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Abstract. We describe NLTOOLBOX, a library of data structures and
algorithms for reachability computation of nonlinear dynamical systems.
It provides the users with an easy way to ”program” their own analysis
procedures or to solve other problems beyond verification. We illustrate
the use of the library for the analysis of a biological model.

1 Introduction

Reachability analysis is a fundamental problem in model checking, program anal-
ysis, controller synthesis. This problem was initially motivated by the interest
in extending model checking to hybrid systems (comprising both discrete and
continuous dynamics). In addition, the behaviors of these systems are often non-
deterministic due to various uncertainties which could be inherent or epistemic
(such as unknown initial conditions, parameter values, multiple mode switch-
ings). Reachability analysis involves computing the set of all possible trajecto-
ries under such uncertainties. There are numerous tools for reachable set com-
putation, such as Checkmate [5], d/dt [1], MPT tool [11], level set toolbox [13]
HySAT/iSAT [8], Ariadne [7], SpaceEx [9], Flow* [6]. Compared to the scala-
bility of the existing techniques on linear systems, their scalability on nonlinear
systems is much lower, not only because of their inherently higher complexity,
but also because they often require sophisticated fine tuning of computation pa-
rameters (such as time steps, error tolerance), choice of set representations and
exploration strategies. An automatic fine tuning can hardly be efficient for all
types of systems, since it cannot include a-priori knowledge that the user pos-
sesses and a-posterior knowledge that he could gain from the analysis. It is thus
important to provide the user with a possibility of ”programming” the analysis
process so that he can easily readjust the computation parameters or include
exploration intention. For this reason, NLTOOLBOX1 was designed as a C + +
library providing an algorithmic infrastructure for reachability computation with
which the user can write a simple C++ program to develop and explore different
exploration strategies or to solve specific analysis problems. Two major function-
alities of the library are: reachability analysis of polynomial systems (using the
Bernstein expansion technique) and reachability analysis of general nonlinear
systems (using hybridization). The latter can be applied directly to continuous-
time systems while the former only to discrete-time systems and thus its use

1 http://www-verimag.imag.fr/PEOPLE/Thao.Dang/nltoolboxlib.



for continuous-time systems requires a system time-discretization. The rest of
the paper is organized as follows. We first present the main data structures and
algorithms and then illustrate the use of the library on a biological model.

2 Data structures and reachability algorithms

Polytopes defined by constraints are the main set representation, which con-
tains additional constructors for template polyhedra, hyper-rectangles and hyper-
octagons. The library contains a number of set operations needed by reachability
analysis, such as inclusion test, affine transformation, set splitting (used for re-
finement). In the following, we describe only two main reachability algorithms:
one is based on hybridization [3] and the other on the Bernstein expansion [4].
The library also includes an algorithm specialized for multi-affine systems [14].

Reachability algorithm using the Bernstein expansion. This algorithm
computes the reachable set (represented by template polyhedra) of a discrete-
time polynomial systems x[k + 1] = π(x[k]) from an initial polyhedron P ⊂ Rn.
To handle continuous-time systems, the library offers a number of discretization
methods. For a given template matrix T , we need to find a vector b such that
the image π(P ) is included in the template polyhedron defined by Tx ≤ b. To
determine b, we formulate an polynomial optimization problems and replace it
by a linear program (which can be solved more efficiently) by using affine bound
functions. To compute affine bound functions for polynomials, the Bernstein ex-
pansion can be used. Indeed, an n-variate polynomial can be represented in the
Bernstein basis functions and the coefficients of this representation allow captur-
ing geometric properties of the polynomial and thus obtaining accurate function
approximations. However, the Bernstein expansion is valid only inside the unit
box [0, 1]n, and to address this problem, we use two methods: (1) oriented-box
approximation and (2) rewriting the polynomial using a change of variables.
Furthermore, two methods for handling templates are used: the template can be
static (the polyhedra share the same constant matrix T ) or dynamic (the matrix
T evolves according to a local approximation of the dynamics).

