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Abstract— In this paper we are concerned with the problem
of verifying embedded control programs. The approach we
use combines the logico-numerical techniques developped for
the verification of Lustre programs and the set-based image
computation for continuous systems. The practical interest of
this approach lies in the fact that there exists a tool for
generating Lustre code for controllers described in Simulink.
We also illustrate the approach with some experimental results
obtained for a robotic controller for LEGO Mindstorm.

I. INTRODUCTION

Model-based design has emerged as an important
paradigm in the development of cyber-physical systems.
Its essence is the use of models in all the steps of the
development process, from design to implementation. Using
models is key to keeping the development costs manageable,
since correcting bugs on models is much cheaper than
on real protypes. This paradigm can however be effective
only when it is accompanied by powerful design tools for
simulation, verification, synthesis, code generation, etc. In a
cyber-physical system, the control and computation part is
often realized as computer programs that will be executed
to control the physical part. The design of the control and
computation part can be assisted by a variety of tools,
among which Simulink has become a de facto standard
in industry and is extensively used in various application
domains. Simulink supports the description and analysis of
models in a graphical block-diagram language. The Simulink
environment provides extensive capabilities for simulation
and control design based on advanced algorithms. Embedded
code generation from Simulink models is supported by
tools, such as Real-Time Workshop Embedded Coder from
Mathworks, TargetLink from dSpace. Although these code
generators translate models into production-quality C code
that can be deployed onto embedded systems, their major
problem with respect to safety critical applications is the
preservation of semantics. The question of fidelity between
the generated code and the simulated models, that is ”what
is simulated is what is executed”, is not addressed by these
tools. For this reason, an alternative approach is to translate
Simulink models to an intermediate formal language, which
permits formal reasoning on the relation between the models
of each step in the design process. This work is developed
within the framework of model-based development of em-
bedded control design and we use Lustre as intermediate
formal language and a tool for translating Simulink models
to Lustre. The choice of Lustre in this approach is motivated
by its formal semantics and a number of associated formal

validation tool1. Lustre is also supported by a code generator
from SCADE2 which is compliant the DO-178B Level A
standard3.

This work contributes a method for the verification of
Lustre programs generated from controller models specified
in Simulink. Such Lustre programs contain both Boolean and
numerical variables. Their verification often requires an ex-
haustive enumeration of modes corresponding to all possible
values of the Boolean variables, which often leads to a state-
space explosion. In this paper we employ a technique for
verification of logico-numerical programs without resorting
to the enumeration of the Boolean state space. On the other
hand, to extend the technique to programs with non-linear
computation, we combine it with a method for set-based
image computation for polynomial functions.

II. FROM SIMULINK CONTROLLER MODELS TO LUSTRE
PROGRAMS: A ROBOTIC EXAMPLE

A controller designed in Simulink can be translated to a
Lustre program using the tool S2L [14]. The tool translates
only the discrete-time blocks of Simulink, since implemented
controllers are in discrete time. This means that to be trans-
lated, a controller that is designed in continuous time needs
to be discretized using a sampling method. In addition, only
a ”safe” subset of Simulink blocks can be translated. This
restriction is needed to guarantee semantics preservation,
that is the ”informal” semantics of Simulink specified by
the behavior of the simulator for a given set of simulation
parameters and options.

Throughout the paper we use a case study of robotic
planning to explain our method. This case study is simple
(compared to advanced control and planification methods)
but sufficiently complex to illustrate the interest of our
method. The goal of this case study is to verify a controller
for a LEGO-Mindstorm robot. The robot is in form of a
two-wheeled vehicle and should follow a black line on the
ground while avoiding obstacles. The trajectory of the robot
is defined by 3 variables: its position (x, y) on the plane
and its orientation θ (compared to the x axis). These state
variables are controlled by two control inputs: the speeds vl
and vr of the left and right wheels. The dynamics of the

1See http://www-verimag.imag.fr/Tools,36.html for the available tools for
Lustre

2SCADE is the graphical version of Lustre commercialized by Esterel
Technologies, which is used in highest criticality applications, such as
European avionic projects (Airbus A340-600, A380, Eurocopter).

