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Chapter 1

Model-based testing of hybrid systems

1.1 Introduction

Hybrid systems, that is, systems exhibiting both continuous and discrete dynamics, have

proven to be a useful mathematical model for various physical phenomena and engineering

systems. Due to the safety critical features of many such applications, much effort has been

devoted to the development of automatic analysis methods and tools for hybrid systems,

based on formal verification. Although these methods and tools have been successfully

applied to a number of interesting case studies, their applicability is still limited to systems of

small size because of the complexity of formal verification. It is thus clear that for systems of

industrial size, one needs more light-weight methods. Testing is another validation approach,

which can be used for much larger systems and is a standard tool in industry, although it can

only reveal an error but does not permit proving its absence. A question of great interest

is thus to bridge the gap between the verification and testing approaches, by defining a

formal framework for testing of hybrid systems and developing methods and tools that help

automate the testing process.

In this work we adopt a model-based testing approach. This approach allows the engineer

to perform validation during the design, where detecting and correcting errors on a model
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2 CHAPTER 1. MODEL-BASED TESTING OF HYBRID SYSTEMS

are less expensive than on an implementation.

We first briefly review related work in model-based testing. The development of the

first model-based testing frameworks was motivated by digital circuit testing and is based

on Mealy machines [30]. More recently, frameworks based on other models, such as finite

labeled transition systems, were proposed (see for example [39]). These models are of asyn-

chronous nature and appropriate for the applications in communication protocols. Another

important application area is software testing for which models, such as flow graphs, and

coverage techniques have been used [20]. Recently, model-based testing has been extended to

real-time systems. Timed automata have become a popular model for modelling and verify-

ing real-time systems during the past decade, and a number of methods for testing real-time

systems based on variants of this model or other similar models (such as timed Petri nets)

have been proposed (e.g., see [26, 34, 8]). Although the practice of testing, especially in

industry, is still empirical and ad-hoc, formal testing has become progressively accepted [17].

This is, on the one hand, due to the success of the formal techniques in a number of domains

(such as model-checking of digital circuits) and, on the other hand, due to the develop-

ment of commercial tools for automatic test generation. Among these tools, we can men-

tion: Telelogic TestComposer (http://www.telelogic.com) for SDL models, Reactis Tester

(http://www.reactive-systems.com) for Simulink R© models (http://www.mathworks.com),

Conformiq Test Generator (http://www.conformiq.com) for UML State-Chart models.

Concerning hybrid systems, model-based testing is still a new research domain. We defer

a discussion on related work on hybrid systems testing to Section 1.14. A number of special

characteristics of hybrid systems make their testing particularly challenging, in particular:

• Combination of the complexity in both discrete and continuous aspects. While continu-

ous systems have been well studied in control theory and continuous mathematics, and

discrete systems have been investigated in computer science, the interaction between

continuous and discrete dynamics leads to fundamental problems (such as undecidabil-

ity) which are not yet well understood or for which a general solution is often impossible.

• Infiniteness of the state space of a hybrid system and of the input space. In general, in

order to test an open system, one first must feed an input signal to the system and then
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check whether the behavior of the system induced by this input signal is as expected.

When there is an infinite number of possible input signals, it is important to choose

the ones that lead to interesting scenarios (with respect to the property/functionality

to test).

To deal with these issues, we take an approach that draws on ideas from two domains: the

algorithmic analysis methodology from computer science and methods from control theory.

To model hybrid systems, we use hybrid automata [22]. This model, which can be roughly

described as an extension of automata with continuous variables evolving according to dif-

ferential equations, is a mathematical model largely used by computer scientists and control

engineers to reason about problems related to hybrid systems. In addition, this model is

expressive enough to describe complex hybrid phenomena arising in numerous applications,

and its well-defined semantics permits accurate interpretation of testing results.

The main results we present in this chapter can be summarized as follows.

• Formal framework for conformance testing of hybrid systems. This framework

uses the commonly-accepted hybrid automaton model and allows, on the one hand, to

formally reason about the relation between a system under test and a specification, and

on the other hand, to develop test generation algorithms.

• Novel test coverage measure. This is a challenging problem in testing. Intuitively,

test coverage is a way to characterize the relation between the number and the type

of tests to execute and the portion of the system’s behavior effectively tested. The

classical notions of coverage, introduced mainly for software testing (such as statement

coverage, if-then-else branche coverage, path coverage) are unsuitable for the behaviors

of a hybrid system defined as solutions of some differential equations. We thus propose

a novel coverage measure, which on the one hand reflects our goal of testing safety

and reachability properties and, on the other hand, can be efficiently computed. This

measure is based on the equidistribution degree of a set of states over the state space

and furthermore can be used to guide the test generation process.

• Coverage-guided test generation. We first propose a test generation algorithm that
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is based on the RRT (Rapidly-exploring Random Tree) algorithm [28], a probabilistic

motion planning technique in robotics. This RRT algorithm has been successful in

finding feasible trajectories in motion planning. We then include in this algorithm a

procedure for guiding the test generation process using the above mentioned coverage

measure. Furthermore, we introduce a new notion of disparity between two point sets, in

order to tackle “blocking” situations the test generation algorithm may enter. Indeed, in

order to increase the coverage, the algorithm may try to explore the directions that are

not reachable by the system’s dynamics. We can detect such situations by comparing

the distribution of the goal states and the visited states, using their disparity. If the

disparity is large, it means that the visited states do not follow the goal states. This

indicates that the goal states may not reachable and we should change the goal state

sampling strategy.

• Actuator and sensor imprecision. Because of the limitations of practical actuators

and sensors, the tester cannot realize exactly an input value specified as a real-valued

vector as well as measure exactly the state of the system. We handle this using sensi-

tivity analysis.

• Tool development. We have implemented a tool for conformance testing of hybrid

systems, called HTG. The core of the tool is the implementation of the coverage-

guided test case generation algorithm and the methods for estimating the coverage and

disparity measures.

• Applications. Besides traditional applications of hybrid systems, we explore a new

domain which is analog and mixed signal circuits. Indeed, hybrid systems provide a

mathematical model appropriate for the modeling and analysis of these circuits. The

choice of this application domain is motivated by the need in automatic tools to facilitate

the design of these circuits which, for various reasons, is still lagging behind the digital

circuit design. Besides hybrid automata described using a textual language, the tool

HTG can accept as input electrical circuits specified using SPICE netlists. We have

treated a number of case studies from control applications as well as from analog and

mixed signal circuits. The experimental results obtained using the tool HTG show its

applicability to systems with complex dynamics and its scalability to high dimensional
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systems (with up to 200 continuous variables).

Before presenting these results, we first describe our conformance testing framework and test

coverage measure.

1.2 Model

Conformance testing provides a means to assess the correctness of an implementation with

respect to a specification by performing experiments on the implementation and observ-

ing its responses. When the specification is described by a formal model, the international

standard “Formal Methods in Conformance Testing” (FMCT) [38] provides a framework of

conformance testing, which includes abstract concepts (such as conformance, test cases, test

execution, test generation), and the requirements on these concepts. A testing approach

that is based on a formal model is called a model-based testing approach. Depending on the

type of formal models, various frameworks can be developed for conformance testing. In this

work, following the standard FMCT, we are interested in developing a conformance testing

framework for embedded systems, using the hybrid automaton model [4]. Intuitively, a hy-

brid automaton is an automaton augmented with continuous variables that evolve according

to some differential equations.

Definition 1 (Hybrid automaton) A hybrid automaton is a tuple A = (X , Q,E, F, I,G,R)

where

• X is the continuous state space and is a bounded subset of Rn;

• Q is a (finite) set of locations (or discrete states);

• E ⊆ Q×Q is a set of discrete transitions;

• F = {Fq | q ∈ Q} such that for each q ∈ Q, Fq = (fq, Uq) defines a differential equation:

ẋ(t) = fq(x(t), u(t))
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where x ∈ X is the continuous state, u(·) ∈ Uq is the input of the form u : R+ →
Uq ⊂ Rm. The set Uq is the set admissible inputs and consists of piecewise continuous

functions. We assume that all fq are Lipschitz continuous1. In location q, the evolution

of the continuous variables is governed by ẋ(t) = fq(x(t), u(t)).

• I = {Iq ⊆ X | q ∈ Q} is a set of staying conditions;

• G = {Ge | e ∈ E} is a set of guards such that for each discrete transition e = (q, q′) ∈ E,

Ge ⊆ Iq;

• R = {Re | e ∈ E} is a set of reset maps. For each e = (q, q′) ∈ E, Re : Ge → 2Iq′

defines how x may change when A switches from q to q′;

• The initial state of the automaton is denoted by (qinit, xinit).

A hybrid state is a pair (q, x) where q ∈ Q and x ∈ X . The hybrid state space is S = Q×X .

In the rest of the paper, for brevity, we often use “state” to refer to a hybrid state.

A state (q, x) of A can change in two ways as follows: (1) by a continuous evolution,

the continuous state x evolves according to the dynamics fq while the location q remains

constant; (2) by a discrete evolution, x satisfies the guard condition of an outgoing transition,

the system changes the location by taking this transition and possibly changing the values of

x according to the associated reset map. More formally, continuous and discrete evolutions

are defined as follows.

Given a real number h > 0 and an admissible input function u(·) ∈ Uq, (q, x)
u(·),h→ (q, x′) is

a continuous evolution at the location q from the hybrid state (q, x) to (q, x′), iff x′ = ξx,u(·)(h)

and for all t ∈ [0, h] : ξx,u(·)(t) ∈ Iq, where ξx,u(·)(t) is the solution of the differential equation

at the location q with the initial condition x and under the input u(·). In other words, x′ is

reached from x under the input u(·) after exactly h time, and we say that u(·) is admissible

starting at (q, x) for h time.

Given a transition e = (q, q′) ∈ E, (q, x)
e→ (q′, x′) is a discrete evolution iff x ∈ Ge

and x′ ∈ Re(x). We say that (q′, x′) is reachable from (q, x) and the discrete transition e

1The function fq is Lipschitz continuous if there exists a constant K such that ∀x, y : ||fq(x)− fq(y)|| ≤ K||x− y||, where
|| · || is some norm of Rn. This condition ensures the existence and uniqueness of solutions of the differential equations.
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is admissible at (q, x). Unlike continuous evolutions, discrete evolutions are instantaneous,

which means that they do not take time.

It is important to note that this model allows capturing non-determinism in both con-

tinuous and discrete dynamics. The non-determinism in continuous dynamics is caused by

the uncertainty in the input function. For example, when the input is used to model some

external disturbances or modelling errors, we do not know the exact input fucntion but only

its range. The non-determinism in discrete dynamics is caused by the fact that at some

states it is possible for the system to stay at the current location or to switch to another

one. In addition, multiple transitions can be enabled at some states. This non-determinism

is useful for describing disturbances from the environment and imprecision in modelling and

implementation. We assume that the hybrid automata we consider are non-Zeno2.

