⊕ β where β = y − byc.

Definition 5. 1. Given a point x = (x1, . . . , xN ) ∈ B, the map \ of points to relatively-timed states is
defined as: \(x) = (\1(x1), . . . , \N (xN )).

2. Given a sequence of points {xj}1≤j≤m, \({xj}1≤j≤m) = {υj}1≤j≤m where υj = \(xj) for all j.

Witness timed execution construction. Using the map \, from the clipping clipG(〈ε, ε′〉) = {xj}1≤j≤m

we construct the following sequence of relatively-timed states: φ = υ1, . . . ,υm = \(x1), . . . , \(xm). It is not
hard to see that each arc 〈υi,υi+1〉 is a small timed step and event(υ1), . . . , event(υm) is a string. Then,
from φ we construct a timed execution as follows:

γ = (event(υ1), t1), . . . , (event(υm), tm) (2)

such that t1 = 0 and for j > 1 : tj =
∑

k=2,...,j ∆(υk−1,υk). It is easy to verify that the timed execution γ
is consistent. ut

To summarize, the construction of a witness timed execution for a bow 〈ε, ε′〉 consists of three steps.
In the first step, the clipping of the geometrization 〈ε, ε′〉 gives a sequence of intersecting points, each of
which corresponds to a moment where at least one thread performs a resource action. In the second step, the
intersecting points are mapped to a sequence of relatively-timed states that specify the time lapses necessary
to evolve from one state to another in this sequence. These time lapses indeed represent the local time
constraints of each thread. In the last step, we combine all the local time constraints to derive the global
time constraints in the timed execution γ.

3.2 Proof of Theorem 2

To prove that γ is a witness timed execution, we need to prove that: γ is feasible and its duration is indeed
‖〈ε, ε′〉‖.

We begin by proving the first part, that is, γ does not induce any resource conflicts. Due to space limita-
tion, we present only the main idea of the proof: if a point x is non-forbidden, then the state events(()\(x))
is non-forbidden (see [9] for a detailed proof). The intuitive meaning of this is that with respect to resource
usage, a relatively-timed event e ⊕ β ∈ Υi with β ∈ (0, d(e)) is equivalent to e ∈ Ei, since during the time
interval between the occurrences of e⊕0 and e⊕β no resources have been taken or released by thread Ei. ut

We proceed to prove that the duration of γ is ‖〈ε, ε′〉‖. The following intermediate result is a direct
consequence of the definition of the duration of a timed execution.

Lemma 1. The duration of the timed execution defined in (2) is

d(γ) = tm − t1 =
∑

1≤j≤m−1

∆(υj ,υj+1).

Geometrically speaking, Definition 4 implies that ∆(υj ,υj+1) is equal to the length of the longest side
of the box that has xj as its bottom left vertex and xj+1 as its top right vertex, denoted by b(xj ,xj+1) (see
Figure 2 for an example). Let k be the dimension corresponding to the longest side of the box b(x1,xm).
Note that this box has 〈ε, ε′〉 as diagonal. It is easy to see that k is also the dimension corresponding to the
longest side of each box b(xj ,xj+1). Combining this with Lemma 1, we have

d(γ) =
∑

1≤j<m

∆(υj ,υj+1)

=
∑

1≤j<m

c(υj+1
k )− c(υj

k)

= c(υm
k )− c(υ1

k) = c(ε′k)− c(εk) = ‖〈ε, ε′〉‖
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The proof of Theorem 2 is now complete.

Remark 3. The proof of the theorem also provides a method for concretizing strings. Hence, after finding a
shortest path in the abstraction graph, one can use the construction in the proof to define a concrete shortest
timed schedule.