3This industrial standard specifies objectives across the development cycle
to achieve flight software certification.



robot is described by the following differential equations:

ẋ = (vl + vr)cos(θ)/2

ẏ = (vl + vr)sin(θ)/2

θ̇ = (vr − vl)/l

where l is the distance between the two wheels.
The robot is equipped with two light sensors and one

ultrasonic sensor. The light sensors are used to measure the
deviation of the robot from the black line, and the ultrasonic
sensor to detect the presence of an obstacle in front of the
robot. A controller was designed for this control objective as
follows.

The controller consists of two modes: one is for following
the line, and the other is for avoiding obstacles. The con-
troller takes as input the data from the sensors and computes
the desired speeds vl and vr of the left and right wheels
which are realized by the robot motor. The control law for
the line-following mode is:

vd = 50cd + 50c2d

vg = 50cg + 50c2g

where cd and cg are the values of the right and left light
sensors (ranging in the interval [0, 1]). The control law for
the mode of obstacle avoidance mode is as follows. When an
obstacle is detected, the robot should first stop, make 180-
degree turn (for example towards the left), and then continue
to follow the black line in the other direction. Since there is
a delay in the motor’s actions, it is important to wait until the
robot stops fully before turning around (otherwise, turning
aroung while advancing may make the robot lose track of
the black line). In addition, the 180-degree turn ends when
a sequence of colors White-Black-White is detected on the
left light sensor.

The above controller was implemented as a Simulink
model. In order to analyze the behavior of the controller in
the closed loop, the dynamics of the robot and the outputs cd
and cg of the light sensors are also emulated by a Simulink
model. Since the proposed verification method works for
polynomial dynamics, the cosinus and sinus functions are
approximated by piecewise linear functions.

The resulting model of the closed loop system contains
many switch blocks and Boolean operators (such as to
encode the piecewise linear approximation and detection of
a White-Black-White sequence). The Simulink model can be
translated to a Lustre program using the tool S2L.

Such a Lustre program corresponds to a discrete-time
hybrid automaton, which can be defined by exhautively enu-
merating all the possible Boolean values in the program to
construct a control flow graph with only numerical variables.
Although the above controller is simple in terms of control
laws and planification strategies, by a simple exploration of
the control flow graph of a medium-sized Lustre program, the
discrete structure of the corresponding hybrid automata can
already be very large and this discrete structure may contain
a lot of modes sharing the same continuous dynamics.

To address this problem, we employ the logico-numerical
techniques for Lustre programs.

III. TECHNIQUES FOR VERIFICATION OF
LOGICO-NUMERICAL PROGRAMS

A Lustre program defines a set of equations:

s1 = f1(s1, . . . , sn, u1, . . . , um)

. . .

sn = fn(s1, . . . , sn, u1, . . . , um

where Si are variables and ui are input variables. The
variables in Lustre are also called flows and they can be
Boolean and numerical. A flow is a partial function y : N →
Dy where where N is the set of natural numbers modelling
discrete time, and Dy is the domain of y. Besides the usual
arithmetic operations and control-flow operators (e.g., if then
else), the functions fi are made up of a number of temporal
operators, in particular the pre operator which is used to
specify a delay of one time unit, that is pre(y) defines a
flow z such that the value of z at instant k is equal to the
value of y at instant (k − 1).

The compilation of Lustre programs produces a symbolic
transition systems with the following components: s = (b,x)
is the vector of the state variables composed of Boolean
variables b and numerical variables x, u = (ub,ux) is the
vector of the input variables composed of Boolean variables
ub and numerical variables ux, C(x,ux) is the set of Boolean
constraints over the numerical variables. The transitions are
specified as:

A(b,ub, C)→
(
b′

x′

)
=

(
f b(b,ub, C)

fx(b,ub, C,x,ux)

)
where A(b,ub, C) is an assertion constraining the input
variables depending on the state variables. The numerical
transition functions are written as a disjunction of guard
actions: fx(b,ub, C,x,ux) =

∨
i gi(b,ub, C) → ai(x,ux).

