
Reachable set computation using box splines and
integer polynomial optimization

Thao Dang

VERIMAG,
Centre Equation

2 avenue de Vignate
38610 Gières, France

Abstract. This paper is concerned with a method for over-approximating
the reachable sets of dynamical systems described by polynomial differ-
ence equations. This method is based on the box spline representation of
polynomials, the coefficients of which can be used to enclose all the reach-
able points. The coefficients correspond to the integer points inside a set
and their enumeration can be expensive. In this work, we propose a way
to avoid this explicit enumeration via integer polynomial optimization.

1 Introduction

In this paper we describe a method for over-approximating the reachable
sets of dynamical systems described by polynomial difference equations.
These equations arises in many practical systems originating from bio-
logical and chemical engineering applications. They can also arise in the
control software which implements some numerical discretization of an
embedded controller. In the context of embedded and hybrid systems,
formal verification is an important problem especially in the design of
safety-critical systems. Reachability computation can be used to verify
safety properies, which essentially state that some set of unsafe states is
not reachable.

The method we proposed is based on the box-spline representation
of polynomials, the coefficients of which can be used to enclose all the
reachable points. Compared to our previous method using the Bézier
simplex representation, this method works on more general domains and
does not require simplicial decompositions.

We focus on a discrete-time dynamical systems described by a differ-
ence equation of the form x(k+ 1) = π(x(k)) where x(k) ∈ Rn and π is a
multi-variate polynomial. It should be noted that our method can be ex-
tended to a continuous-time system described by a differential equation.



Indeed, one can approximate it by a difference equation using a discretiza-
tion scheme with some uncertainty term to guarantee conservativeness of
the approximation.

The goal is to approximate the set of all states reachable by this
system from some initial set X0. This requires successive computations
of the image of a set by the polynomial π. The main ideas of our method
can be summarized as follows. We represent the polynomial in question
using a box spline basis. The coefficients of this representation allow to
over-approximate the image.

The paper is organized as follows. In Section 2 we recall the method
using the box-spline representation to approximate the image of a set by a
polynomial. In the next section we present how to use integer polynomial
optimisation to avoid expensive integer points enumeration.

2 Box splines

2.1 Definition

We will present an inductive definition of box spline, and other definitions
(such as, geometric or by recursion) can be found in [3].

Let n be the dimension (or the number of variables). Given an integer
k ≥ n, let V = {ξ1, . . . , ξk} be a set of k vectors in Rn where ξ1, ξ2, . . . , ξn
are linearly independent. Each such vector is called direction. We denote
by M = [ξ1 ξ2 . . . ξk] a matrix of size n× k, the columns of which are the
vectors in V . For convenience of notation, we use the same letter ξi to
refer to a vector in V or a column of the matrix M .

Without loss of generality, it could be assumed that the first n columns
of M form the n-dimensional identity matrix I. The inductive definition
of a box spline BM associated with V is as follows.

We denote s = k − n and start with the base case where k = n and
s = 0. Then Ms = I and BMs(x) = 1 if x ∈ [0, 1)n and 0 otherwise. Note
that this function is piecewise constant and has degree s = 0.

If we add a column in M denoted by M ∪ ξ, then the box spline
associated with the new matrix Ms = Ms−1 ∪ ξ is defined as:

BMs∪ξ = Z1
0BMs−1(x− tξ)dt. (1)

Thus, each convolution in another direction v increases the degree by 1,
and when s = k − n, BM is a piecewise polynomial of degree k − n.



We use the well-known Zwart-Powell box spline [3] to illustrate the
above definition. First, we consider the following matrix of size 2× 3

M =
(

1 0 1
0 1 1

)
In this case we have n = 2, k = 3. We start with k = n = 2 and the
identity matrix formed by two vectors ξ1 = (1, 0) and ξ2 = (0, 1) defines a
unit box (see Figure 2.1-(a)). By adding the vector ξ3 = (1, 1) the matrix
M defines a mesh inside a zonotope, as shown in Figure 2.1-(b). Using
the definition (1), we obtain the box spline BM which is the hat function
shown in Figure 2.1.

We further add a new vector ξ4 = (−1, 1) to form a matrix M ′ as
follows:

M ′ =
(

1 0 1 −1
0 1 1 1

)
.