Figure 1.1 shows a hybrid automaton that has 3 locations q1, q2, q3. From each location

qi, there is a discrete transition (qi, qj) such that j 6= i.'
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ẋ = f1(x, u)

x ∈ I2x ∈ I3

ẋ = f3(x, u) ẋ = f2(x, u)

x ∈ G13

x ∈ G21
x ∈ G12x ∈ G31

x ∈ G32

x ∈ G23/x
′ := R23(x)

Figure 1.1: A hybrid automaton.

Figure 1.2 illustrates the evolution of this hybrid automaton. We denote by Gij the guard

of the transition (qi,qj). In Figure 1.2 only the guards G12 and G23 that are the shaded regions

. All the locations have the same staying set which is the bounding box.

2A Zeno behavior can be described informally as the system making an infinite number of discrete transitions in a finite
amount of time.
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As we can see from the figure, starting from the initial state (q1, y0) the system can

generate a set of infinite number of trajectories. For instance, we consider the following

trajectories. Starting from (q1, y0), under two different continuous input functions, from the

system generates two different trajectories which can reach the guards G12 and G13. The

points y1, y′2 and y′3 correspond to three different choices: (1) remaining at location q1 and

continuing with the dynamics of f1; (2) taking the transition (q1, q2) at the point y2 and

evolving under the dynamics of f2 to y′2; (3) taking the transition (q1, q3) at the point y2,

jumping then to y3 according to the reset R13 and from there evolving under the dynamics

of f3 to y′3.

y1

y0

y′2

y3

y′2

G13

y2

G13

Figure 1.2: Hybrid automaton evolution.

1.3 Conformance testing

In the first part of this section, we define the notions of inputs and observations. In the

second part, we define conformance relation, test cases, and test executions.

Our testing goal is to make statements about the conformance relation between the behav-

iors of an implementation or, more generally, a system under test (SUT) and a specification.
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The specification is formal and modeled by a hybrid automaton. The conformance is defined

as a relation 2⊆ Ξ×H where Ξ is a set of SUTs of interest, andH is a set of hybrid automata

modeling the specifications of interest. The systems under test are physical systems, but it

can be assumed that all the SUTs in Ξ can be described by a class of formal models, which

is a set Hs of hybrid automata. It is important to note that we assume that a model for each

SUT in Ξ exists3 but do not assume that we know it. This assumption enables us to include

the system under test in our formal framework and to express formally the conformance

relation 2 between the models of the SUTs and the specifications, that is 2 ⊆ Hs × H.

Note that here we use the same notation 2 for the relation between the physical SUT and

the specification and the relation between the model of the SUT and the specification. A

system under test St ∈ Ξ is said to conform to a specification A ∈ H if and only if the model

As ∈ Hs of the SUT is related to A by 2, that is, As 2 A.

The system under test often operates within some environment. In our testing framework,

a tester plays the role of the environment and it performs experiments on the SUT in order to

study the conformance relation between the SUT and the specification. Such an experiment

is called a test, and its specification is called a test case. A set of test cases is called a test

suite, and the process of applying a test to a system under test is called a test execution. The

tester works as follows. It emits the control inputs to the SUT and measures the observation

sequences in order to produce a verdict ν ∈ {P, F} where P means “pass” (the observed

behavior is allowed by the specification), F means “fail” (the observed behavior is not allowed

by the specification). We continue by giving a detailed description of conformance relation.

The problem of how to perform test executions and derive verdicts is discussed at the end

of this section.

1.3.1 Conformance relation

Recall that the specification is modeled by a hybrid automaton A and the system under test

SUT by another hybrid automaton As. For brevity, when the context is clear, we often say

3Concerning embedded systems design, this assumption is not restrictive since, as mentioned in the introduction, hybrid
systems can be used to model various physical systems with mixed continuous-discrete dynamics and are particularly appropriate
for embedded systems.
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“the system under test” to mean the automaton As. To define the conformance relation,

the notions of inputs and observations are necessary.

An input of the system which is controllable by the tester is called a control input; other-

wise, it is called a disturbance input. We consider the following input actions. Control inputs

are realized by actuators and observations by sensors. In practical systems, because of actu-

ator and sensor imprecision, control inputs and observations are subject to errors. In the rest

of this section, we assume that the tester can realize exact input values and observations are

exactly measured. The testing problem with actuator and sensor imprecision is addressed

in Section 1.11. It is worth noting that in this work we use the trace inclusion to define

conformance relation. In the literature of conformance testing for discrete systems, more

complex relations are considered, for example input-output conformance relation (see [39]).

Continuous input action. All the continuous inputs are assumed to be controllable by

the tester. Since we want to implement the tester as a computer program, we are interested

in piecewise-constant input functions; indeed, a computer cannot generate a function from

reals to reals. Hence, a continuous control action (ūq, h), where ūq is the value of the input

and h is the duration, specifies that the automaton continues with the continuous dynamics

at the location q under the input u(t) = ūq for exactly h time. We say that (ūq, h) is

admissible at (q, x) if the input function u(t) = ūq for all t ∈ [0, h] is admissible starting at

(q, x) for h time.

Discrete input actions. The discrete transitions are partitioned into controllable corre-

sponding to discrete control actions and uncontrollable corresponding to discrete disturbance

actions. The tester emits a discrete control action to specify whether the system should take

a controllable transition (among the enabled ones) or continue with the same continuous

dynamics. In the former case, it can also control the values assigned to the continuous vari-

ables by the associated reset map. Although non-determinism caused by the reset maps can

be expressed in this framework (and considered in the proposed test generation algorithms),

for simplicity of notation and clarity of explanation, we omit this type of non-determinism in

the subsequent definitions. Hence, we denote a discrete control action by the corresponding
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transition, such as (q, q′).

We use the following assumption about the inputs: continuous control actions are of

higher priority than discrete actions. This means that after a continuous control action

(ūq, h) is applied, no discrete transitions can occur during h time, that is until the end of

that continuous control action. This assumption is not restrictive from a modeling point of

view. Indeed, by considering all the possible values of h we can capture the cases where a

discrete transition can occur before the termination of a continuous control action.

In this work, we are only interested in testing non-blocking behaviors, we thus need the

notion of admissible input sequences. We write (q, x)
ι→ (q′, x′) to indicate that (q′, x′) is

reached after applying the input action ι to the state (q, x).

Definition 2 (Admissible input sequence) For a state (q, x), a sequence of input ac-

tions ω = ι0, ι1, . . . , ιk is admissible at (q, x) if

• ι0 is admissible at (q, x), and

• for each i = 1, . . . , k, let (qi, xi) be the state such that (qi−1, xi−1)
ιi−1→ (qi, xi), then ιi is

admissible at (qi, xi).

The sequence (q, x), (q1, x1), . . . , (qk, xk) is called the trace starting at (q, x) under ω and is

denoted by τ((q, x), ω).

We write (q, x)
ω→ (q′, x′) to indicate that (q′, x′) is reached from (q, x) after ω. We also say

that (q′, x′) is forward reachable from (q, x) and (q, x) is backward reachable from (q′, x′). In

the rest of the paper, we simply say “reachable” to mean “forward reachable”; “backward

reachable” is explicitly stated.

By the assumption about the inputs, uncontrollable discrete transitions cannot occur

during a continuous control action. However, they can occur between control actions. Hence,

the result of applying a control action is non-deterministic. To determine all possible traces

that can be generated by applying a sequence of control actions, we must define an admissible

sequence of control actions.
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Given a state (q, x) and a control action c, let σ be a disturbance input sequence such

that c⊕ σ, where ⊕ is the concatenation operator, is an admissible input sequence at (q, x).

The sequence σ is called a disturbance input sequence admissible after the control action c.

We denote by Λ(c, (q, x)) the set of all such disturbance input sequences.

To know whether a sequence of control actions is admissible, we must know which dis-

turbance inputs are admissible after each control action. This means that we must know

the successors after each control action. We first consider a sequence of two control actions

ωc = c0 c1. After accepting the control action c0 and all the disturbance input sequences

admissible after c0, the set of all possible successors of (q, x) is:

Υ(c0, (q, x)) = {(q′, x′) | ∃σ ∈ Λ(c0, (q, x)) : (q, x)
co⊕σ→ (q′, x′)}.

It should be noted that if the first c0 is admissible at (q, x) then Υ(c0, (q, x)) is not empty.

We use the same notation Λ for the set of all disturbance input sequences admissible after

the control action sequence ωc = c0 c1:

Λ(ωc, (q, x)) =
⋃

(q′,x′)∈Υ(c0,(q,x))

Λ(c1, (q
′, x′)).

Therefore, we can now determine the set of all input sequences that can occur when we

apply the control sequence ωc = c0 c1. We denote this set by Σ(ωc, (q, x)), which can be

defined as follows:

Σ(ωc, (q, x)) = {c0 ⊕ σ0 ⊕ c1 ⊕ σ1 | σ0 ∈ Λ(c0, (q, x))

∧ ∃(q′, x′) ∈ Υ(c0, (q, x)) : σ1 ∈ Λ(c1, (q
′, x′))}.

For a sequence ωc of more than two control actions, the set Σ(ωc, (q, x)) can be defined

similarly.

Definition 3 (Admissible control action sequence) A control action sequence ωc is ad-

missible starting at (q, x) iff Σ(ωc, (q, x)) is not empty. The set of traces starting at (q, x) after

an admissible control action sequence ωc is Tr((q, x), ωc) = {τ((q, x), σ) | σ ∈ Σ(ωc, (q, x))}.
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Intuitively, this means that an admissible control action sequence, when being applied to the

automaton, does not cause it to be blocked. We denote by SC(A) the set of all admissible

control action sequences for the hybrid automaton A starting at the initial state (qinit, xinit).

Observations

We use the following assumptions about the observability of the hybrid automata A and As:

• The locations of the hybrid automata A and As are observable.

• We assume a subset Vo(A) and Vo(As) of observable continuous variables of A and

As respectively. In addition, we assume that Vo(A) ⊆ Vo(As), which means that an

observable continuous variable of A is also an observable variable of As.

Systems with more general partial observability are not considered in this chapter and is

part of our current research. Since not all the continuous variables are observable, the

following projection operator is necessary. The projection of a continuous state x of A on

the observable variables Vo(A) is denoted by π(x, Vo(A)). The projection can be then defined

for a trace as follows. The projection of a trace τ = (q0, x0), (q1, x1), (q2, x2) . . . on Vo(A) is

π(τ, Vo(A)) = (q0, π(x0, Vo(A))), (q1, π(x1, Vo(A))), (q2, π(x2, Vo(A))) . . . .

