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Abstract. In this paper we propose a new method for reachability anal-
ysis of the class of discrete-time polynomial dynamical systems. Our work
is based on the approach combining the use of template polyhedra and
optimization [1, 2]. These problems are non-convex and are therefore gen-
erally difficult to solve exactly. Using the Bernstein form of polynomials,
we define a set of equivalent problems which can be relaxed to linear
programs. Unlike using affine lower-bound functions in [2], in this work
we use piecewise affine lower-bound functions, which allows us to obtain
more accurate approximations. In addition, we show that these bounds
can be improved by increasing artificially the degree of the polynomi-
als. This new method allows us to compute more accurately guaranteed
over-approximations of the reachable sets of discrete-time polynomial
dynamical systems. We also show different ways to choose suitable poly-
hedral templates. Finally, we show the merits of our approach on several
examples.

1 Introduction

Reachability analysis has been a major research issue in the field of hybrid
systems for more than a decade. Spectacular progress has been made over the
past few years for a class of hybrid systems where the continuous dynamics can be
described by affine differential equations [3–6]. However, dealing efficiently with
systems with nonlinear dynamics remains a challenging problem that needs to
be addressed. Besides, reachability analysis of non linear dynamical systems is
also motivated by its numerous potential applications, in particular in systems
biology [7–9].

In this paper, we present a new method for reachability analysis of a class
of discrete-time nonlinear systems defined by polynomial maps. We follow the
approach proposed in [1, 2] which, by using template polyhedra, reduces the
problem of reachability analysis to a set of optimization problems involving poly-
nomials over bounded polyhedra. These are generally non-convex optimization
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problems and hence is hard to solve them exactly. However, computing lower
bounds of the solutions of these optimization problems is actually sufficient to
obtain guaranteed over-approximations of the reachable sets that are usually
needed for safety verification. Unlike using affine lower-bound functions in [8],
in this work we use piecewise affine lower-bound functions, which allows obtain
more accurate approximations. To this end, we essentially use the Bernstein
expansions of polynomials and their properties to build linear programming re-
laxations of the original optimization problems. This can be roughly described
as follows. First, by writing polynomials in the Bernstein basis we define a set of
equivalent problems. Then, using properties of Bernstein polynomials, we show
that good lower bounds of the optimal value of these problems can be computed
efficiently using linear programming. This provides us with an elegant approach
to reachability analysis of polynomial systems.

The rest of the paper is organized as follows. In Section 2, we show a tech-
nique for computing a lower bound of a non convex optimization problem where
the cost function is a multivariate polynomial and the constraints are given
by a bounded polyhedron included in the unit box. We then present a result
which allows improving the accuracy of our lower bounds and a comparison
with other relaxation methods. In Section 3, we show that reachability analy-
sis of polynomial dynamical systems can be handled by optimizing multivariate
polynomials on bounded polyhedra, and this will be used to compute guaranteed
over-approximations of the reachable set. The choice of the templates, the com-
plexity of the whole approach and a comparison with other related approach are
also discussed. Finally, in Section 4, we show some experimental results including
the application of our approach to reachability analysis of biological systems.

2 Optimization of polynomials using Linear Programming

In the following, we consider the problem of computing a guaranteed lower bound
of the following optimization problem:

minimize ` · g(y)
over y ∈ [0, 1]n,
subject to Ay ≤ b.

(1)

where ` ∈ Rn, g : Rn → Rn is a polynomial map, A ∈ Rn×m and b ∈ Rm.
Let y1, . . . , yn denote the components of y ∈ [0, 1]n and δ1, . . . , δn denote the

degrees of g in y1, . . . , yn. Let ∆ = (δ1, . . . , δn); for I = (i1, . . . , in) ∈ Nn, we
write I ≤ ∆ if ij ≤ δj for all j ∈ {1, . . . , n}. Also, let |I| = i1 + · · · + in and
for y ∈ Rn, yI = yi11 . . . yinn . Then, the polynomial map g can be written in the
form:

g(y) =
∑
I≤∆

gIy
I where gI ∈ Rn, ∀I ≤ ∆.

Let δmax = max{|I|, such that I ≤ ∆ and gI 6= 0}.