This defines a new mesh (see Figure 2.1-(d)) and the corresponding box
spline BM ′ is depicted in Figure 2.1. This function is called Zwart-Powell
box spline.

Fig. 1. Supports of some box splines.



Fig. 2. The hat function (left) and the Zwart-Powell box spline (right).

2.2 Basic properties

The box splines have the following properties which follow directly from
their definition.

For all x ∈ [ξ1 ξ2 . . . ξk][0, 1)k, BM (x) > 0. The support of BM (x) is

Z = [ξ1ξ2 . . . ξk][0, 1]k. (2)

that is the sum of the vectors in V , or the zonotope with V as the set of
its generators. The box spline BM is symmetric with respect to the center
of its support.

It should be noted that the box spline BM is piecewise polynomial.
Indeed, it is a polynomial of degree at most (k−n) within each element of
the simplicial mesh defined by V over the support of BM . The following
lemma states two important properties of BM .

Let ρ de the minimal number of vectors that need to be removed
from V so that they do not span Rn. The box spline BM is (ρ− 2) times
continuously differentiable.

Again, we assume that the vectors in V = {v1, . . . , vk} span Rn. We
define an integer shift of the box spline BM (x − j) with j ∈ Zn. Since
BM (x) is non-negative and the sum of all the integer shifts of BM (x) is
1, the integer shifts of any box spline BM (x) form a partition of unity.

We are now interested in the space of polynomials spanned by all
shifts of BM . We define the index set for each x ∈ Rn as follows:

IM (x) = {i ∈ Zn | BM (x− i) 6= 0}.

Note that this set is finite for any x; therefore, for simplicity we write
infinite linear combinations of the integer shifts while keeping in mind
that the combinations are only over the associated index set.



Lemma 1. If the box spline BM is r times continuously differentiable.
Then, for any polynomial a of degree (r + 1), the function

π(x) =
∑
i∈Zn

a(i)BM (x− i). (3)

is a polynomial of degree (r + 1), and any polynomial can be represented
as in (3) by choosing M appropriately. The coefficients a(i) are called
the control points, and the function a is called the weight function.

Lemma 2. Given a point x, π(x) lies in the convex hull of the control
points corresponding to the index set IM (x):

π(x) = conv{a(i) | i ∈ IM (x)}.

This property, called the convex-hull property, will be used for our image
computation problem.

2.3 Index set

As mentioned earlier, when writing the infinite sum, it indeed suffices to
consider the integer points in the index set. Given x, the index set I(x)
associated with the box spline BM is IM (x) = {i ∈ Zn | BM (x−i) 6= 0}.
It is not hard to prove that

IM (x) = Zn ∩ (x−M [0, 1]k). (4)

The index set for all x inside some set X ⊆ Rn, denoted by IM (X), is
defined as follows:

IM (X) = {i ∈ Zn | ∃x ∈ X : BM (x− i) 6= 0}
= Zn ∩ (X ⊕ (−M [0, 1]k)).

where ⊕ denotes the Minkowski sum. Then the computation of the index
set IM (X) amounts to enumerating all the points with integer coordinates
inside the Minkowski sum of P and the zonotope −M [0, 1]k.

3 Reachable set computation

We consider a dynamical discrete-time system

xk+1 = π(xk)



where π is a polynomial map and x0 ∈ X0. Given a set X ⊂ Rn, we write:

π(X) = {π(x) | x ∈ X}.

Let P k = π(P k−1) with P 0 = X0. The reachable set of the above
system from the initial set X0 is defined as:

R =
⋃
k

P k

In order to compute R, we need a method for computing the image of
a set by a polynomial. To this end, we write the polynomial π using the
a box spline representation, provided that the box spline BM must be of
appropriate degree. We then use the convex-hull property of the box spline
representation to over-approximate the image π(X) of a given set X. To
compute the control points, we derive a symbolic expression of the weight
function a, and then determine the index set, that is the set of integer
points at which the integer shifts in the box spline representation (3) is
non-null.

We assume that we have chosen an appropriate matrix M . This means
that the condition on M , stated in Lemma 1, which guarantees that
the associated box spline BM can reproduce all the polynomials of the
required degree.