A pair (q, π(x, Vo(A)) where q is a location and x is the continuous state of the automation

A, is called an observation.

Definition 4 (Observation sequence) Let ω be an admissible control action sequence

starting at the initial state (qinit, xinit) of A. The set of observation sequences associated

with ω is SO(A, ω) = {π(τ, Vo(A)) | τ ∈ Tr((qinit, xinit), ω)}.

Before continuing, we remark that it is straightforward to extend the framework to observa-

tions described by (q, y) where q is a location, y = g(x) and g is an output map.
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Conformance relation

In the definition of the conformance relation between a system under test As and a specifi-

cation A, we assume that the set of all admissible control action sequences of A is a subset

of that of As, that is SC(A) ⊆ SC(As). This assumption assures that the system under test

can admit all the control action sequences that are admissible by the specification. Detect-

ing the cases where the physical SUT does not admit some inputs that are allowed by the

specification requires the ability to identify the states of the system from the observations.

We do not consider this problem in this work.

Definition 5 (Conformance) The system under test As is conform to the specification A,

denoted by A 2 As, iff

∀ω ∈ SC(A) : π(SO(As, ω), Vo(A)) ⊆ SO(A, ω).

Intuitively, the system under test As is conform to the specification A if under every admis-

sible control action sequence, the set of observation sequences of As is included in that of

A.

1.3.2 Test cases and test executions

In our framework, a test case is represented by a tree where each node is associated with an

observation and each path from the root with an observation sequence. Each edge of the tree

is associated with a control action. A physical test execution can be described as follows:

• The tester applies a test ζ to the system under test St.

• It measures and records a number of observations.

• The observations are measured at the end of each continuous control action and after

each discrete (disturbance or control) action.
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This conformance testing procedure is denoted by exec(ζ, St) which leads to an observation

sequence, or a set of observation sequences if multiple runs of ζ are possible because of

non-determinism. The above test execution process uses a number of implicit assumptions.

First, observation measurements take zero time, and in addition, no measurement error is

considered. Second, the tester is able to realize exactly the continuous input functions, which

is often impossible in practice because of actuator imprecision, as mentioned earlier. Under

these assumptions, one can only test the conformance of a model of the system under test to

the specification in discrete time. These issues must be considered in order to address the

actual testing of real systems and this is discussed in Section 1.11.

We focus on the case where each test execution involves a single run of a test case.

The remaining question is how to interpret the observation sequences in order to produce a

verdict. Let Ω denote the observation sequence domain. We thus define a verdict function:

v : Ω→ {pass, fail}. Note that an observation sequence must cause a unique verdict. The

observation sequences in Ω are grouped into two disjoint sets: the set Op of observation

sequences that cause a ‘pass’ verdict, the set Of that cause a ‘fail’ verdict. Therefore, saying

‘The system under test St passes the test ζ’ formally means v(exec(ζ, St)) = pass. This can

then be extended to a test suite.

We now discuss some important requirements for a test suite. A test suite Ts is called

complete if for a specification specified as a hybrid automaton A:

St 2 A ⇐⇒ St passes Ts (1.1)

This means that a complete test suite can distinguish exactly between all conforming and

non-conforming systems. In practice, it is generally impossible to fulfill this requirement,

which often involves executing an infinite test suite. A weaker requirement is soundness. A

test suite is sound if a system does not pass the test suite, then the system is non-conforming.

We can see that this requirement is weaker than completeness, since it corresponds only to

the left-to-right implication in (1.1).

After defining all the important concepts, it now remains to tackle the problem of generat-

ing test cases from a specification model. In particular, we want the test suites to satisfy the
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soundness requirement. A hybrid automaton may have an infinite number of infinite traces;

however, the tester can only perform a finite number of test cases in finite time. Therefore,

we must select a finite portion of the input space of the specification A and test the con-

formance of the system under test As with respect to this portion. The selection is done

using a coverage criterion that we formally define in the next chapter. Hence, our testing

problem is formulated as to automatically generate a set of test cases from the specification

automaton to satisfy this coverage criterion.

1.4 Test coverage

Test coverage is a way to evaluate testing quality. More precisely, it is a way to relate the

number of tests to carry out with the fraction of the system’s behaviors effectively explored.

As mentioned in the introduction, a major problem with extending the “classic” testing

approach to hybrid system is the infiniteness of the input signal space and of the state

space. Indeed, in practice it is only possible to test the system with a finite number of input

functions, for a bounded time horizon and, furthermore, the results are only in form of a

finite number of finite sequences of points on trajectories of the system. In other words, a

continuous/hybrid tester cannot produce in practice the output signals that are functions

from reals to reals but only their approximation in discrete time. Given an analysis objective,

such as to verify a safety property, the question that arises is thus how to choose appropriate

input signals so as to fulfill the analysis objective as best as possible.

Since it is impossible to enumerate all the admissible external inputs to the hybrid system

in question, much effort has been invested in defining and implementing notions of coverage

that guarantee, to some extent, that the finite set of input stimuli against which the system

is tested is sufficient for validating correctness. Test coverage criteria are indeed a way to

evaluate the testing quality, or the degree of fulfilling the desired analysis objective. More

precisely, it is a way to relate the number of simulations to carry out with the fraction of

the system’s behaviors effectively explored.
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For discrete systems, specified using programming languages or hardware design lan-

guages, some syntactic coverage measures can be defined, such as statement coverage and

if-then-else branch coverage, path coverage, etc. (see for example [20, 39]). In this work, we

treat continuous and hybrid systems that operate in a metric space (typically Rn) and where

not much inspiration for the coverage issues derives from the syntax. On the other hand, the

metric nature of the state space encourages more semantic notions of coverage, namely that

all system trajectories generated by the input test patterns form a kind of dense network in

the reachable state space without too many big unexplored ‘holes’.

Two main challenges in defining a test coverage measure are the following. First, it should

be meaningful to reflect testing quality with respect to a given analysis objective. Second,

one must be able to compute this measure. The above mentioned classic coverage notions

mainly used in software testing are not appropriate for the trajectories of continuous and

hybrid systems defined by differential equations. However, geometric properties of the hybrid

state space can be exploited to define a coverage measure which, on the one hand, has a close

relationship with the properties to verify and, on the other hand, can be efficiently computed

or estimated. In this work, we are interested in state coverage and focus on a measure that

describes how ‘well’ the visited states represent the reachable set of the system. This measure

is defined using the star discrepancy notion in statistics, which characterizes the uniformity

of the distribution of a point set within a region. Note that the reachable sets of hybrid

systems are often non-convex with complex geometric form, therefore considering only corner

cases does not always cover the behaviors that are important for reachabilily properties,

especially in high dimensions. Hence, for a fixed number of visited states (which reflects the

computation cost to produce a test suite), we want the visited states to be equidistributed

over the reachable set as much as possible, since this provides a good representation of all

possible reachable states.

1.4.1 Star discrepancy

We first briefly recall the star discrepancy. The star discrepancy is an important notion

in equidistribution theory as well as in quasi-Monte Carlo techniques (see for example [7]).
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Recently, it was also used in probabilistic motion planning to enhance the sampling unifor-

mity [29].

Let P be a set of k points inside B = [l1, L1] × . . . × [ln, Ln] ⊂ Rn. Let J be the set

of all sub-boxes J of the form J =
∏n

i=1[li, βi] with βi ∈ [li, Li] (see Figure 1.3). The local

discrepancy of the point set P with respect to the sub-box J is defined as follows:

D(P, J) =
∣∣∣A(P, J)

k
− vol(J)

vol(B)

∣∣∣
where A(P, J) is the number of points of P that are inside J , and vol(J) is the volume of

the box J .

Definition 6 (Star discrepancy) The star discrepancy of a point set P with respect to the

box B is defined as:

D∗(P,B) = supJ∈JD(P, J). (1.2)

r r
r
r

r
rB

(β1, β2)

(l1, l2)

J

(L1, L2)

Figure 1.3: Illustration of the star discrepancy notion.

It is not hard to prove the following property of the star discrepancy [37].

Proposition 1 The star discrepancy of a point set P with respect to a box B satisfies 0 <

D∗(P,B) ≤ 1.

Intuitively, the star discrepancy is a measure for the irregularity of a set of points. A large

value D∗(P,B) means that the points in P are not much equidistributed over B. When the
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region is a box, the star discrepancy measures how badly the point set estimates the volume

of the box.

Example. To show an intuitive meaning of the star discrepancy, we use some sequences of

100 points inside a 2-dimensional unit box. The first example is the Faure sequence [16], a

well-known low-discrepancy sequence (see Figure 1.4). As we can observe from the figure, this

set of points ‘covers well’ the box, in the sense that the points are well-equidistributed over

the box. Its star discrepancy value is 0.048. The second example is the Halton sequence [41]

Figure 1.4: Faure sequence of 100 points. Its star discrepancy value is 0.048.

shown in Figure 1.5, which is also a well-known low discrepancy sequence. The value of the

star discrepancy of the Halton sequence is about 0.050, indicating that the Faure sequence

is more equidistributed than the Halton sequence. The star discrepancy values of these

two sequences are however close, and indeed visually it is difficult to see from the figures

which one is better equidistributed. We now give another example which is a sequence of

100 points generated by a pseudo-random function provided by the C library system. This

sequence is shown in Figure 1.6, from which we can observe that this sequence is not well-

equidistributed over the box. This is confirmed by its star discrepancy value 0.1. The star

discrepancy is thus a meaningful measure that can characterize the uniformity quality of a

point set distribution.
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Figure 1.5: Halton sequence of 100 points. The star discrepancy value is 0.05.

Figure 1.6: A sequence of 100 points generated by a pseudo-random function in the C library.
Its star discrepancy value is 0.1.
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1.4.2 Coverage estimation

To evaluate the coverage of a set of states, we must compute the star discrepancy of a

point set, which is not an easy problem (see for example [14]). Many theoretical results

for one-dimensional point sets are not generalizable to higher dimensions, and among the

fastest algorithms, the one proposed in [14] has time complexity O(k1+n/2) where n is the

dimension. In this work, we do not try to compute the star discrepancy but approximate it

by estimating a lower and upper bound. These bounds as well as the information obtained

from their estimation are then used to decide which parts of the state space have been ‘well

explored’ and which parts must be explored more. This estimation is carried out using

a method published in [37]. Let us briefly describe this method for computing the star

discrepancy D∗(P,B) of a point set P w.r.t. a box B. Although in [37] the box B is [0, 1]n,

we extended it to the case where B can be any full-dimensional box. Intuitively, the main

idea of this estimation method is to consider a finite box partition of the box B, instead of

considering an infinite number of all sub-boxes as in the definition of the star discrepancy.

Let B = [l1, L1] × . . . × [ln, Ln]. In what follows, we often call this box B the bounding box.