2.1 Using the Bernstein form

The main theoretical ingredient of our approach is the Bernstein expansion of
polynomials [10, 11]. The polynomial map g in its Bernstein form is given by:

g(y) =
∑
I≤∆

hIB∆,I(y) where hI ∈ Rn, ∀I ≤ ∆ (2)

and the Bernstein polynomials are defined for I ≤ ∆ as follows:

B∆,I(y) = βδ1,i1(y1) . . . βδn,in(yn)

with for j = 1, . . . n, ij = 0, . . . , δj : βδj ,ij (yj) =

(
δj
ij

)
y
ij
j (1− yj)δj−ij .

The coefficients hI of g in the Bernstein basis can be evaluated explicitly
from the coefficients gI of g in the canonical basis using the following explicit
formula: for all I ≤ ∆,

hI =
∑
J≤I

(
i1
j1

)
. . .

(
in
jn

)
(
δ1
j1

)
. . .

(
δn
jn

)gJ . (3)

We also propose an alternative approach for computing the coefficients hI using
the interpolation at the points J

∆′ = ( j1δ1 , . . . ,
jn
δn

) for J ≤ ∆:∑
I≤∆

hIB∆,I(
J
∆ ) = g( J∆ )

Let us denote B∆ the matrix whose lines are indexed by J ≤ ∆ and columns
are indexed by I ≤ ∆ with coefficients B∆,I(

J
∆ ). Let h be the matrix whose

lines indexed by I ≤ ∆ are h>I and g the matrix whose lines indexed by J ≤ ∆
are g( J∆ )>.Then, the previous equation under matricial form can be written as
B∆h = g. From standard polynomial interpolation theory, the matrix B∆ is
invertible and the Bernstein coefficients are given by

h = B−1∆ g. (4)

For determining a linear programming relaxation of (1), the most useful prop-
erties of the Bernstein polynomials are the following:

Proposition 1. The Bernstein polynomials satisfy the following properties:

1. For all y ∈ Rn,
∑
I≤∆B∆,I(y) = 1 and

∑
I≤∆

I
∆B∆,I(y) = y.

2. For all y ∈ [0, 1]n, 0 ≤ B∆,I(y) ≤ B∆,I( I∆ )

where B∆,I(
I
∆ ) =

∏j=n
j=1

(
δj
ij

)
i
ij
j (δj−ij)δj−ij

δ
δj
j

.



2.2 Linear programming relaxation

We can use the previous proposition to derive a linear programming relaxation
of the problem (1):

Proposition 2. Let p∗ be the optimal value of the linear program:

minimize
∑
I≤∆(` · hI)zI

over zI ∈ R, I ≤ ∆,
subject to 0 ≤ zI ≤ B∆,I( I∆ ), I ≤ ∆,∑

I≤∆ zI = 1,∑
I≤∆(A I

∆ )zI ≤ b.

(5)

Then, p∗ ≤ p∗ where p∗ is the optimal value of problem (1).

Proof. Using the Bernstein expansion (2) of g and the first property in Propo-
sition 1, we can rewrite the problem (1) under the form

minimize
∑
I≤∆(` · hI)B∆,I(y)

over y ∈ [0, 1]n,
subject to

∑
I≤∆(A I

∆ )B∆,I(y) ≤ b.

Then, let y∗ be the optimum of the problem (1), and let zI = B∆,I(y
∗) for all

I ≤ ∆. It is clear from Proposition 1 that these satisfy the constraints of (5),
therefore the optimal value of (5) is necessary smaller than that of (1).

Now we will show how to improve the precision at the expense of an increase
in computational cost. The linear program (5) is a relaxation of the optimization
problem (1). Then, the lower bound p∗ on the optimal value p∗ is generally not
tight. We first remark that g can be seen as a higher order polynomial, possibly
by adding monomials of higher degree with zero coefficients.

In the following, g is considered as a polynomial with degreesK = (k1, . . . , kn)
where ∆ ≤ K, then g can be written in the Bernstein form:

g(y) =
∑
I≤K

hKI BK,I(y),

We will use the following result [12]:

Proposition 3. For I ≤ K,

‖hKI − g( IK )‖ = O( 1
k1

+ · · ·+ 1
kn

).