Intersection test. Before continuing we briefly discuss how we implemented the intersection test. In [14]
the forbidden region PF is represented as a non-convex orthogonal polyhedron [6]. This representation has
the advantage of being compact since one needs to keep only one polyhedron. However, due to the complexity
of this representation (depending on the number of vertices and faces that is exponential in dimension), the
test of intersection between of a line segment and PF may be expensive in high dimensions. We therefore
represent the forbidden region as a list of the forbidden boxes (each of which corresponds to the constraints
involving the limited number of accesses to a resource). Then, we test the intersection between the line
segment with each box separately using an extension of ray tracing techniques to general dimensions. Since
a box can be represented by 2N linear constraints, the complexity of this test is polynomial in dimension N .

4 Finding a good schedule via path planning

4.1 Randomized search

Using the bow condition in Theorem 2, we can construct the abstraction graph and then search for a shortest
path of the graph. The main problem with this approach is that the number of critical exchange states, which
is much smaller than the number of all states, still grows exponentially with the dimension. We therefore
propose a non-exhautive solution that uses a randomized search, inspired by the RRT (Rapidly Explored
Random Tree), which is one of the successful path planning methods in robotics (see [21] for a survey on
the RRT method). Indeed, in the geometrization framework, given two points corresponding to two critical
exchange states, by Theorem 2, if the line segment connecting these two points does not intersect with the
forbidden region, then a feasible schedule with no unnecessary wait between two states exists (and we can
compute it). The problem of constructing the abstraction graph is thus similar to a path planning problem,
namely computing a collision-free path between a start point and a goal point in an environment with
known obstacles. The constraints on the solution path in the path planning problem arise from the geometry
of the obstacles and in our scheduling problem from the geometry of the forbidden region. While the RRT
approach, to construct the paths, considers all the points in the obstable-free space, using Theorem 1 only the
critical exchange states need to be considered. In addition, the paths we are interested in should satisfy the
time progress condition; therefore, the resulting path planning problem is indeed a simple motion planning
problem4 where the robot’s motion is governed by the constant derivative dynamics of a clock. This dynamics
is easily handled by considering the arcs (which by definition satisfy the time progress condition). In general,
the path and motion planning problems are hard, for example the problem of finding a shortest path in 3
dimensions is known to be NP-hard [20]. It is however important to note the simplicity of the obstacles in
our problem: they are in fact axis-aligned boxes. Additionally, since our practical goal is to quickly find a
good schedule, the good coverage properties of the RRT approach allows achieving a good trade-off between
the computation time and the quality of the results.

The method we propose is summarized in Algorithm 1. Essentially, we randomize the selection of the
critical exchange states. In order to avoid enumerating all such states, the randomized selection is done as
follows. Let BF be the set of all forbidden boxes, hence the forbidden region can be written as PF =

⋃
BF .

We first randomly choose a box in BF and then randomly choose a vertex of BF . The procedure is repeated
until the sampled vertex is a critical exchange state. The test of critical exchange states is done using the
geometric charaterization of these points, mentioned in the previous section. When a new critical exchange
point xg is selected, we call it a (current) goal point. We then find the the graph a nearest neighbor xn of xg

4 In a path planning problem, the dynamics of robots are not considered.
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Algorithm 1 Randomized search
C = {⊥, >}, k = 0
repeat

box = random(BF )
xg = random(Vertices(box))
if (xg 6∈ C ∧ xg is a critical exchange point) then

xn = Neighbor(G, xg)
x = feasibleBest(xn, xg)
if (x 6= xn) then

newEdge(G, xn, x)
end if
k + +

end if
π = ShortestPath(G, ⊥, >)

until (k = Kmax)

(in the max distance). The computation of the function feasibleBest is as follows. It checks whether the
line segment from xn to xg (which should correspond to an arc to guarantee the time progress condition)
intersects with the forbidden region. If this intersection is empty, x = xg and a new edge from xn to xg is
added in the graph, otherwise it tries to grow the graph from xn towards the goal point xg as far as possible,
which results in x 6= xg. When the number of nodes reaches Kmax which is a user-defined parameter, the
algorithm searches for a shortest path in the graph and stops if there is no request to proceed by the user. An
important ingredient in Algorithm 1 is the search for a nearest neighbor in the graph G. To do so, we use a
method to store the coordinates of points in a kd-tree [13] while the bows are still stored as the edges of the
graph G. Due to the use of the max distance, the operations on the kd-tree we construct is slightly different
than those on classic kd-trees. Nonetheless, due to space limitation we do not describe these computations,
which can be found in [9]. When running the above algorithm, the graph grows towards the end point >; it
is also possible to grow the graph towards both > and ⊥.

