
Approximating the convex hull of polytopes using

projection,

Romain Testylier (VERIMAG), Thao Dang (VERIMAG),
Bertrand Jeannet (INRIA)

March 30, 2011

1 Introduction

Analysis of continuous systems like reachability computation is a strongly
studied field [2], however its tracktability over dimension lead to some limi-
tations concerning set representation . Analysis system require to have a ro-
bust set representation over operation such like set intersection, minkowsky
sum or convex hull between two set.

Set representation class wich can be used in reachability analysis are
multiple (boxes, ellipsoids, zonotope...) [3]. Polytopes class is a very efficient
set representation in reachability analysis, our recent work show that we can
execute reachable computation on high dimensional discrete system using
convex polytopes [1]. Typically these polytopes can be represented either
by the convex hull of a list of vertice or by the intersection of a finite set of
half-spaces given by linear inequalities.

It is sometime usefull to maintain this two representations together for
set operations, by example it is easy to check the enclosure of a point using
half space and sets of points is traditionally used to compute the exact
convex hull of two polytopes. However, in high dimension the representation
of polytope like hypercube lead to an exponential growth of the number of
vertice (2n in n dimension), only half-space based representation can be
used. To extend our method of analysis to continuous dynamic we need a
method to compute convex hull operation between two polytope represented
by half-spaces,

Recent studies in polyhedral analysis [6] show that we can compute an
approximation of the convex hull of two polytope without frame representa-
tion by projecting variables in a set of inequalities given by the mathematic
definition of convex hull of two sets. We have investigate the work of Axel
Simon and Andy King concerning the computation of a possibly approxi-
mated convex hull using projection and exploiting sparsity of inequalities.

In a first part we will give a mathematic definition of the convex hull,
then we present two methods of projection of variable in a set of inequality

1

and presents their interrest in our problem, finally we will present some
experimental results.

2 Convex hull

The convex hull operation takes as input two inequality sets representing
two polytopes P1 and P2 in a n-dimensional space. Each one of these set are
represented by the intersection of their half-spaces. The set of inequalities
can be represented by a matrix with m rows and n columns and and a
column vector with m elements (m is the number of inequality) A · x ≤ c}.
The two polytope can be expressed as:

P1 = {x | A1 · x ≤ c1}

P2 = {x | A2 · x ≤ c2}
This operation produce a polytope Phull that is the smallest convex set

including all points x included in P1 or P2.

Phull =

 x

x = σ1x1 + σ2x2 ∧
σ1 + σ2 = 1 ∧
σ1 ≥ 0 ∧ σ2 ≥ 0 ∧
A1 · x1 ≤ c1 ∧ A2 · x2 ≤ c2


to avoid non-linearity x = σ1x1 + σ2x2 we can relax the system by

introducing new variables y1 = σ1x1 and y2 = σ2x2 so that x = y1 + y2 and
A1 · y1 ≤ σ1c1 and A2 · y2 ≤ σ2c2. We obtain:

P ′hull =

 x

x = y1 + y2 ∧
σ1 + σ2 = 1 ∧
σ1 ≥ 0 ∧ σ2 ≥ 0 ∧
A1 · y1 ≤ σ1c1 ∧ A2 · y2 ≤ σ2c2


If the two polytopes P1 and P2 are in n-variable space, their convex

hull P ′hull will is described in a (3n + 2)-variable space. To find the convex
hull in the original space we have to project the variables σ1, σ2, y1 and y2.
Note that the following projection methods are designed to work with strict
inequalities only, the best way to obtain a set of strict inequalities is to use
the gauss pivot by posing y1 = y2−x and σ1 = 1−σ2. This let us project y1

and σ1 and remove the equalities of the convex hull expression. We obtain
the following inequality set:

P ′hull =

{
x

σ1 ≥ 0 ∧ σ2 ≥ 0 ∧
A1 · (y2 − x) ≤ (1− σ2)c1 ∧ A2 · y2 ≤ σ2c2

}
The remaining variables to project are y2 and σ2. The projection space

will be composed only by the x variables.

2

3 Projection techniques

To compute the convex hull we have to project for two polytopes in a n-
dimensional space (n+ 2) variables from a set of stric inequalities. We have
implemented two projection method, one computing the exact convex hull
powerfull with sparse inequality and the other computing an approximation.

3.1 Fourier-Motzkin

The Fourier-Motzkin projection method use the basic observation that in-
equalities may only be scaled by non negative numbers which implies that
the set of inequality include either positive and negative coefficient for a
projected variable. This method take in parameters a variable xi to project
and a set of inequalities E and return, in case of success, a set E′ in the
projection space .