In the previous work [2], we proposed a method for enumerating the
index set associated with the Minkowski sum conv{P i} ⊕ (−M [0, 1]k).
To each integer point in the index set, we apply the weight function a to
obtain the corresponding control point. The disadvantage of this method
is that the integer point enumeration is expensive and moreover they can
be numerous. The goal of this work is to remedy this problem by for-
mula it as an integer polynomial optimization problem. We first describe
a method for computing the weight function symbolically and show that
the resulting is a polynomial. Hence, if using a family of half-spaces with
a given normal vector, finding a half-space that tightly contains the con-
trol points of interest can be formulated as a problem of optimizing a
polynomial over a set of integer points inside a polytope.

4 Computing the weight function

Any polynomial can be decomposed to a linear combination of monomials,
it is possible to compute the control points for each monomial and then
combine them.



More concretely, if the polynomial π is a linear combination of two
monomialsm1 andm2, i.e. π = km+k′m′. Then, ifm(x) =

∑
i∈Zn a(i)BM (x−

i) and m′(x) =
∑

i∈Zn a′(i)BM (x − i), then π(x) =
∑

i∈Zn(a(i) +
a′(i))BM (x− i).

We use the extension of the Marsden identity to derive an analytic
expression of a. We consider a monomial of the form xr11 . . . xrnn where
each ri is a non-negative integer, and we denote it as mr(x) = xr where
r = (r1, . . . , rn) is called the multi-index. We define r′ ≺ r iff r 6= r′ and
∀i ∈ {1, . . . , n} : r′i ≤ ri. Similarly, the difference r − r′ can be defined
componentwise, that is r − r′ = (r1 − r′1, . . . , rn − r′n).

Given a monomial mr, the goal is to determine the weight function
ar such that the monomial can be represented using the box spline BM ,
that is, xr =

∑
i a(i)BM (x− i). We define the operator

µ : f →
∑
i

BM (i)f(−i). (5)

The (symbolic) computation of the function a can be done using the
following recurrence [3]:{

ar = mr −
∑

r′≺r µ(mr−r′) ar′
a(0,...,0) = 1.

(6)

The generation of µ(mr′) for all r′ ≺ r can be done before starting
the recursion (6). For a fixed r, we need to compute the expresions of cr′
for all r′ ≺ r, and this requires computing the application of the operator
µ on them.

From the construction of the weight function we can see that the result
is a polynomial.

5 Polynomial optimization over integer points

The improvements we propose in this work are based on the following
observations. First, we remark that the enumeration of the integer points
inside a polytope (represented as the Minkowski sum of the convex hull
of a set of points and a zonotope) can be very expensive. In addition, we
have to evaluate the weight function at every integer point. Indeed, as
we can see in Section 4, the weight function is a polynomial, and thus we
can formulate the problem of approximate the convex hull of the control
points directly as a problem of optimizing a polynomial function over
a set of integer points. This optimization problem can then be solved



using a method of encoding integer points by the Barnikov generating
functions [1].

More precisely, the problem we are addressing now is stated as follows:
Given a polytope Q and a polynomial function a, compute a polytope G
such that

chull{a(i) | i ∈ Q} ⊆ G (7)

In particular, on one hand we want Q to be as small as possible. On the
other hand,, we want Q to have a manageable geometric complexity. In-
deed, for various operations needed for the verification of hybrid systems
(such as Boolean operations over the reachable sets), discrete transition
can make the complexity of the reachable sets grow very fast. One way
to handle such situations is to use polyhedral representations with fixed
structures (at the price of compromising accuracy). In this work, we pro-
pose to use template polyhedra (see for example in [4]).

A convex polyhedron is a conjunction of a finite number of linear
inequalities described as Ax ≤ b, where A is a m × n matrix, b is a
column vector of size m. A template is a set of linear functions over
x = (x1, . . . , xn). We denote a template by an m × n matrix H, such
that each row H i corresponds to the linear function H ix. Given such a
template H and a real-valued vector d ∈ Rm, a template polyhedron is
defined by considering the conjunction of the linear inequalities of the
form

∧
i=1,...,mH

ix ≤ di. We denote this polyhedron by 〈H,d〉.
We now suppose that we seek G as a template polyhedron with a

given H. Determining G means determining the coefficient vector d.
It is not hard to see that the following condition is sufficient for (7)

to hold:
∀i ∈ Q : Ha(i) ≤ d

Therefore, to determine d, one can formulate the following optimiza-
tion problem:

∀i ∈ {1, . . . ,m}, di = max(Σn
k=1H

i
kak(i)) subj. to i ∈ Q. (8)

where H i is the ith row of the matrix H and H i
k is its kth element. Note

that the above functions to optimize are polynomials over a set of integer
points. In the next section we focus on this problem.