An execution of such a program is a sequence

s0
u0

→ s1
u1

→ s2 . . .

such that

∀k ≥ 0,A(bk,uk
b , C)→ sk+1 = f(sk,uk)

where f = (f b, fx) is the vector of both Boolean and numer-
ical transition functions. In this work, to define the control
flow graph, we consider partitions defined by equivalence
relations on the Boolean state variables. A fully partitioned
control flow graph constructed by enumerating all Boolean
states is charaterized by the following equivalence relation:

b1 ∼ b2 ⇔ b1 = b2.

To combine symbolically discrete and continuous be-
haviors, we adopt the abstract interpretation approach for
approximations, with adaptative techniques to improve the
precision when necessary. Concerning enumerating continu-
ous modes, based on the observation that, in cyber-physical



systems, many discrete states are likely to share the same
continuous dynamics, and that the number of different dy-
namic behaviours remains small in many cases, we can
build an automaton with one location per continuous mode,
and use techniques for discrete systems to handle with the
complex transitions generated by the controller program.

On the other hand, separating discrete modes only when
they do not share the same continuous mode may lead to
a quite abstract view of the system w.r.t. the qualitative
behaviors. We adapted the techniques developped for purely
discrete systems [8] to refine the control structure w.r.t.
precision requirements. In order to choose automatically a
suitable partition for the verification of a safety property,
that is precise enough to conclude if the property holds,
and also the coarsest possible to limit the complexity of
analysis. the adopted solution consists in starting from a very
coarse partition (basically, distinguishing only between initial
states, bad states and others), and in refining it dynamically
according to heuristics. The above mentioned techniques for
verification of logico-numerical programs were implemented
in the tool NBAC [9], [8], which can also be used for hybrid
systems with piecewise-constant dynamics. In this work,
with view to verification of embedded control programs with
nonlinear numerical transition functions, we combine the
tool with a method for computing the image of polynomial
transition functions.

Before continuing, we briefly discuss related work regard-
ing symbolic treatment of discrete dynamics. The standard
approach to combine continuous and (finite) discrete dynam-
ics consists in encoding the values of the finite-state discrete
variables in the control structure of the hybrid systems
[7], [5]. However, this easily results in a combinatorial
explosion of the number of control locations. More recently,
[3] proposed a fully symbolic technique based on back-
ward (greatest) fixpoint computation, in which sets of states
are represented with a variant of Boolean circuits mixing
Boolean variables and linear constraints. The technique relies
on a semi-canonical representation for sets of states.

IV. IMAGE COMPUTATION FOR PARAMETRIC
POLYNOMIAL DYNAMICAL SYSTEMS

In this section, we present a technique for computing the
image of a polynomial function, which is used to handle
transition functions of Lustre programs. We also augment
the framework with uncertain parameters, since they are very
useful in practice to model imprecision in modelling. Com-
pared to the technique presented in [11], this technique is
more efficient in term of accuracy since it handles parameters
in a more symbolic way.

We consider the following numerical transition function:

x(k + 1) = π(x(k),p) (1)

where x ∈ Rn is the state variables, p ∈ P ⊆ Rm is
the vector of uncertain parameters. The set P is called the
parameter set. We assume that P is a convex polyhedron.
The initial state x(0) is inside some set X0 ⊂ Rn. Note that

the above function π plays the role of a guard action in the
symbolic transition system associated with a Lustre program.

One way to approximate the image π(X) is to use special
convex polyhedra with fixed geometric form, called template
polyhedra [13], [2]. A template is a set of linear functions
defined by an l×n matrix H and a real-valued vector c ∈ Rl.
Let Hi be the ith row of the matrix H and Hi

k its kth

element, the corresponding template polyhedron is defined
by

〈H, c〉 = {x |
∧

i=1,...,l

Hix ≤ ci}.

The vector c is called a polyhedral coefficient vector. By
choosing the templates it is possible to control both the pre-
cision and the geometric complexity of the approximations.
However this problem needs a deep investigation and is not
a topic of this paper.