Now let p∗
K

be the optimal value of the linear program (5) with degrees K instead
of ∆. We want to determine the limit of p∗

K
when all the ki go to infinity.

Let c∗K(y) be the optimal value of the linear program:

minimize
∑
I≤K(` · hKI )zI

over zI ∈ R, I ≤ K,
subject to 0 ≤ zI ≤ BK,I( IK ), I ≤ K,∑

I≤K zI = 1,

y =
∑
I≤K

I
K zI

(6)



Then,
p∗
K

= min
y∈[0,1]n
Ay≤b

c∗K(y) ≤ p∗.

Now let C(` · g) be the convex hull of the function ` · g taken over the set [0, 1]n

(see e.g. [13]). Formally, C(` · g) is a convex function over [0, 1]n such that for all
y ∈ [0, 1]n, C(`·g)(y) ≤ `·g(y) and for all functions h convex over [0, 1]n and such
that for all y ∈ [0, 1]n, h(y) ≤ g(y), then for all y ∈ [0, 1]n, h(y) ≤ C(` · g)(y). In
other words, C(` · g)(y) is the largest function convex over [0, 1]n bounding ` · g
from below. In particular, if ` · g is convex then C(` · g) = ` · g. Now, let p∗C be
the optimal value of the following optimization problem

minimize C(` · g)(y)
over y ∈ [0, 1]n,
subject to Ay ≤ b.

It is clear that p∗C ≤ p∗ with equality if ` · g is convex. We can now state the
main result of the section:

Proposition 4. For all K ≥ ∆, p∗
K
≤ p∗C and

|p∗
K
− p∗C | = O( 1

k1
+ · · ·+ 1

kn
).

Proof. It is not hard to show that c∗K is convex over [0, 1]n and under-estimates
` · g. Then, by definition of the convex hull of a function we have: cK

∗(y) ≤
C(` · g)(y) for all y ∈ [0, 1]n. This gives directly that p∗

K
≤ p∗C .

Now let y ∈ [0, 1]n, and let zI
∗ , I ≤ K be an optimal solution of (6), then

we have:

c∗K(y) =
∑
I≤K

(` · hKI )zI
∗ and y =

∑
I≤K

zI
∗ I

K
.

Using properties of the convex hull of a function we have:

C(` · g)(y) = C(` · g)
(∑

I≤K
I
K zI

∗
)

≤
∑
I≤K

C(` · g)
(
I
K

)
zI
∗ ≤

∑
I≤K

` · g
(
I
K

)
zI
∗.

It follows that:

0 ≤ C(` · g)(y)− c∗K(y) ≤
∑
I≤K

[` · g( IK )− ` · hKI ]zI
∗,

Finally, using Proposition 3 we have for y ∈ [0, 1]n:

0 ≤ C(` · g)(y)− c∗K(y) ≤ O( 1
k1

+ · · ·+ 1
kl

)

which yields |p∗
K
− p∗C | = O( 1

k1
+ · · ·+ 1

kn
).

In other words, when we artificially increase the degrees of the polynomial g,
we improve the computed lower bound. However, we cannot do better than p∗C
which is the optimal value of a convexified version of problem (1). We remark
that if the function ` · g is convex then we can approach the optimal value p∗

arbitrarily close.



2.3 Related work in linear relaxations

Our method of using the Bernstein form to replace expensive polynomial pro-
gramming by linear programming is close to the one proposed in [2]. As men-
tioned earlier, the main improvement over this work is that our method uses a
piecewise affine lower-bound function (the function c∗K(y) defined in (6)) which
is more accurate than a single affine lower bound function used in [2]. Moreover,
our approach allows us to work directly with arbitrary polyhedral domains, while
the Bernstein form in [2] works only for the unit box and this requires rectangular
approximations that introduce additional error.