In addition, we can prove that when every goal point has a strictly positive probability of being sampled,
then the probability that the algorithm discovers a given schedule is always strictly positive. This property is
called ‘complete resolution’ in the context of RRTs (see for example [8]). Moreover, it is possible to biase the
exploration using the intuitions provided by the geometrization. Indeed, the max distance and the Euclidian
distance are closely related with respect to the definition of duration. For example, a schedule that is close in
the Euclidian distance to the diagonal of the bounding box (i.e. connecting ⊥ and >) is likely to be a short
schedule. Therefore, one can use the Euclidian distance as a measure to define a non-uniform sampling of the
goal points. More precisely, we can define an heuristics which favors the sampling of the critical exchange
states that are close to the diagonal of the bounding box in the Euclidian distance.

4.2 Experimental results

We have implemented the above algorithm for randomized search together with a possibility of biased
explorations. The experimental results obtained using the prototype tool on a number of examples are shown
in the tables of Figure 4 and Figure 5. We also include in Figure 3 an illustrative picture of the forbidden
region and the computed schedule (in white line) of a 3-dimensional example. The first set of examples
contains a number of timed versions of the Dining Philosophers problem in various dimensions, which we call
the timed N -philosophers problems. The second set contains some well-known job-shop scheduling (JSS)
benchmarks. The durations of the schedules obtained using our prototype tool are shown in the column
“Duration” of the tables. The goal of this experimentation is to evaluate the scalability and the precision of
our geometric approach.

Since there are variants of job-shop problems, we first briefly describe the problems we solved. In
these problems, each job is a sequence of operations, one on a machine, and the serving capacity of
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Fig. 3. Schedule for a 3D example

each machine is 1. Indeed, the machines can be modeled by resources and the jobs by threads. Note
that the constraints in job-shop scheduling are rather specific. When a machine is needed by two differ-
ent jobs Ei and Ej , their simultaneous access to this machine corresponds to the following forbidden box:
[c(⊥1), c(>1)] × [c(εi), c(εi+1)] × [c(εj), c(εj+1)] . . . [c(⊥N ), c(>N )] where εi and εj are the events of taking
the resource in question by thread Ei and thread Ej , and εi+1 and εj+1 are the events of releasing this re-
source. This box covers the whole range of the bounding box on the dimensions of all other threads Ek with
k 6= i and k 6= j. On the other hand, the JSS problems are by definition deadlock-free. Note that a general
timed PV program allows nested resource actions and thus are richer than these JSS models. However, to
test the performance of our approach, we did not try to exploit this particularity and treated the job-shop
scheduling problems as if they were problems with more complex types of constraints.

Concerning the timed N -philosophers problems, we do not know their optima, but the computed solutions
are clearly non-trivial and appear good in comparison with the worst-case upper bound estimation. On the
JSS problems, our method found fairly good schedules in reasonable CPU time. On some of these JSS
problems the optima were found. In operation research, there exist numerous methods in operation research
specific for JSS (see for example [23]) and recently verification techniques for timed automata were also
used to solve the JSS problems. These timed automata based methods employ sophisticated search-order
strategies, such as branch-and-bound or using estimates of remaining costs [7, 1]. Our experimental results
on JSS problems are not as good as the results obtained by these methods, but they are still reasonably
comparable.