Reachability algorithm using hybridization. The main idea of hybridiza-
tion is to approximate a nonlinear system ẋ = f(x) by a piecewise affine one.
We compute an approximation domain (that contains the current reachable set)
and an approximate vector field for that domain. When the system leaves the
current approximation domain, a new domain is created. Our hybridization al-
gorithm uses simplicial domains and piecewise affine approximate vector fields,
which is motivated by many available methods for piecewise affine systems (see
for instance [1, 5, 11, 10, 9]). In addition, we exploit the curvature of the vector
field f to determine large domains with good error bound. To handle resulting
piecewise affine systems, the library includes a basic reachability algorithm [1].

Programming an analysis procedure. These algorithms were successfully
applied to many case studies (in particular a mitochondrial aging model with
9 variables and a model of ongiogenesis with 12 variables) and they were also
evaluated using randomly generated systems, which shows that they can handle



efficiently systems with up to 10 variables and are among the state-of-the-art
computational methods for nonlinear systems (see [3, 2]). The goal of this section
is to demonstrate the usefulness of NLTOOLBOX by showing how to program
with the library to solve a reachability problem. As a working example, we use
the Laub-Loomis model [12] for spontaneous oscillations during the aggregation
stage of Dictyostelium [12]: ẋ = f(x), where the state variable x = (x0, . . . , x6)
represents the concentrations of seven proteins, and the derivatives are f0 =
k1x2−k2x0, f1 = k3x4−k4x1, f2 = k5x6−k6x2x1, f3 = k7−k8x3x2, f4 = k9x0−
k10x3x4, f5 = k11x0−k12x5, f6 = k13x5−k14x6x1. The model has 14 parameters
(k1, . . . , k14). The main steps of an analysis procedure using hybridization is
shown in the following (pseudo) C++ program.
void Dictyostelium_hybridization() {

1: createOctagonalSet(n, r, c, T, b); Hpolyhedron I(n, T, b);

2: PointerSystem Sp(n, fp, df, hp);

3: ReachHybridization reachHyb(Sp, I, err, dt);

4: reachHybridization.reach(nbIter);

5: vector<Hpolyhedron> res=reachHyb.getReachabilityResult();

6: exporter.save(res, color);

}

In line 1 we define the octogonal initial set I, centered at c, with circumradius
r. In line 2, we create a dynamical system Sp by specifying the pointers to the
functions computing f , the Jacobian matrix of f and the Hessian matrix of f
(used to define curvature). In line 3, an instance reachHyb of the class ReachHy-
bridization is created with a desired error bound err and a time step dt. Then,
the reachable set is computed for nbIter iterations and stored in res. The fi-
nal phase (line 6) involves saving the result in a matlab file for visualization
purposes. It is possible to choose the templates for the viewing projection (by
default the box templates are used). To use the Bernstein technique, an instance
reachBern of the class ReachPolynomial can be created. Figure 1 shows the
reachability results for the initial octagonal set with circumradius 0.0001 cented
at (1.2, 1.105, 1.5, 2.4, 1.0, 0.1, 0.45). For the hybridization method, the time step
is 0.007 and the computation time for 4000 iterations is 346.43s (on a machine
with 2.2 GHz Intel Core 2 Duo Processor). For the Berstein technique, the time
step is 0.028, and the computation time for 1000 iterations is 283.46s. The hy-
bridization technique for this example is less time-efficient but more accurate
when the reachable set converges towards the attraction basin.

3 Conclusion

The advantage of the library is twofold. On one hand, it provides the users with
an easy way to ”program” their own analysis procedures or to use reachability
algorithms to solve other problems beyond verification. On the other hand, the
library can also be used by other existing tools to increase their scope in terms of
problems and methods. NLTOOLBOX is currently being integrated in SpaceEx
[9], to extend the applicability of SpaceEx to nonlinear hybrid systems. Our
future work includes using the library to for controller synthesis.



Fig. 1. The reachable sets computed by hybridization (left) and by the Bernstein tech-
nique (right). The grey areas in the left figure are the template projections of the
hybridization domains.
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