Let us now briefly discuss the complexity of our method and compare it
with existing relaxation methods. In fact, the linear program (5) has polynomial
complexity in its number of decision variables which is N∆ = (δ1 + 1) × · · · ×
(δn + 1). However, it should be noted that N∆ = O(δmax

n) which is exponential
in the dimension n of the state space. Another known relaxation method which
use also linear programming is the reformulation-linearization-technique method
(RLT) introduced by Sherali in [14, 15]. The linear program given by this method
is in fact a linearized version of the problem (1) by adding new variables where
the constraints are given by exploiting all possible products of the original ones
with respect to a fixed degree δ. In general, its number of decision variables is
the same comparing to our method but the number constraints is much greater.
We should mention that thanks to Bernstein properties our method can be more
precise.
Also, one could use a method based on semi-definite programming and the theory
of moments [16]. It should be noticed that the size of the semi-definite programs
that need to be solved would be similar to the size of the linear program we solve.
The quality of the lower bound obtained by semi-definite programming would
certainly be better and it has been showed that an asymptotic convergence to
the optimal value can be obtained; however, the approach would require more
computational resources.

3 Reachability analysis of polynomial dynamical systems

Let us consider a disrete-time dynamical system of the following form:

xk+1 = f(xk), k ∈ N, xk ∈ Rn, x0 ∈ X0 (7)

where f : Rn → Rn is a polynomial map with degrees ∆ = (δ1, . . . , δn) and X0

is a bounded polyhedron in Rn. In this paper, we are concerned with bounded-
time reachability analysis of system (7). This consists in computing the sequence
Xk ⊆ Rn of reachable sets at time k of the system up to some time K ∈ N. It is
straightforward to verify that this sequence satisfies the following induction rela-
tion Xk+1 = f(Xk). It should be noticed that even though the first element X0

is a polyhedron, in general the other elements of the sequence are not. Actually,
they are generally not even convex.



In this work, we over-approximate these sets using bounded polyhedra Xk.
Such a sequence can clearly be computed inductively by setting X0 = X0 and
by ensuring that for all k = 0, . . . ,K − 1, f(Xk) ⊆ Xk+1. Hence, we first focus
on the computation of a polyhedral over-approximation Xk+1 of the image of a
bounded polyhedron Xk by a polynomial map f .

Now, the problem we address is stated as follows: given a polyhedron Xk,
we want to compute Xk+1 such that f(Xk) ⊆ Xk+1. In the following we pro-
pose a solution to this problem based on the use of template polyhedra and
optimization.

3.1 Template polyhedra

To represent Xk+1, we use a template polyhedron. A template is a set of linear
functions over x ∈ Rn. We denote a template by a matrix A ∈ Rm×n, given such
a template A and a coefficient vector b ∈ Rm, we define the template polyhedron

Poly(A, b) = {x ∈ Rn| Ax ≤ b}

where the inequality is to be understood component-wise. By varying the value
of b, we obtain a family of template polyhedra corresponding to the template
A. Essentially, the template A defines the directions of the faces and the vector
b define their positions. The advantage of using template polyhedra over gen-
eral convex polyhedra is that the Boolean operations (union, intersection) and
common geometric operations can be performed more efficiently. Indeed, such
operations are crucial for most verification procedures based on reachable set
computations.

In the following, we assume that Xk+1 is a bounded polyhedron with a given
template Ak+1 ∈ Rm×n. We add the subscript k + 1 to emphasize that the
template may not be the same for all the polyhedra Xk+1, k = 0, . . . ,K − 1.
Then,

Xk+1 = Poly(Ak+1, bk+1)

where the vector bk+1 ∈ Rm needs to be determined at each iteration. The choice
of the templates Ak+1 will be discussed later in Section 3.3.

From the previous discussion, it appears that the computation of the set
Xk+1 reduces to determining values for the vectors bk+1. Let bk+1,i denote the
i-th element of these vectors; and Ak+1,i denote the i-th line of matrices Ak+1 .

Lemma 1. If for all i = 1, . . . ,m

−bk+1,i ≤ min
x∈Xk

−Ak+1,if(x) (8)

then f(Xk) ⊆ Xk+1 where Xk+1 = Poly(Ak+1, bk+1)

Proof. Let y ∈ f(Xk). For i = 1, . . . ,m, it is clear that we have

Ak+1,iy ≤ max
x∈Xk

Ak+1,if(x).



Then, by remarking that maxx∈Xk Ak+1,if(x) = −minx∈Xk −Ak+1,if(x) and
by (8) we obtain Ak+1,iy ≤ bk+1,i.