We define a box partition of B as a set of boxes Π = {b1, . . . , bm} such that ∪mi=1b
i = B

and the interiors of the boxes bi do not intersect. Each such box is called an elementary

box. Given a box b = [α1, β1]× . . .× [αn, βn] ∈ Π, we define b+ = [l1, β1]× . . .× [ln, βn] and

b− = [l1, α1]× . . .× [ln, αn] (see Figure 1.7 for an illustration).

B

b+

b

b−

(α1, α2)

(β1, β2)

(l1, l2)

(L1, L2)

Figure 1.7: Illustration of the boxes b− and b+.

For any finite box partition Π of B, the star discrepancy D∗(P,B) of the point set P with

respect to B satisfies: C(P,Π) ≤ D∗(P,B) ≤ B(P,Π) where the upper and lower bounds
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are:

B(P,Π) = max
b∈Π

max{A(P, b+)

k
− vol(b−)

vol(B)
,
vol(b+)

vol(B)
− A(P, b−)

k
} (1.3)

C(P,Π) = max
b∈Π

max{|A(P, b−)

k
− vol(b−)

vol(B)
|, |A(P, b+)

k
− vol(b+)

vol(B)
|} (1.4)

The imprecision of this approximation is the difference between the upper and lower bounds,

which can be bounded by B(P,Π)− C(P,Π) ≤ W (Π) where

W (Π) = max
b∈Π

(vol(b+)− vol(b−))/vol(B) (1.5)

Thus, one must find a partition Π such that this difference is small.

1.4.3 Hybrid systems test coverage

Since a hybrid system can only evolve within the staying sets of the locations, we are in-

terested in the coverage with respect to these sets. We assume that all the staying sets are

boxes, since the star discrepancy is defined for points inside a box. If a staying set Iq is

not a box, we can take the smallest oriented (or non-axis-aligned) box that encloses it and

apply the star discrepancy definition in (1.2) to that box after an appropriate coordinate

transformation. Another possible solution, which is part of our current work and reported

in this chapter, is to consider the discrepancy notion for sets with more general geometric

forms [7].

Definition 7 (Test coverage) Let P = {(q, Pq) | q ∈ Q ∧ Pq ⊂ Iq} be the set of states.

The coverage of P is defined as:

Cov(P) =
1

||Q||
∑
q∈Q

1−D∗(Pq, Iq)

where ||Q|| is the number of locations in Q.
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We can see that a large value of Cov(P) indicates a good space-covering quality. If P is the

set of states visited by a test suite, our objective is to maximize Cov(P).

1.5 Test generation

Our test generation is based on a randomized exploration of the reachable state space of

the system. It is inspired by the Rapidly-exploring Random Tree (RRT) algorithm, which

is a successful motion planning technique for finding feasible trajectories of robots in an

environment with obstacles (see [27] for a survey). More precisely, we extend the RRT

algorithm to hybrid systems. Furthermore, we combine it with a guiding tool in order to

achieve a good coverage of the system’s behaviors we want to test. To this end, we use the

coverage measure defined in the previous section. Before continuing, we mention that related

work on test generation for hybrid models is described in Section 1.14.

In this section, we describe the extension of the RRT algorithm to hybrid system, which

we call the hRRT algorithm. The combination of the hRRT algorithm with the guiding tool

is explained in the next section.

The algorithm stores the visited states in a tree, the root of which corresponds to the

initial state. The construction of the tree is summarized in Algorithm 1.

Algorithm 1 Test generation algorithm hRRT

k = 1
T k.init(sinit) . sinit: initial state
repeat

sgoal = Sampling(S) . S: hybrid state space
sknear = Neighbor(T k, skgoal)
(sknew, u

k
qnear

) = ContinuousSucc(sknear, h) . h: time step

DiscreteSucc(T k, sknew)
k + +

until k ≥ kmax

The tree constructed at the kth iteration is denoted by T k. The function Sampling

samples a hybrid state skgoal = (qkgoal, x
k
goal) to indicate the direction towards which the tree is
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expected to evolve. Then, a starting state sknear = (qknear, x
k
near) is determined as a neighbor of

skgoal using a hybrid distance which is described later. Expanding the tree from sknear towards

skgoal is done as follows:

• The function ContinuousSucc tries to find the input ukqnear
such that, after one

time step h, the current continuous dynamics at qknear takes the system from sknear

towards sgoal, and this results in a new continuous state xknew. A new edge from snear to

sknew = (qknear, x
k
new), labeled with the associated input ukqnear

, is then added to the tree.

To find sknew, when the set U is not finite it can be sampled, or one can solve a local

optimal control problem.

• Then, from sknew, the function DiscreteSucc computes its successors by all possible

discrete transitions and add them in the tree. A discrete successor by a transition is

computed by testing whether sknew satisfies its guard and if so applying the associated

reset function to sknew.

The algorithm terminates after some maximal number of iterations. Another possible ter-

mination criterion is that a satisfactory coverage value is reached. In the classic RRT algo-

rithms, which work in a continuous setting, only xgoal must be sampled, and a commonly

used sampling distribution of xgoal is uniform over X . In addition, the point xnear is defined

as a nearest neighbor of xgoal in some usual distance, such as the Euclidian distance. In our

hRRT algorithm, the goal state sampling is not uniform and the function Sampling plays

the role of guiding the exploration via a biased sampling of xgoal.

Hybrid distance and computation of neighbors

Defining a metric for the hybrid state space is difficult because of the discrete component

of a hybrid state. We propose an approximate distance between two hybrid states, which is

used in the function Neighbor of the hRRT algorithm.

Given two hybrid states s = (q, x) and s′ = (q′, x′), if they have the same discrete

component, that is, q = q′, we can use some usual metric in Rn, such as the Euclidian
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metric. When q 6= q′, it is natural to use the average length of the trajectories from one to

another. Figure 1.8 illustrates this definition. We consider a trajectory corresponding to a

sequence of transitions γ = e1, e2 where e1 = (q, q1) and e2 = (q1, q
′). We call γ a discrete

path from s = (q, x) to s′ = (q′, x′).

• The average length of the discrete path γ is simply the distance between the image of

the first guard G(q,q1) by the first reset function R(q,q1) and the second guard G(q1,q′).

This distance is shown in the middle figure. The average distance between two sets is

defined as the Euclidean distance between their geometric centroids.

• The average length of trajectories from s = (q, x) to s = (q′, x′) following the discrete

path γ is the sum of three distances (shown in Figure 1.8 from left to right): the distance

between x and the first guard G(q,q1), the average length of the path, and the distance

between R(q1,q′)(G(q1,q′)) and x′.

u u
u u
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u
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q1q
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R(q,q1)(G(q,q1))

G(q1,q′)

R(q1,q′)(G(q1,q′))

q′

x

x′

Figure 1.8: Illustration of the average length of a trajectory.

Now we are ready to define the hybrid distance from s to s′. We denote by Γ(q, q′) the

set of all discrete paths from q to q′ in the hybrid automaton A.

Definition 8 (Hybrid distance) Given two hybrid states s = (q, x) and s′ = (q′, x′), the

hybrid distance from s to s′, denoted by dH(s, s′), is defined as follows :

• If q = q′, then dH(s, s′) = ||x− x′|| where || · || is the Euclidean distance in Rn.

• If q 6= q′, there are two cases:

– If Γ(q, q′) 6= ∅, then dH(s, s′) = min
γ∈Γ(q,q′)

lenγ(s, s
′). The path γ that minimizes

lenγ(s, s
′) is called the shortest path from s to s′.
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– Otherwise, dH(s, s′) =∞.

It is easy to see that the hybrid distance dH is only a pseudo metric since it does not satisfy

the symmetry requirement. Indeed, the underlying discrete structure of a hybrid automaton

is a directed graph. In the above definition, instead of the Euclidian distance we can use any

metric in Rn.

Then, in each iteration of hRRT, the function Neighbor can be computed as follows. A

neighbor of the goal state sgoal is:

snear ∈ arg mins∈V dH(s, sgoal)

where V is the set of all the states stored at the vertices of the tree.

Computing continuous and discrete successors

We first describe the function ContinuousSucc. If the states snear and sgoal have the

same location component, we want to expand the tree from xnear towards xgoal as closely as

possible, using the continuous dynamics at that location.

When the states snear and sgoal are at different locations, let γ be the shortest path from

snear to sgoal. It is natural to make the system follow this path. Therefore, we want to

steer the system from xnear towards the first guard of γ. In both of the two cases, one must

solve an optimal control problem with the objective of minimizing the distance to some

target point. This problem is difficult especially for systems with non-linear continuous

dynamics. Thus, we can trade some optimality for computational efficiency. When the

input set U is not finite, we sample a finite number of inputs and pick from this set a best

input, that makes the system approach the boundary of the guard of γ as much as possible.

In addition, we can prove that by appropriately sampling the input set, the completeness

property of our algorithm is preserved [13]). It is important to emphasize that the function

ContinuousSucc must assure that the trajectory segment from xnear remains in the staying

set of the current location.
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The computation of discrete successors in DiscreteSucc, which involves testing a guard

condition and applying a reset map, is rather straightforward.

Test cases and verdicts

The tree constructed by the hRRT algorithm can be used to extract a test suite. In addition,

when applying such test cases to the system under test, the tree can be used to compare

the observations from the physical systems and the expected observations in the tree, which

allows a decision whether the system satisfies the conformance relation.

1.6 Coverage-guided test generation

In this section we propose a tool for guiding the test generation algorithm. This tool is based

on the coverage measure defined using the star discrepancy. The goal of the guiding tool is

to use the sampling process to bias the evolution of the tree towards the interesting region

of the state space, in order to rapidly achieve a good coverage quality. In each iteration, we

use the information of the current coverage to improve it. Indeed, the coverage estimation

provides not only an approximate value of the current coverage, but also the information

about which regions need to be explored more.

Sampling a goal state sgoal = (qgoal, xgoal) in the hybrid state space S consists of two steps:

1. Sample a goal location qgoal from the set Q of all the locations, according to some

probability distribution.

2. Sample a continuous goal state xgoal inside the staying set Iqgoal
of the location qgoal.

Location sampling

Recall that we want to achieve a good testing coverage quality, which is equivalent to a

small value of the star discrepancy of the points visited at each location. More concretely, in
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each iteration, we want to bias the goal state sampling distribution according to the current

coverage of the visited states. To do so, we first sample a location and then a continuous

state. Let P = {(q, Pq) | q ∈ Q ∧ Pq ⊂ Iq} be the current set of visited states. The location

sampling distribution depends on the current continuous state coverage of each location:

Pr[qgoal = q] =
D∗(Pq, Iq)∑

q′∈QD
∗(Pq′ , Iq′)

where the notation Pr is used for probabilities. Intuitively, we assign a higher sampling

probability to the locations with lower continuous state coverage. As we have shown earlier,

the star discrepancy is approximated by a lower bound and an upper bound. We thus

compute the above probability Pr[qgoal = q] using these bounds and then taking the mean

of the results.