The first step of this method is to divide E in three subsets E+, E−, Er

of inequalities with positive, negative and nul coefficient for xi. If E+ or E−

is empty the projection cannot be done. Then a set of new inequalities in
the projection space is computed by combining inequalities in E+ and E−.
1 describe this method, we use the notation v[i] to access

Algorithm 1 Fourier-Motzkin
for a+ · x ≤ c+ ∈ E+ do

for a− · x ≤ c+ ∈ E− do
a · x ≤ c← (a+[i] · a− + a−[i] · a+) · x ≤ a+[i] · c− + a−[i] · c+
if a 6= 0 then
Er ← Er ∪ a · x ≤ c

end if
end for

end for
RETURN Er

The number of new inequalities is equal to |E+||E−| − (|E+|+ |E−|),
this can lead to a fast explosion of the number of inequalities in the case of
successive variable elimination.

Also this method generate sytematically redundant inequalities, it is
possible then possible to clean the result. A first cleaning process can be
done by looking for quasy syntactaly inequalities, a1 · x ≤ c1 and a2 · x ≤ c2
are quasi syntactaly redundant if a1 = a2, we keep in this case the inequality
with the lower ci. Another cleaning method more expensive is to solve
an optimisation problem to check if an inequality is redundant. For an
inequality ai · x ≤ ci we solve max(aiẋ) submit to E\{ai · x ≤ c} and we
check if the result is greater than ci to know if the contraint is redundant.

This method is particularly efficient in the case of sparse system leading

3

to a limited occurence of a variable in a set of inequality and if |E+| or |E−|
are equal to 1 the system shrink. this method can also be fitted in the case
of polytopes with templates like hypercube or octahedrons.

However this method can be limited in the case of convex hull of poly-
topes representing reachable sets especially with faces dynamics leading gen-
erally to dense systems. This method can still be use in the case of use of
template polytopes.

3.2 Extreme points

3.2.1 Initial algorithm

Extreme point projection is a method proposed by Huynh and al. [4] to
work with non sparse system. This method find inequalities incrementally
in the projection space by enabling the projection to be approximated with
a limited number of inequalities. The projection method take as input
E = {a1 · x ≤ c1, . . . , am · x ≤ cm} a set of inequalities and Y ∈ X a list of
variables to project. It returns a set of inequalities such that the polytope
represented by these half-spaces is an overapproximation of the convex hull
or in some cases the exact convex hull.

In a first step, this algorithm cut each vectors in two matrices A and B
such that A possess all the inequalities coefficients concerning variables to
project and B contains the other coefficients.

 a1
...
am

 = (A|B)

 x1
...
xm

 =

(
y

z

)
y ∈ Y c =

 c1
...
cm


Then we can write our set of inequalities as Ay+Bz ≤ c. Now we search

a linear combination λ of all inequality scaling each one such that λ ·A = 0
and λ[i] ≥ 0, i ∈ [1..m]. Each λ computed correspond to a new inequality in
the projection space given by λ·(Ay+Bz) ≤ λ·c equivalent to (λ·B)z ≤ λ·c.

Note that (λ ·B) = 0 will not produce a valid inequality in the projection
space, we have to check that λ · B give a non nul vector before adding the
new inequality to the output.

A trivial solution is λ = 0, we also have to check that λ ·B 6= 0, to avoid
this tautology we enforce the contraint with the equality λ ·B = 1. we define
the polytope Λ ← {λ · A = 0} ∪ {λi ≥ 0 | λi ∈ λ} ∪ {

∑
λi = 1} and solve

linear optimisation problem using goal functions that we generate to find its
vertices, each computed vertex will be used for computing a new inequality.

2 summarise this method, the number of goal functions will control the
number of resulting inequalities.

Note that two different λ can lead to the same inequality in the projec-
tion space because the resulting inequality consider only the matrix B, the

4

Algorithm 2 Extreme Point

(A|B)←

 a1
...
an

 ∧A · y +B · z ≤

 c1
...
cn

 ∧ y ∈ Y
Λ← {λ ·A = 0} ∪ {λi ≥ 0 | λi ∈ λ} ∪ {

∑
λi = 1}

Er ← �
F ← generate goals
for f ∈ F do
m← simplex(f, λ,Λ) {maximise f · λ submit to Λ}
Er ← Er ∪ (m ·B ≤ m· < c1, · · · , cn >)

end for
RETURN Er

resulting set of inequalities can contains redundant constraints. To deal with
it we use the same cleaning techniques described in the previous chapter.

generate goals in the original algorithm is set with unitary vectors F ←
{< 1, 0, . . . , 0 >,< 0, 1, . . . , 0 >, . . . , < 0, 0, . . . , 1 >} F contains m inequali-
tie that induce no growth of the result even shrink in the case of redundant
constraints.