The template matrix H is assumed to be given (which can
be composed of the normal directions of regular polyhedra);
to over-approximate the image π(X), the polyhedral coef-
ficient vector c = (c1, . . . , cn)T can be determined as the
solution the following optimization problems:

∀i ∈ {1, . . . , l}, ci = max(Σn
k=1H

i
kπk(x,p)) (2)

subj. to x ∈ X,p ∈ P. (3)

This polynomial optimization problem is computationally
difficult, we propose to use a linear relaxation in order
to take advantage of well-developed linear programming
techniques [12]. To this end, the Bernstein expansion can
be used to compute affine bound functions of polynomials.

The essence of this method, proposed in [6], for computing
an affine bound function is to find a hyperplane that is
close to all the control points, using linear least squares
approximation. For our problem, we need to extend this
method to parametric polynomial functions.

A multi-index i = (i1, i2, . . . , in) is a vector of n non-
negative integers. Given two multi-indices i and d, we write
i ≤ d if for all j ∈ {1, . . . , n}, ij ≤ dj . The parametric
polynomial π : Rn × Rm → Rn can be represented using
the power base as

π(x,p) =
∑
i∈Id

ai(p)xi

where ai is a function Rm → R; Id is the set of all multi-
indices i ≤ d, that is

Id = {i | i ≤ d}.

In this work, we consider only a linear dependence of the
coefficients ai(p) on the parameters p. The multi-index d is
called the degree of π. For x = (x1, . . . , xn) ∈ Rn, the ith

Bernstein polynomial of degree d is defined as follows:

Bd,i(x) = βd1,i1(x1) . . . βdn,in(xn)

where for a real number y,

βdj ,ij (y) =

(
dj

ij

)
yij (1− ydj−ij ),



and
(
d

v

)
denotes

(
d1

i1

)(
d2

i2

)
. . .

(
dn

in

)
. Then, for all x

inside the unit box B = [0, 1]n, the polynomial π can be
written using the Bernstein expansion as follows:

π(x) =
∑
i∈Id

gi(p)Bd,i(x)

where for each i ∈ Id the Bernstein coefficient gi(p) is
defined as:

gi(p) =
∑
j≤i

(
i
j

)(
d
j

)aj(p). (4)

Note if all the coefficients aj depend linearly on p, so do
the Beinstein coefficients. The Bernstein coefficients allow
to derive useful geometric properties, and we now show that
they can be used to efficiently compute an affine approxi-
mation of the polynomial π. Since the Bernstein coefficients
reflect the form of the image set, we will derive the lower
affine function that fits ”best” these Bernstein coefficients
using linear least squares. Note that in the method proposed
in [] the direction of the bound function is determined for
some midpoint in the parameter set and then is shifted down
to remain a lower bound for all other parameters p. In this
work, we improve this method by treating the parametes in
a symbolic way.

Let the set of multi-indices be written as Id = {ij | 1 ≤
j ≤ nb}, and the set of all control points are denoted
similarly. Let A be a matrix of size nb × (n + 1) (n is
the number of state variables of the dynamical systems in
question) such that its elements are defined as follows. For
all 1 ≤ j ≤ nb and 1 ≤ k ≤ n, Aj

k =
ijk
dk

and Aj
n+1 = 1.

Let ζ(p) be the solution of the following linear least squares
approximation problem:

ATAζ(p) = ATg(p).

Then, we can write ζ(p) = (ATA)−1ATg(p) where
(ATA)−1 is the MoorePenrose pseudoinverse4 of A. From
ζ(p), we can define an affine function

l̃(x) =

n∑
k=1

ζk(p)xk + ζn+1(p)

which corresponds to the ”median” axis of the convex hull
of all the control points. Its distance to a control point gj(p)
is

l̃(
ij

d
)− gj(p) =

n∑
k=1

ζk(p)xk + ζn+1(p)− gj(p).