Continuous state sampling

We now show how to sample xgoal, assuming that we have already sampled a location qgoal =

q. In the remainder of the paper, to give geometric intuitions, we often call a continuous

state a point. In addition, since all the staying sets are assumed to be boxes, we denote

the staying set Iq by the box B and denote the current set of visited points at the location

q simply by P instead of Pq. Let k be the number of points in P . Let Π be a finite box

partition of B that is used to estimate the star discrepancy of P . The sampling process

consists of two steps. In the first step, we sample an elementary box bgoal from the set Π; in

the second step we sample a point xgoal in bgoal uniformly.

The elementary box sampling distribution in the first step is biased in order to optimize

the coverage. Guiding is thus done via the goal box sampling process. Let Π be the box

partition used in the coverage estimation, and we denote by P the current set of visited states.

The objective is to define a probability distribution over the set of elementary boxes of Π.

This probability distribution is defined at each iteration of the test generation algorithm.

Essentially, we favor the selection of a box if adding a new state in this box allows to improve

the coverage of the visited states. This is captured by a potential influence function, which
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assigns to each elementary box b in the partition a real number that reflects the change in

the coverage if a new state is added in b. The current coverage is given in form of a lower

and an upper bound. In order to improve the coverage, we aim at reducing both of the

bounds. More details on the method can be found in [13].

Let us summarize the developments so far. We have shown how to sample a goal hybrid

state. This sampling method is not uniform but biased in order to achieve a good coverage of

the visited states. From now on, the algorithm hRRT in which the function Sampling uses

this coverage-guided method is called the gRRT algorithm, which means ‘guided hRRT’.

We can prove that the gRRT algorithm preserves the probabilistic completeness of RRT [13].

Roughly speaking, the probabilistic completeness property [25] states that if the trace we

search for is feasible, then the probability that the algorithm finds it approaches 1 as the

number k of iterations approaches infinity.

To demonstrate the performance of gRRT, we use two illustrative examples. For brevity,

we call the classical RRT algorithm using uniform sampling and the Euclidian metric hRRT.

The reason we choose these examples is that they differ in the reachability property. In

the first example, the system is “controllable” in the sense that the entire state space is

reachable from the initial states (by using appropriate inputs), but in the second example

the reachable set is only a small part of the state space. These examples will also be used

to validate the efficiency of the new guiding method that we propose.

Example 1 This is a two-dimensional continuous system where the state space X is a box

B = [−3,−3] × [3, 3]. The continuous dynamics is f(x, t) = u(t) where the input set is

U = {u ∈ R2 | ||u|| ≤ 0.2}.

We use 100 input values resulting from a discretization of the set U . The initial state is

(−2.9,−2.9). The time step is 0.002. Figure 1.9 shows the result obtained using gRRT, and

Figure 1.10 shows the evolution after each iteration of the coverage of the states generated

by gRRT (solid curve) and by hRRT (dashed curve), which indicates that gRRT achieved a

better coverage quality especially in convergence rate.
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Figure 1.9: The gRRT exploration result for Example 1.

Figure 1.10: The test coverage evolution using hRRT and gRRT.
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Figure 1.11: Results obtained using the guided sampling method (left) and using the uniform
sampling method (right).

Example 2 This example is a linear system with a stable focus at the origin. Its dynamics

is (
ẋ

ẏ

)
=

(
−1 −1.9

1.9 −1

)
×

(
x

y

)
+

(
u1

u2

)
We let the dynamics be slightly perturbed by an additive input u. The state space is the box

B = [−3,−3]× [3, 3]. The input set U = {u ∈ R2 | ||u|| ≤ 0.2}. Figure 1.11 shows the results

obtained after 50000 iterations. We can see that again the guided sampling method achieved

a better coverage result for the same number of points since the points visited by the guided

sampling method are more equidistributed over the state space.

1.7 Controllability issue

From different experiments with Example 2, we observe that the coverage performance of

gRRT is not satisfying when the reachable space is only a small part of the entire state

space. To illustrate this, we increase the state space from B = [−3,−3] × [3, 3] to B′ =

[−5,−5]× [5, 5]. For the larger state space, the coverage quality is poorer (see Figure 1.12).

This can be explained as follows. There are boxes, such as those near the bottom right

vertex of the bounding box, which have a high potential of reducing the bounds of the star

discrepancy. Thus, the sampler frequently selects these boxes. However, these boxes are

not reachable from the initial states, and all attempts to reach them do not expand the

tree beyond the boundary of the reachable set. This results in a large number of points
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Figure 1.12: Results for the state spaces B (left) and B′ (right).

concentrated near this part of the boundary, while other parts of the reachable set are not

well explored.

It is important to emphasize that this problem is not specific to gRRT. The RRT algorithm

using the uniform sampling method and, more generally, any algorithm that does not take

into account the differential constraints of the system, may suffer from this phenomenon.

This phenomenon can however be captured by the evolution of the disparity between the set

of goal states and the set of visited states. This notion is formally defined in the next section.

Roughly speaking, it describes how different their distributions are. When the disparity does

not decrease after a certain number of iterations, this often indicates that the system cannot

approach the goal states, and it is better not to favor an expansion towards the exterior but

a refinement, that is an exploration in the interior of the already visited regions.

Figure 1.13 shows the evolution of the disparity between the set P k of visited states at

the kth iteration and the set Gk of goal states for the two examples. We observe that for the

system of Example 1 which can reach any state in the state space (by choosing appropriate

admissible inputs), the visited states follow the goal states, and thus the disparity gets

stabilized over time. However, in Example 2, where the system cannot reach everywhere,

the disparity does not decrease for a long period of time, during which most of the goal

states indicate a direction towards which the tree cannot be expanded further.

Figure 1.13 shows the Voronoi diagram4 of a set of visited states. In this example, the

4The Voronoi diagram of a set V of points in Rn is the partition of Rn into k polyhedral regions. Each region corresponds
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Figure 1.13: Left: The evolution of the disparity between the set P k of visited states and
the set Gk of goal states. Right: Illustration of the controllability issue.

boundary of the reachable set can be seen as an “obstacle” that prevents the system from

crossing it. Note that the Voronoi cells of the states on the boundary are large (because they

are near the large unvisited part of the state space). Hence, if the goal states are uniformly

sampled over the whole state space, these large Voronoi cells have higher probabilities of

containing the goal states, and thus the exploration is “stuck” near the boundary, while the

interior of the reachable set is not well explored.

To tackle this problem, we introduce the notion of disparity to describe the ‘difference’ in

the distributions of two sets of points. The controllability problem can be detected by a large

value of the disparity between the goal states and the visited states. We can thus combine

gRRT with a disparity based sampling method, in order to better adapt to the dynamics of

the system. This is the topic of the next section.

1.8 Disparity

The notion of disparity between two point sets that we develop here is inspired by the star

discrepancy. Indeed, by definition, the star discrepancy of a set P w.r.t. the box B can be

to a point v ∈ V , called the Voronoi cell of v, is defined as the set of points in Rn which are closer to v than to any other points
in V .
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Figure 1.14: The disparity between the Faure sequence (drawn using the + signs) and the
Halton sequence (drawn using the ∗ signs) is 0.06.

Figure 1.15: Left: The disparity between the Faure sequence (+ signs) and a C pseudo-
random sequence (∗ signs) is 0.12. Right: The disparity between the Faure sequence (+
signs) and another C pseudo-random sequence (∗ signs) is 0.54.
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seen as a comparison between P and an ‘ideal’ infinite set of points distributed all over B.

Let P and Q be two sets of points inside B. Let J be a sub-box of B which has the same

bottom-left vertex as B and the top-right vertex of which is a point inside B. Let Γ be the

set of all such sub-boxes. We define the local disparity between P and Q with respect to the

sub-box J as: γ(P,Q, J) = |A(P, J)

||P ||
− A(Q, J)

||Q||
| where A(P, J) is the number of points of P

inside J and ||P || is the total number of points of P .

Definition 9 (Disparity) The disparity between P and Q with respect to the bounding box

B is defined as: γ∗(P,Q,B) = supJ∈Γγ(P,Q, J).

The disparity satisfies 0 < γ∗(P,Q,B) ≤ 1. This property is a direct consequence of the

above definition. A small value γ∗(P,Q,B) means that the distributions of the sets P and

Q over the box B are ‘similar’.

To illustrate our notion of disparity, we consider two well-known sequences of points: the

Faure sequence [16] and the Halton sequence [41], which are shown in Figure 1.14. Their

disparity is 0.06, indicating that they have similar distributions. We then compare the

Faure sequence with a sequence generated by the C library. Figure 1.15 displays these two

sequences, each of which has 100 points. The star discrepancy coverage of the Faure sequence

is much better than that of the C sequence, and in fact the disparity between them (which

is 0.12) is twice larger than that between the Faure and Halton sequences. The last example

is used to compare the Faure sequence and a set of 100 points concentratred in some small

rectangle inside the bounding box. Their disparity is 0.54.

Disparity estimation

The exact computation of the disparity is as difficult as the exact computation of the star

discrepancy, which is because of the infinite number of the sub-boxes. We propose a method

for estimating a lower and an upper bound for this new measure. Let Π be a box partition

of B. Let P , Q be two sets of points inside B. For each elementary box b ∈ Π we denote
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µm(b) = max{µc(b), µo(b)} where µc(b) =
A(P, b+)

||P ||
− A(Q, b−)

||Q||
, µo(b) =

A(Q, b+)

||Q||
− A(P, b−)

||P ||
.

We also denote

c(b) = max{|A(P, b−)

||P ||
− A(Q, b−)

||Q||
|, |A(P, b+)

||P ||
− A(Q, b+)

||Q||
|}.

Theorem 1 (Upper and lower bounds) An upper bound Bd(P,Q,Π) and a lower bound

Cd(P,Q,Π) of the disparity between P and Q are: Bd(P,Q,Π) = maxb∈Π{µm(b)} and

Cd(P,Q,Π) = maxb∈Π{c(b)}.

The proof of the theorem can be found in [12].

Estimation error

We now give a bound on the estimation error. For each elementary box b = [α1, β1]× . . .×
[αn, βn] ∈ Π, we define theW-zone, denoted byW(b), as follows: W(b) = b+ \b−. We recall

that b+ = [l1, β1]× . . .× [ln, βn] and b− = [l1, α1]× . . .× [ln, αn].

We can prove the following bound on the error of the estimation, defined as the difference

between the upper and lower bounds [12].