In summary, we observe that our method is efficient for quickly finding a reasonable solution of large
problems. On the other hand, the number of forbidden boxes is a leading factor for complexity (since it not
only determines the number of critical exchange states but also the number of intersection tests to perform).
In a JJS problem with M machines and J jobs, the number of forbidden boxes is equal to 1

2MJ(J + 1) and
thus grows quadraticaly with the number of jobs (i.e. the dimension). Therefore, our method is suitable for
the problems which could be in high dimension but with a reasonable number of forbidden boxes.

5 Related work

A comparison of our timed PV model with some related models [11, 16, 4] can be found in our previous
paper. In this section, we present a comparison of our approach of scheduling with the existing approaches
using timed automata [4]. The problem of scheduling using timed automata has been studied in a number
of publications [5, 2, 19, 7, 3, 18, 22, 1] and more general optimality criteria (other than execution time) are
also considered in some of these work (for example [5, 19, 7]). It is easy to see that timed automata are
more expressive than timed PV programs since the former allow to describe more complex synchronization
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program Dim #forb. boxes Duration CPU time (s)

20 phil. 20 20 100 64

50 phil. 50 50 304 248

80 phil. 80 80 490 625

100 phil. 100 100 608 921

Fig. 4. Computation results for some timed N -philosophers problems

program #j #m #forb. boxes Duration Known optimum CPU time (s)

ft06 6 6 90 56 55 66

ft10 10 10 450 992 930 318

abz6 10 5 225 1142 943 851

la01 10 5 225 666 666 646

la05 10 5 225 596 593 87

la16 10 10 450 1047 945 247

la19 10 10 450 1050 842 42

la20 10 10 450 989 902 125

la24 15 10 450 1048 935 269

abz9 20 15 2850 820 679 310

Fig. 5. Computation results for some JSS problems

mechanisms. In addition, a timed PV program can be directly rewritten as a product of timed automata.
Each automaton corresponds to a thread and its locations represent the events in our model. Its transitions
representing the time constraints have the guards of the form x > d(e) (where x is a clock variable) and clock
resets. Thus, using timed automata, one could address the scheduling problem for more complex real-time
systems.

Naturally, the geometry resulting from the time constraints in timed automata is more complex than that
in timed PV programs. Indeed, in a timed automaton each time constraint is represented by a half-space
that could have a slope following the derivatives of the clocks, while in a timed PV program, the half-spaces
are all axis-parallel. As mentioned earlier, the reason for this is that in a timed PV program each thread
is described separately on one dimension, which can be thought of as a way of ‘desynchronizing’ them, and
then when analyzing the global behavior, the ‘synchronization’ of local time constraints is handled by the
use of max distance. Hence, the geometrization of the product of the threads is, on one hand, very easy to
construct, and on the other hand provides a lot of useful insight. The computation is performed on boxes, a
geometric object simpler than zones in timed automata. Moreover, the geometry of a PV diagram permits
modular combination of its discrete properties (such as to identify special points that contribute to the
optimal schedules) and continuous properties (such as to test feasibility of some long direct paths). However,
it should be noted that for special cases, such as JSS, one can derive efficient heuristics without manipulating
zones (see for example [1]).

6 Concluding remarks

In this paper we described a framework for computing schedules of multi-threaded real-time programs. This
framework is based on a combination of techniques from different domains: concurrent processes, motion
planning, and computational geometry. The originality of the paper is the way to transform the scheduling
problem to a simple path planning problem for which well-developed techniques in robotics can be applied.
The paper also shows the computational advantages of PV programs. In fact, their geometry is simple enough
to benefit from efficient geometric computations on boxes. The experimental results are encouraging, and we
intend to continue this work in various directions. One direction is to extend the model towards more complex
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specifications, such as those with deadlines and branching. Another direction is to focus on problems with
particular geometry (such as the JSS problems). Indeed, it is possible to include optimization that exploits
the special structure of the forbidden boxes in these problems. Studying properties of other geometrizations
including non-exact-scaling ones is also an interesting theoretical problem to address.
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