It now remains to shift it downward by the amount:

δ = max{
∑n

k=1 ζk(p) ij

d + ζn+1(p)− gj(p) |
0 ≤ j ≤ nb ∧ p ∈ P}

4Note that ζ(p) can be computed using the Cholesky decomposition or
using two steps: first solving RT z = ATg(p) for z, and then solving
Rζ(p) = z for ζ(p).

where ij

d = (ij1/d1, . . . , i
j
n/dn). Due to linear dependence

of the Beinstein coefficients on p, the above optimization
problem is a set of linear programs and can thus be solved
efficiently. This results in a parametric lower bound function

l(x,p) = l̃(x,p)− δ, for all x ∈ B.
As mentioned earlier, the methods to compute affine bound

functions for polynomials can be applied only when the
set P is inside the unit box B anchored at the origin. To
extend it to polyhedral domains, we transform the polyhedra
to the unit box by two methods: (1) via an (oriented) box
approximation, and (2) by rewriting the polynomials using
a change of variables. In this paper, we describe only the
second method.

The initial polyhedron X can be mapped to the unit box
B by a change of variables. We assume that the polyhedron
X is bounded and let V = {v1, . . . ,vl} be the set of its
vertices. We first express the coordinates of a point x ∈ X
as a linear combination of the vertices of X , that is x =∑l

j=1 αjvj = ν(α1, . . . , αl) such that

∀j ∈ {1, . . . , l} αj ≥ 0 (5)
l∑

j=1

αj = 1. (6)

We then substitute x in π with ν(α1, . . . , αl) to yield a new
polynomial in α1, . . . , αl. It is not hard to see that a bound
function computed for the polynomial ξ(α̃) on this unit box
is also a bound function for the original polynomial π on the
polyhedron P

The above image computation is similar to a number of
existing numerical techniques in the use of linear approxi-
mation. Its novelty resides in the efficient way of computing
linear approximations. Indeed, a common method to approxi-
mate a non-linear function by a piecewise linear one, as in the
hybridization approach [1], [4] for hybrid systems, requires
non-linear optimization. In the hybrid systems verification,
polynomial optimization is used to compute barrier certifi-
cates [10].

V. EXPERIMENTATION

We have integrated the above image computation method
with the tool NBAC and tested the resulting prototype on the
controller for LEGO robot trajectory planning.

To prove that the controller assures that the robot follows
the line, we verify for a family of black lines that the distance
from the centroid of the robot to the line never exceeds some
threshold (which is 0.1 for this experimentation). The Lustre
program, shown in Appendix, contains three nodes corre-
sponding to Simulink subsystems: controller (that computes
the wheel speeds), position (that emulates the evolution of
the position of the robot), track (that emulates the output
of the light sensors). The assertions in the program specify
the constraints of the initial conditions. The execution of the
prototype tool allowed to detect a violation of the desired
property, as shown by a divergence of the distance of the
distance from the centroid of the robot to the black line in
Figure 1.



Fig. 1. The evolution of the distance from the centroid of the robot to the
black line (for the first 20 iterations).

VI. CONCLUSION

In this paper we described an approach to verification
of embedded control programs with nonlinear transition
functions. An important advantage of the approach is that it
can handle practical control systems described in Simulink.
We intend to explore more case studies in order to evaluate
the prototype tool. As future work, we plan to investigate
spectific treatments for common operations in a program
(such as resets and equalities) that may make the resulting
optimization problems become flat.
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APPENDIX

node system(orientation0:real)
returns (ok:bool;
posx,posy,orientation,
cd,cg,dist,d,
ud,ug:real)
let
assert(orientation0>-5.0*pi/180.0

and orientation0<5.0*pi/180.0);

assert(y0>=-0.1 and y0<=-0.1);

(ud,ug) = controller(cd,cg,dist);

(posx,posy,orientation) = position(0.0,
0.0,
orientation0,
0.0 -> (pre ud),
(0.0 -> (pre ug)));

(cd,cg,dist,d) = track(0.0 -> pre posx,
0.0 -> pre posy,
0.0 -> pre orientation);

ok = true -> (pre ok) and
(d)>=-0.004 and
(d)<=0.004;

tel