Theorem 2 (Error bounds) Let Bd(P,Q,Π) and Cd(P,Q,Π) be the upper and lower bounds

of the disparity between P and Q. Then,

Bd(P,Q,Π)− Cd(P,Q,Π) ≤ max
b∈Π

max{A(P,W(b))

||P ||
,
A(Q,W(b))

||Q||
}.

The above error bounds can be used to dynamically refine the partition.
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1.9 Disparity-guided sampling

The essential idea of our disparity based sampling method is to detect when the dynamics of

the system does not allow the tree to expand towards the goal states and then to avoid such

situations by favoring a refinement, that is an exploration near the already visited states.

A simple way to bias the sampling towards the set P k of already visited states is to

reduce the sampling space. Indeed, we can make a bounding box of the set P k and give

more probability of sampling inside this box than outside it. Alternatively, we can guide

the sampling using the disparity information as follows. The objective now is to reduce the

disparity between the set Gk of goal states and the set P k of visited states. Like the guiding

method using the star discrepancy, we define for each elementary box b of the partition a

function η(b) reflecting the potential for reduction of the lower and upper bounds of the

disparity between P k and Gk. This means that we favor the selection of the boxes that

make the distribution of goal states Gk approach that of the visited states P k. Choosing

such boxes can improve the quality of refinement. The formulation of the potential influence

function for the disparity-based sampling method is similar to that for the coverage guided

sampling.

A combination of the coverage guided and the disparity guided sampling methods is

done as follows. We fix a time window Ts and a threshold ε. When using the coverage

guide method, if the algorithm detects that the disparity between the Gk and P k does not

decrease by ε after Ts time, it switches to the disparity guided method till the disparity

is reduced more significantly and switches back to the coverage guide method. Note that

a non-decreasing evolution of the disparity is an indication of the inability of the system

to approach the goal states. In an interactive exploration mode, it is possible to let the

user manually decide when to switch. As mentioned earlier, we call the resulting algorithm

agRRT (the letter ‘a’ in this acronym stands for “adaptive”).

Examples. We use the examples in the previous section to demonstrate the coverage

improvement of agRRT. Figure 1.16 shows that the final result for Example 1 obtained using
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agRRT has a better coverage than that obtained using gRRT. The solid curve represents

the coverage of the set P k of visited states and the dashed one the coverage of the set Gk of

goal states. The dash-dot curve represents the disparity between Gk and P k.

Figure 1.16: Left: Test coverage of the result obtained using agRRT for Example 1. Right:
Comparing gRRT and agRRT.

The result obtained using agRRT for Example 2 is shown in Figure 1.17, which also

indicates an improvement in coverage quality. The figure on the right shows the set of

generated goal states. The states are drawn in dark color. In this example, we can observe

the adaptivity of the combination of gRRT and agRRT. Indeed, in the beginning, the gRRT

algorithm was used to rapidly expand the tree. After some time, the goal states sampled

from the outside of the exact reachable space do not improve the coverage, since they only

create more states near the boundary of the reachable set. In this case, the disparity between

P k and Gk does not decrease, and the agRRT is thus used to enable an exploration in the

interior of the reachable set. The interior of the reachable set thus has a higher density of

sampled goal states than the outside, as one can see in the figure.

1.10 Termination criterion using disparity

We first explain why it is not suitable to use the star discrepancy coverage to decide the

termination of the test generation algorithm. Indeed, the star discrepancy allows to com-
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Figure 1.17: Result after k = 50000 iterations, obtained using agRRT (left: the set of visited
states P k, right: the set of goal states Gk).

Figure 1.18: The point set P (left) and the point set P ∪Q (right).

pare the spatial coverage quality between the point sets of the same cardinality; it however

may give misleading comparison between the sets of different cardinalities. To illustrate

this, we consider a set of two-dimensional points: P = {(0.25, 0.25), (0.5, 0.5), (0.75, 0.25),

(0.25, 0.75), (0.75, 0.75)} inside the bounding box B = [0, 1] × [0, 1], shown in Figure 1.18-

(left). The star discrepancy estimation gives: D∗(P,B) ' 0.347. An arising question is how

the star discrepancy changes when we add more points in P . We now consider another non-

empty set Q of points inside B that does not contain any points of P . Different experiments

show that the star discrepancy of the union P ∪Q may be larger or smaller than that of P .

For example, for the following set Q = {(0.06, 0.06), (0.12, 0.12), (0.06, 0.12), (0.12, 0.06) the

value of D∗(P ∪Q,B) ' 0.493 (see Figure 1.18-right). In other words, adding this set Q in

P increases the star discrepancy, which can be easily understood because the set Q is not

well equidistributed over the box B. However, from a verification point of view, the union

P ∪ Q provides more information about the correctness of the system than the set P . In

addition, geometrically speaking, the set P ∪Q “covers more space” than the set P .

Therefore, we do not use the star discrepancy coverage measure to decide when the
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test generation algorithm can terminate. Instead, to detect when the coverage reaches a

“saturation”, we use the disparity between two consecutive sets of visited states. If its value

remains below some predefined threshold ∆γ after a predefined number K of iterations, we

can stop the algorithm because the distribution of the sets of visited states are not much

changed and the coverage is not significantly improved. This criterion can be used together

with a maximal number of iterations.

1.11 Actuator and sensor imprecision

Because of the limitations of practical actuators and sensors, the tester cannot realize exactly

an input value specified as a real-valued vector as well as measure exactly the state of the

system. We first explain how actuator imprecision influences the testing process.

Actuator imprecision. We consider the following continuous dynamics of a location:

ẋ(t) = f(x(t), u(t)). Given an initial state x and an input value u, let ξx,u denote the unique

trajectory during the time interval [0, h].

Because of actuator imprecision, when the tester emits an input u to the system under

test, indeed some input v = u + δu with |δu| ≤ εu is applied. We call εu the actuator

imprecision bound. After one step, this uncertainty causes the new state y = ξx,v(h) to

deviate from the exact state y′ = ξx,u(h). In the next step, this deviation can be considered

as an uncertainty in the initial condition, namely (y′ − y), which causes further deviation.

Therefore, only when the observation measured by the tester lies outside some admissible

deviation neighborhood, the conformance property is considered violated. Therefore, we

must compute the admissible deviation neighborhoods.

Let Mx =
∂ξx,u
∂x

and Mu =
∂ξx,u
∂u

denote the partial derivatives of ξx,u with respect to

the initial condition x and to the input u. They are called the sensitivity matrices. Given

a neighboring initial state y and a neighboring input value v, we can get an estimation of

ξy,v by dropping higher order terms in the Taylor expansion of ξx,u(t) seen as a function of
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x and of u:

ξ̂y,v(h) = ξx,u(h) +Mx(h)(y − x) +Mu(h)(v − u) (1.6)

The deviation is thus δ = |Mx(h)(y− x) +Mu(h)εu|. The deviation neighborhood is defined

as a ball centered at ξx,u(h) with radius δ. To compute the sensitivity matrices, we solve the

following differential equations, which result from taking the derivative of the solution:

ẋ = f(x, u), (1.7)

Ṁx =
∂f(x, u)

∂x
Mx, (1.8)

Ṁu =
∂f(x, u)

∂x
Mu +

∂f(x, u)

∂u
(1.9)

with the initial condition ξx(0) = x and Mx(0) = In (the identity matrix) and Mu(0) = 0n

(the zero matrix). These are n+m+ 1 ordinary differential equations of order n. Note that

the cost can be made less than that of the resolution of n + m + 1 different systems since

the Jacobian
∂f(x, u)

∂x
can be extensively reused in the computation.

Therefore, in the RRT tree construction, when we compute a new state from a given

state x and input u, we additionally compute the corresponding sensitivity matrix Mx(h)

and Mu(h) and associate these matrices to the new node created to store the new state. We

also propagate the neighborhoods in order to detect possible executions of uncontrollable

discrete transitions. If the current state does not enable a uncontrollable transition but the

associated neighborhood intersects with its guard, we compute the image of the intersection

by the reset map and take its centroid to define a new visited state. The diameter of the

image is the radius of the associated neighborhood.

Verdict. During the test, let s̃i = (q̃i, x̃i) be the observation at the ith step and si =

(qi, xi) be the corresponding expected state in the tree. Let M i
x and M i

u be the sensitivity

matrices associated with the node (qi, xi). The system under test is assumed to satisfy the

conformance property at the initial state. The verdict is then decided as follows. We suppose

that the conformance property is not violated until the ith step. There are two cases:

1. (C1) s(i+1) is reached by the continuous dynamics. Then, if |x̃(i+1) − x(i+1)| > M i
x|x̃i −
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xi| + M i
uεu, we conclude that the conformance property is violated and stop the test.

Otherwise, we continue the test.

2. (C2) s(i+1) is reached by a discrete transition. Then, if q̃i = qi and |x̃(i+1)−x(i+1)| > δ(i+1)

where δ(i+1) is the deviation radius, we conclude that the conformance property is

violated and stop the test. Otherwise, we continue the test.

Sensor imprecision. Let the sensor imprecision be modeled by an upper bound εx on the

distance between the actual continuous state and the observation measured by the tester.

The distance between the observation and the expected states is now tested againts a bound

larger by εx, that is |x̃(i+1) − x(i+1)| > M i
x(x̃

i − xi) + M i
uεu + εx for the above (C1) and

|x̃(i+1) − x(i+1)| > δ(i+1) + εx for (C2).

1.12 Tool HTG

We have implemented the above algorithms in a test generation tool, called HTG. Its imple-

mentation uses a data structure similar to a k-d tree, which facilitates the required operations,

such as updating the tree, finding neighbors, updating the star discrepancy and disparity.

Indeed, using this data structure, we can efficiently encode a box partition for storing and

accessing the visited states as well as for the star discrepancy and disparity estimations. In

the following, we briefly describe some important functions. A more detailed description of

the implementation can be found in [12]

1.12.1 Numerical simulation

In most classic versions of hybrid automata, continuous dynamics are defined using ordinary

differential equations (ODEs). To analyze analog and mixed-signal circuits, the behavior of

which are described using differential algebraic equations (DAEs), we adapt the model to

capture this particularity and use the well-known RADAU algorithm for solving DAEs [21].

In addition, with view to applications in analog and mixed-signal circuits, an efficient and
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reliable simulation method is key. The state-of-the-art SPICE simulator is prone to con-

vergence problems when dealing with circuit components with stiff characteristics. We also

integrated in our test generation tool a connection to the platform SICONOS, developed at

INRIA Rhônes-Alpes, that contains a number of simulation algorithms based on the non-

smooth approach [2], which have proved to be efficient for systems with stiff dynamics.