However using this technique we compute an overapproximation of the
convex hull.

3.2.2 Precision improvement

The exact convex hull can be obtained by computing all vertices of Λ, finding
more vertices may induce adding non redundant constraint to the convex
hull inequalities set result and gain accuracy.

While the previous methods are based on algebraic manipulation, we
adopt a more geometric approach to improve the previous technique ac-
curacy. However enumerating all vertices of Λ will lead to the initial issue
concerning frame representation when we work on high dimensionals system.

An intuitive way to compute some new vertices can be to straight-
fowardly add new goals function in generate goals. We choose in a first
time this approach to deal with simple 2D systems. However each new goals
function does not lead necessarly to a new vertex, this method require to
clean the result of all redundant constraint.

The geometric method proposed in [5] can be used to compute efficiently
new vertices directly in the projection space.

4 Experimentation

We have implemented The two projection methods and execute some pre-
liminarie example. The program was written in C++ and we use the simplex

5

routine provided by the open source library LPsolve.
On simple test using boxes, the Fourier-Motzkin projection gave us the

exact convex hull, however the number of equalities generated growth expo-
nentially wen we start to use different type of polyhedron, it limits clearly
the dimension increase. We focused our effort on extreme point projection.
We successfully compute an overapproximation of the convex hull in high
dimension.

The figure 1 shows the convex set computed by extreme point projec-
tion using unitary goals functions, it illustrate the overapproximation issue
occuring with this technique.

Figure 1: Convex hull using extreme point projection with unitary goal
function

Figure 2 shows the interest of using additional goal function, in this case
we obtain the exact convex hull by adding goals functions with 2 non nul
variables.

F ←


< 1, 0, . . . , 0 >,< 0, 1, . . . , 0 >, . . . , < 0, 0, . . . , 1 >

< 1, 1, 0, . . . , 0 >,< 0, 1, 1, . . . , 0 >, . . . , < 1, 0, . . . , 0, 1 >
< −1,−1, 0, . . . , 0 >,< 0,−1,−1, . . . , 0 >, . . . , < −1, 0, . . . , 0,−1 >


However using these addition goal functions does not guarantee the exact

convex hull in other example but we observed each time a gain of precision.
Figure 3 show the result of this projection method in a 3-dimensionals

problem. We generate constraint in the same scheme than the previous
example.

Finally we test the execution time of the convex hull of two randomly
created bounded polytopes with each time 3*n faces in dimension n. The
table 3 show that the extreme point projection is scalable and can be use to
compute an overapproximation of the convex hull of two polytope in high
dimension in a polynomial time.

6

Figure 2: Convex hull using extreme point projection with unitary goal and
2 non nul variables vector function

Figure 3: Convex hull of 3d randomly generated set using extreme point
projection with unitary goal and 2 non nul variable vector function

Dimension Total time (s) number of resulting faces
2 0.02s 12
5 0.05s 32
10 0.28s 62
15 0.82s 92
20 2.11s 122
30 8.37s 182
40 23.06s 241
50 53.00s 302
75 225.54s 447

Figure 4: Computation times for convex hull operation using extreme point
projection.

7

5 Conclusion

In this report we have implemented and tested an algorithm to compute an
approximation of the convex hull operation between two polytope defined
by half-spaces, that can be in some case the exact convex hull. We have
shown that we can improve the extreme point projection accuracy by adding
additional goal functions to find more vertices in the polytope Λ. The main
interest of this methods is to be scalable over dimension. The accuracy
control of the extreme point projection result remains an issue and a research
investigation field.

References

[1] Eugene Asarin, Thao Dang, Oded Maler, and Romain Testylier. Using
redundant constraints for refinement. In ATVA, pages 37–51, 2010.

[2] Thao Dang, Colas Le Guernic, and Oded Maler. Computing reachable
states for nonlinear biological models. In CMSB, pages 126–141, 2009.

[3] Colas Le Guernic and Antoine Girard. Reachability analysis of hybrid
systems using support functions. In CAV, pages 540–554, 2009.

[4] Tien Huynh, Catherine Lassez, and Jean-Louis Lassez. Practical issues
on the projection of polyhedral sets. Ann. Math. Artif. Intell., 6(4):295–
315, 1992.

[5] Catherine Lassez and Jean-Louis Lassez. Quantifier elimination for con-
junctions of linear constraints via a convex hull algorithm. Kapur and
Mundy (Academic Press), 1991.

[6] Axel Simon and Andy King. Exploiting sparsity in polyhedral analysis.
In SAS, pages 336–351, 2005.

8