6 Polynomial optimization over integer points

As we have seen that enumeration of integer point can be very expensive,
A. Barnikov proposed a method for encoding all the integer points inside



a polytope as a rational functions (see [1]). Integer points are encoded
as exponent vectors of monomials. For example, the point (i1, . . . , in) is
encoded by the monomial xi1

1 . . . xin
n . The set of integer points is then

represented by a polynomial:

hQ(x) =
∑

i∈Q∩Zn

xi.

This (exponentially large) sum of monomials hQ(x) can be written as
a polynomially large sum of rational functions of the form:

hQ(x) =
∑
k∈K

Ek
xuk∏

j=1 n(1− xvkj )
(9)

where Ei{1, 1} and u,vjk ∈ Zn for all i and j. Indeed, it was proven that
K is a polynomial-size set.

The problem now is to encode the values of a polynomial g in a similar
manner. Essentially, the differential operators associated to g can be used
to encode ∑

i∈Q∩Zn

g(i)xi.

Indeed, we consider the differential operator xj ∂
∂xj

. First, for a simple
case the polynomial g(x) = xj . Then,

xj
∂

∂xj
hQ(x) =

∑
i∈Q∩Zn

xj
∂xi

∂xj
=

∑
i∈Q∩Zn

ijx
i.

By differentiating the generating function hQ(x) in form of rational
function (9) we will obtain the Barnikov representation hQ,g,k(x) of the
function

∑
i∈Q∩Zn gk(i)xi and it was proven that this representation is

polynomial in the degree of g (for a fixed dimension n). We can extend
to above argument to more general monomials g(x) = xj.

We are now able to encode the values of
∑

i∈Q∩Zn g(i)xi. over the
integer points inside the polytope Q. The remaining question is to use
this representation to solve our initial optimization problem. To this end,
we first note that

Lk = (hQ,g,k(1)/hQ,g,0(1))1/k

and
Uk = (hQ,g,k(1))1/k



are respectively a lower and upper bound of the maximal value of g over
the integer points in Q. And therefore we can compute a sequence of
(Lk, Uk) until they approach to the same integer value.

It is important to emphasize that the above works for non-negative
polynomials g. For polynomials with negative values, one needs to es-
timate an upper and a lower bound on each variable xj and therefore
a bound on the absolute value of each monomial and then to shift the
polynomial accordingly.

7 Reachable set computation algorithm

We can now summarize our developments so far into a reachable set
computation algorithm

Algorithm 1 Reachable set computation
Q0 = X0

Z = (−M [0, 1]k)
i = 0
repeat

forall(m ∈ {1, . . . , m})
dm = max{Hma(i) | i ∈ P i ⊕ Z} /* computing polyhedral coefficient vector */

endforall
P i+1 = {x | Hx ≤ d} /* computing the template polyhedron */

i = i + 1
until i > Kmax

8 Conclusion

In this work we present an improvement in the algorithm using box splines
to approximate reachable sets. This improvement will reduce considerably
the complexity of the algorithm since the Barnikov representation has a
polynomial size while the number of integer points is exponentially large.
It remains to validate this via experiments with concrete examples, which
is part of our ongoing work.

References

1. A.I. Barnikov and J. Pommersheim. An algorithmic theory of lattice points in
polyhedra. In New Perspectives in Algebraic Combinatorics, page 91147. Math. Sci.
Res. Inst. Publ. 38, Cambridge Univ. Press, Cambridge, 1999.



2. T. Dang. Box splines and reachability computation for polynomial systems. In
Technical report VERIMAG, Grenoble, Jan 2009.

3. Carl de Boor, Klaus Hülig, and Sherman Riemenschneider. Box splines. Springer-
Verlag New York, Inc., New York, NY, 1993.

4. S. Sankaranarayanan, H. Sipma, and Z. Manna. Scalable analysis of linear systems
using mathematical programming. In Verification, Model-Checking and Abstract-
Interpretation (VMCAI 2005), LNCS 3385. Springer, 2005.