1.12.2 SPICE netlists as input systems.

An important new feature of the tool is its ability to deal with circuits describes using SPICE,

in addition to textual descriptions of a hybrid automata. This facilitates the application of

the tool to practical circuits. Note that our test generation method works on the differential

equations of a hybrid automaton, which is an appropriate mathematical model to describe

circuit dynamics. However, the circuit equations must be generated from a SPICE netlist.

Common SPICE parsers do not directly provide a succinct form of circuit equations but gen-

erate complex equations for the numerical resolution of each simulation step. Furthermore,

using SPICE descriptions we cannot specify uncertain inputs. The solution we propose to

address this can be described as follows:

• The inputs (controllable by tester) can be source currents or voltages in SPICE. Their

uncertainty is described in an auxiliary file.

• We use the tool ACEF [1] to generate the numerical simulation equations in each step.

The values of the conptrollable inputs, computed by the test generation algorithm, are

communicated to ACEF [1] before the generation in each step. The generation can be

optimized by only updating some terms involving the modified input in the equations

of the previous steps.

The test cases generated by the tool can be visualized by different standard viewers such as

MATLAB R© and gnu plots.

The tool can also be used as a systematic simulator to verify properties of a model. For

this problem, the tester can manipulate not only control inputs but also disturbance inputs.
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Systematic simulation can be seen as a good compromise between exhaustive verification

and ad-hoc simulation.

1.13 Applications

The tool has been tested on various examples, which proved its scalability to high dimensional

systems (up to a few hundred continuous variables) [13]. In addition, we have also successfully

applied the tool to a number of case studies in control systems and in analog and mixed

signal circuits. In the following, to provide an overview of the applicability of the tool, we

briefly report some of these applications.

1.13.1 Aircraft collision avoidance system

To illustrate the application of our algorithm to hybrid systems, we use the aircraft collision

avoidance problem [32], which is a well-known benchmark in the hybrid systems literature.

In [32], the authors treated the problem of collision avoidance of two aircraft. To show the

scalability of our approach we consider the same model with N aircraft.

As shown in Figure 1.19, all the aircraft are at a fixed altitude. Each aircraft i has three

states (xi, yi, θi) where xi and yi describe the position and θi is the relative heading of the

aircraft. Each aircraft begins in straight flight at a fixed relative heading (mode 1).

Figure 1.19: Aircraft behavior in the three modes [32].

As soon as two aircraft are within the distance R between each other, they enter mode

2. In this mode each aircraft makes an instantaneous heading change of 90 degrees, and
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begins a circular flight for π time units. After that, they switch to mode 3 and make another

instantaneous heading change of 90 degrees and resume their original headings from mode

1.

The dynamics of the system are shown in Figure 1.20. The guard transition between

mode 1 and mode 2 is given by Dij < R, which means that the aircraft i is at R distance

from the aircraft j. The dynamics of each aircraft is as follows:

ẋi = vcos(θi) + dxi,

ẏi = vsin(θi) + dyi

θ̇i = ω

The continuous inputs are dxi and dxi describing the external disturbances on the aircraft

(such as wind):

dxi = d1sin(θi) + d2cos(θi),

dyi = −d1cos(θi) + d2sin(θi),

and −δ ≤ d1, d2 ≤ δ.

Mode 1 Mode 2 Mode 3

ẋi = vcos(θi) + dxi ẋi = vcos(θi) + dxi ẋi = vcos(θi) + dxi

żi = 0 żi = 0żi = 1

ẏi = vsin(θi) + dyi ẏi = vsin(θi) + dyi ẏi = vsin(θi) + dyi

θ := θ + π/2
z ≥ π

θ̇i = 0 θ̇i = ω θ̇i = 0

Dij > R

θ := θ + π/2

Dij ≤ R

z < π

Figure 1.20: System dynamics for the three modes.

Results. For N aircraft, the system has 3N + 1 continuous variables (one for modeling a

clock). For the case of N = 2 aircraft, when the collision distance is 5 (that is a collision

occurs if the distance between the aircraft is not greater than 5), no collision was detected

after visiting 10000 visited states, and the computation time was 0.9 min. The result for



46 CHAPTER 1. MODEL-BASED TESTING OF HYBRID SYSTEMS

N = 8 aircraft with the disturbance bound δ = 0.06 is shown in Figure 1.21, where we show

the projected positions of the eight aircraft on a 2-dimensional space. For this example,

the computation time for 50000 visited states was 10 min and a collision was found. For a

similar example with N = 10 aircraft, the computation time was 14 min and a collision was

also found.

Figure 1.21: Eight-aircraft collision avoidance (50000 visited states, computation time: 10
min.

1.13.2 Robotic vehicle benchmark

Another example is adapted from the robotic navigation system benchmark [35]. We consider

a car with the following continuous dynamics with 5 variables: ẋ = vcos(θ), ẏ = vsin(θ),

θ̇ = vtan(φ)/L, v̇ = u0, φ̇ = u1 where x, y, θ describe the position and heading of the car,

v is its speed and φ is its steering angle. The car can be in one of three car modes (smooth

car, smooth unicycle, smooth differential drive). In this work, we consider only the smooth

car mode.

The inputs of the system are u0 and u1 which are respectively the acceleration and steering

control. The system uses a hybrid control law with 3 driver modes. In the first driver mode,

called RandomDriver, the control inputs are selected uniformly at random between their
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lower and upper bounds. In the second driver mode, called StudentDrive, when the speed is

low, u0 is randomly chosen as in first mode; otherwise, the strategy is to reduce the speed.

In the third driver mode, called HighwayDrive, the strategy is to reduce the speed when it is

high and increase it when it is low. A detailed description of this control law can be found

in [35].

Rather than to analyze a realistic navigation system model, we use this example to test

the efficiency of our algorithms on a hybrid system with a larger number of locations. To this

end, we created from this system two models. The terrain is partitioned into K rectangles

using a regular grid G = {0, . . . , Kx−1}×{0, . . . , Ky−1}. Each rectangle is associated with

a driver mode. The first model is a hybrid automaton with KxKy locations and the system

can only switch between the locations corresponding to adjacent rectangles.

In the second model, we allow more complicated switching behavior by letting the system

jump between some rectangles that are not necessarily adjacent. The rectangle corresponding

to the grid point (i, j) ∈ G is Rij = [ilx, jly] × [(i + 1)lx, (j + 1)ly] where lx and ly are the

sizes of the grid in the x and y coordinates. The absolute index of Rij is an integer defined

as follows: ι(Rij) = iKy + j. From the rectangle Rij with even absolute index, we allow

a transition to Rmn such that ι(Rmn) = (ι(Rij) + J)mod(KxKy) (where J > 0 and mod

is the modulo division). The guard set at Rij is the right-most band of width εg, that is

[(i+1)lx−εg, jly]×[(i+1)lx, (j+1)ly]. After switching to Rmn, the car position (x, y) is reset to

a random point inside the square of size εr defined as [mlx, (n+1)ly−εr]× [mlx+εr, (n+1)ly].

We compared the results obtained for the two models using the gRRT algorithm and

the hRRT algorithm. In this experimentation the hRRT algorithm uses a uniform sam-

pling (both over the discrete and continuous state space). Since we want to focus on the

performance of the guiding tool, the two algorithms use the same hybrid distance defini-

tion and implementation. The parameters used in this experimentation are: lx = ly = 20,

lx = ly = 20, the car position (x, y) ∈ [−100, 100] × [−100, 100], εg = εr = 6, J = 6. The

number of locations in the hybrid automata is 100. For the first model without jumps, in

terms of coverage efficiency, the algorithms are comparable. For the model with jumps,

gRRT systematically produced better coverage results. However, gRRT is not always better
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than hRRT in terms of the number of covered locations. This is because of our coverage

definition using the average of the continuous-state coverages of all the locations.

In terms of time efficiency, we now report the computation time of gRRT for the experi-

mentations with various maximal visited states. For the first model, the computation times

of gRRT are: 4.7s for 10000 states in the tree, 1min 26s for 50000 states, 6min 7s for 100000

states. For the second model, the computation times of gRRT are: 4.2s for 10000 states in

the tree, 2min 5s for 50000 states, 4min 40s for 100000 states, and 20min 22s for 150000

states.

1.13.3 Analog and mixed-signal circuits

Using the above results, we implemented a test generation tool and tested it on a number

of control applications, which proved its scalability to high dimensional systems [33]. In

this implementation, all the sets encountered in the hybrid automaton definition are convex

polyhedra. For circuit applications, we use the well-known RADAU algorithm for solving

differential algebraic equations (DAE) [21]. We recall that solving high index5 and stiff DAEs

is computationally expensive, and in order to evaluate the efficiency of the test generation

algorithm, we have chosen two practical circuits with DAEs of this type. The three circuits

we treated are: a transistor amplifier, a voltage controlled oscillator, and a Delta-Sigma

modulator circuit.

Transistor amplifier. The first example is a transistor amplifier model [21], shown in

Figure 1.22, where the variable yi is the voltage at node i; Ue is the input signal and y8 = U8

is the output voltage. The circuit equations are a system of DAEs of index 1 with 8 continuous

5The differential index of a DAE is a measure of the singularity of the DAE. It characterizes the difficulty in numerically
solving the equation.
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Figure 1.22: Test generation result for the transitor amplifier.

variables: Mẏ = f(y, u). The function f is given by:



−Ue/R0 + y1/R0

−Ub/R2 + y2(1/R1 + 1/R2)− (α− 1)g(y2 − y3)

−g(y2 − y3) + y3/R3

−Ub/R4 + y4/R4 + αg(y2 − y3)

−Ub/R6 + y5(1/R5 + 1/R− 6)− (α− 1)g(y5 − y6)

−g(y5 − y6) + y6/R7

−Ub/R8 + y7/R8 + αg(y5 − y6)

y8/R9


.

The circuit parameters are: Ub = 6; UF = 0.026; R0 = 1000; Rk = 9000, k = 1, . . . , 9;

Ck = k10−6; α = 0.99; β = 10−6. The initial state yinit = (0, Ub/(R2/R1 + 1), Ub/(R2/R1 +

1), Ub, Ub/(R6/R5 + 1), Ub/(R6/R5 + 1), Ub, 0). To study the influence of circuit parameter

uncertainty, we consider a perturbation in the relation between the current through the

source of the two transistors and the voltages at the gate and source IS = g(UG − US) =

β(e
UG−US

UF − 1) + ε, with ε ∈ [εmin, εmax] = [−5e − 5, 5e − 5]. The input signal Ue(t) =

0.1sin(200πt). The acceptable interval of U8 in the non-perturbed circuit is [−3.01, 1.42].

Once the initial transient period has settled down, the test case indicates the presence of

traces with overshoots after 18222 iterations (corresponding to 1.1mn of computation time).

The total computation time for generating 50000 states was 3 minutes. Figure 1.22 shows

the generated states projected on U8 over the first 0.03 seconds.
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Figure 1.23: Voltage controlled oscillator (VCO) circuit.

Voltage controlled oscillator. The second circuit we examined is a voltage controlled

oscillator (VCO) circuit [19], described by a system of DAEs with 55 continuous variables.

In this circuit, the oscillating frequency of the variables vC1 and vC2 is a linear function of the

input voltage uin. We study the influence of a time-variant perturbation in C2, modeled as

an input signal, on this frequency. In this example we show that, in addition to conformance

relation, using this framework, we can test a property of the input/output relation. The

oscillating period T ± δ of vC2 can be expressed using a simple automaton with one clock y

in Figure 1.24. The question is to know if given an oscillating trace in A, its corresponding

trace in As also oscillates with the same period. This additional automaton can be used to

determine test verdicts for the traces in the computed test cases. If an observation sequence

corresponds to a path entering the “Error” location, then it causes a “fail” verdict. Since

we cannot use finite traces to prove a safety property, the set of obsevation sequences that

cause a “pass” verdict is empty, and therefore the remaining obsevation sequences (that do

not cause a “fail” verdict) cause an “inconclusive” verdict. We consider a constant input

voltage uin = 1.7. The coverage measure was defined on the projection of the state space

on vC1 and vC2 . The generated test case shows that after the transient time, under a time-

variant deviation of C2 which ranges within ±10% of the value of C2 = 0.1e−4, the variables

vC1 and vC2 oscillate with the period T ∈ [1.25, 1.258]s (with ε = 2.8e − 4). This result is

consistent with the result presented in [19]. The number of generated states was 30000 and

the computation time was 14 minutes. Figure 1.24 shows the explored traces of vC2 over

time.
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Error

y := 0
T − δ ≤ y ≤ T + δ ∧ |x1| ≤ ε

y := 0
x1 = 0

ẋ1 = 0
ẏ = 1
y ≤ Tp

y > T + δ
∧ |x1| ≤ ε

Figure 1.24: Left: Automaton for an oscillation specification. Right: Variable vC2 over time.
The number of generated states was 30000 and the computation time was 14mn.

Delta-Sigma circuit. The third example is a third-order Delta-Sigma modulator [6],

which is a mixed-signal circuit shown in Figure 1.25. When the input sinusoid is positive

and its value is less than 1, the output takes the +1 value more often and the quantization

error is fed back with negative gain and accumulated in the integrator 1
z−1

. Then, when the

accumulated error reaches a certain threshold, the quantizer switches the value of the output

to −1 to reduce the mean of the quantization error. A third-order Delta-Sigma modulator

is modeled as a hybrid automaton, shown in Figure 1.26. The discrete-time dynamics of

the system is as follows: x(k + 1) = Ax(k) + bu(k) − sign(y(k))a, y(k) = c3x3(k) + b4u(k)

where x(k) ∈ R3 is the integrator states, u(k) ∈ R is the input, y(k) ∈ R is the input of the

quantizer. Thus, its output is v(k) = sign(y(k)), and one can see that whenever v remains

constant, the system dynamics is affine continuous. A modulator is stable if under a bounded

input, the states of its integrators are bounded.

The test generation algorithm was performed for the initial state x(0) ∈ [−0.01, 0.01]3 and

the input values u(k) ∈ [−0.5, 0.5]. After exploring only 57 states, saturation was already

detected. The computation time was less than 1 second. Figure 1.27 shows the values of

(supx1(k))k as a function of the number k of time steps. We can see that the sequence
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Figure 1.25: A third-order modulator: Saturation blocks model saturation of the integrators.

c3x3(k) + u(k) >= 0

+bu(k)− a

c3x3(k) + u(k) < 0

v(k) = −1
x(k + 1) = Ax(k)+

bu(k) + a
x(k + 1) = Ax(k)
v(k) = +1

Figure 1.26: A hybrid automaton modeling the modulator.

(supx1(k))k leaves the safe interval [−xsat1 , xsat1 ] = [−0.2, 0.2], which indicates the instability

of the circuit. This instability for a fixed finite horizon was also detected in [11] using an

optimization-based method.

1.14 Conclusion and related work

The main results presented in this chapter can be summarized as follows. We proposed

a formal framework for conformance testing of hybrid systems. This framework uses the

commonly-accepted hybrid automaton model. We also proposed a novel coverage measure,

which not only is useful as a criterion to evaluate testing quality but also can be used to

guide the test generation process. We then developed a number of coverage-guided test

generation algorithms for hybrid systems. These algorithms are based on a combination

of ideas from robotic path planning, equidistribution theory, algorithmic geometry, and

numerical simulation. Based on these results, we implemented a tool for conformance testing

of hybrid systems, called HTG, which allowed us to treat a number of case studies from

control applications as well as from analog and mixed signal circuits. The experimental
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Figure 1.27: Test generation result for the Delta-Sigma circuit. The computation time was
less than 1s.

results obtained using the tool HTG show its applicability to systems with complex dynamics

and its scalability to high dimensional systems.

The remainder of this section is devoted to related work on hybrid systems testing. Con-

cerning hybrid systems testing, the work [40] developed a theoretical framework for testing

hybrid input-output conformance of hybrid transition system models. On an abstract level,

this conformance relation is very close to the one we developed in this work. However, no

concrete test generation algorithms and implementation were proposed in [40]. Concerning

other models, a conformance testing framework was developed for qualitative action systems

where the continuous dynamics are described using qualitative differential equations [3].

The paper [36] proposed a framework for generating test cases from simulation of hybrid

models specified using the language CHARON [5]. In this work, the test cases are generated

by restricting the behaviors of an environment automaton to yield a deterministic testing

automaton. A test suite can thus be defined as a finite set of executions of the environment

automaton. It is mentioned in [5] that to achieve a desired coverage, non-determinism in

the environment automaton is resolved during the test generation using some randomized

algorithm. However, this coverage as well as the randomized algorithm were not described
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in detail. Besides testing a real system, another goal of [5] is to apply tests to models, as

an alternative validation method. In [24], the testing problem is formulated as to find a

piecewise constant input that steers the system towards some set, which represents a set of

bad states.

The RRT algorithm has been used to solve a variety of reachability-related problems such

as hybrid systems planning, control, verification, and testing (see for example [15, 9, 24,

10, 35] and references therein). Here we only discuss a comparison of our approach with

some existing RRT-based approaches for the validation of continuous and hybrid systems.

Concerning the problem of defining a hybrid distance, our hybrid distance is close to that

proposed in [24]. The difference is that we use the centroids of the guard sets to define the

distance between these sets, while the author of [24] uses the minimal clearance distance

between these sets, which is more difficult to compute. To overcome this difficulty, the

author proposed to approximate this clearance distance by the diameter of the state space.

An advantage of our hybrid distance is that it captures better the average cases, allowing

not to always favor the extreme cases. Note also that our hybrid distance dH does not

take into account the system dynamics. It is based on the spatial positions of the states.

In [24] the author proposed a time-based metric for two hybrid states, which can be seen

as an approximation of the minimal time required to reach one state from another, using

the information on the derivatives of the variables. Another distance proposed in [24] is

called specification-based. This distance is typically defined with respect to some target set

specifying some reachability property. It can be however observed that for many systems, this

“direct” distance may mislead the exploration due to the controllability of the system. In [15,

24] and in our hRRT algorithm, the problem of optimally steering the system towards the

goal states was not addressed. In other words, the evolution of the tree is mainly determined

by the selection of nearest neighbors. In [9], the problem of computing optimal successors

was considered more carefully, and approximate solutions for linear dynamics as well as for

some particular cases of non-linear dynamics were proposed. The authors of [35] proposed

a search on a combination of the discrete structure and the coarse-grained decomposition of

the continuous state space into regions, in order to determine search directions. This can be

thought of as an implicit way of defining a hybrid distance as well as a guiding heuristics.
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Concerning test coverage for continuous and hybrid systems, in [15] the authors proposed

a coverage measure based on a discretized version of dispersion, since the dispersion in

general is very expensive to compute. Roughly speaking, the dispersion of a point set with

respect to various classes of range spaces, such as balls, is the area of the largest empty

range. This measure is defined over a set of grid points with a fixed size δ. For a given

test, the spacing sg of a grid point g is the distance from g to the nearest visited state by

the test if it is smaller than δ, and sg = δ otherwise. Let S be the sum of the spacings of

all the grid points. This means that the value of S is the largest when the set of visited

states is empty. Then, the coverage measure is defined in terms of how much the vertices of

the tree reduce the value of S. It is important to note that while in our work, the coverage

measure is used to guide the simulation, in [15] it is used as a termination criterion. The

paper [23] addresses the problem of robust testing by quantifying the robustness of some

properties under parameter perturbations. The work in [23] also considers the problem of

how to generate test cases with a number of initial state coverage strategies. In addition, the

work [18] is similar to ours in the idea of exploiting the existence of metrics on the system

state space, which is natural for continuous and hybrid systems. Indeed, by using a concept

of approximate bisimulation metrics, one can infer all the possible behaviors of the system in

a neighborhood of one trajectory. Hence, by a finite number of simulations it is possible to

decide whether the system is correct under all possible disturbances. However, this approach

is applicable only for stable systems and the bisimulation metrics can be effectively computed

only for restrictive classes of systems, such as systems with linear continuous dynamics.

Concerning guided exploration, sampling the configuration space has been one of the

fundamental issues in probabilistic motion planning. Our idea of guiding the test generation

via the sampling process has some similarity with the sampling domain control [42]. As

mentioned earlier, the RRT exploration is biased by the Voronoi diagram of the vertices of

the tree. If there are obstacles around such vertices, the expansion from them is limited

and choosing them frequently can slow down the exploration. In the dynamic-domain RRT

algorithm, the domains over which the goal points are sampled must reflect the geometric and

differential constraints of the system, and more generally, the controllability of the system.

In [31], another method for biasing the exploration was proposed and its main idea is to

reduce the dispersion in an incremental manner. This idea is thus very close to the idea of
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our guiding method in spirit; however, their concrete realizations are different. The method

in [31] attempts to lower the dispersion by using K samples in each iteration (instead of a

single sample) and then select from them a best sample by taking into account the feasibility

of growing the tree towards it. Finally, we mention that a similar idea was used in [15] where

the number of successful iterations is used to define an adaptive biased sampling. To sum up,

the novelty in our guiding method is that we use the information about the current coverage

of the visited states in order to improve the coverage quality. Additionally, we combine this

with controllability information (obtained from the disparity estimation) to obtain a more

efficient guiding strategy.

A number of directions for future research can be identified. First, we are interested

in defining a measure for trace coverage. Partial observability also must be considered.

Convergence rate of the exploration in the test generation algorithm is another interesting

theoretical problem to tackle. This problem is particular difficult especially in the verification

context where the system is subject to uncontrollable inputs.
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