Let us remark that the computation of the minimal values in equations (8) in-
volves optimizing a generally non-convex multi-variable polynomial function on
a bounded polyhedron. This is a difficult problem in general; however Lemma 1
shows that the computation of a lower bound for the minimal values is sufficient
to obtain an over-approximation of f(Xk). Thus, we can see that the computa-
tion of Xk+1 can be done by computing guaranteed lower bounds on the optimal
values of minimization problems involving multi-variable polynomial functions
on a bounded polyhedron. A solution to this problem, based on linear program-
ming, is proposed in the previous section when x ∈ [0, 1]n. We will see how this
result can be adapted to our reachability problem.

3.2 Reachability algorithm

According to the previous discussion, in each step k ∈ N we have to compute a
lower bound of the value

pk+1,i
∗ = min

x∈Xk
−Ak+1,i · f(x) for all i = 1, . . . ,m.

For doing so, we will propose an algorithm with essentially three steps: in the
first one we compute a bounding parallelotope that will be necessary for the
second step. The second one will consist on a change of variable allowing us to
recast our optimization problem on the form of the one given by (1). In the last
step, lower bound will be obtained using the linear program given by Proposi-
tion 2 and then an over approximation of the reachable set is computed.

Step 1: Bounding parallelotope computation

As Xk is a bounded polyhedron of Rn we can write it in the form Xk ∩ Qk
where Qk is its bounding parallelotope given by Qk = Poly(C̃k, d̃k) with

C̃k =

[
Ck
−Ck

]
, d̃k =

[
dk
−dk

]
.

Ck ∈ Rn×n is an invertible matrix, dk ∈ Rn and dk ∈ Rn. We assume that the
matrix direction Ck is given as an input (a method describing its computation
will be given later) and we compute the component dk,i and dk,i, i = 1, . . . n of

the vector position d̃k as optimal solutions of the following linear programs :

dk,i = max
x∈Xk

Ck,i · x and dk,i = max
x∈Xk

−Ck,i · x ∀i = 1, . . . n

Step 2: Change of variable



Now, let’s proceed to the following change of variable x = qk(y) where the
affine map qk : Rn → Rn is given by

qk(y) = Ck
−1Dky + Ck

−1dk

where Dk is the diagonal matrix with entries dk,i−dk,i. The change of variable qk
essentially maps the unit cube [0, 1]n to Qk. This change of variable is the main
reason for definingXk as the intersection of a polyhedron and a parallelotope. We
then define the polynomial map gk as gk(y) = f(qk(y)). Finally, let A′k ∈ Rn×m
and b′k ∈ Rm be given by

A′k = AkCk
−1Dk, b

′
k = bk −ACk−1d.

Remark 1. It is clear that gk is a polynomial map. As for the degrees ∆′ =
(δ′1, . . . , δ

′
n) of gk in the variables y1, . . . , yn, we shall discuss two different cases

depending on the nature of parallelotope Qk. If Qk is an axis-aligned box (i.e.
if Ck is a diagonal matrix), then the degrees of gk are the same as f : ∆′ = ∆.
This is not the case in general, when Qk is not axis-aligned; in that case, the
change of variable generally increases the degrees of the polynomial and gk can
be regarded as a polynomial of degrees ∆′ = (δmax, . . . , δmax).

Step 3: Solving the optimization problem

After the change of variable we easily found the equivalent optimization problem:

minimize −Ak+1,i · gk(y)
over y ∈ [0, 1]n,
subject to A′ky ≤ b′k.

Then thanks to Proposition 2 a lower bound −bk+1,i can be found.
The reachable set at the step k + 1 will be Xk+1 = Poly(Ak+1, bk+1).

3.3 Choice of the templates

In this section, we discuss the choice of the templates Ak for the polyhedra Xk

and Ck for the parallelotope Qk used to over-approximate the reachable sets.

Dynamical templates for polyhedra Xk:

Let us consider the templateAk for the polyhedronXk = {x ∈ Rn| Ak · x ≤ bk} .
We propose a method which involves determining dynamical templates based on
the dynamics of the system.

In the next iteration, we want to compute a new template Ak+1 that reflects
as much as possible the changes of the shape of Xk under the polynomial f . For
that purpose, we use a local linear approximation of the dynamics of the poly-
nomial dynamical system (7) given by the first order Taylor expansion around
the centroid x∗k of the last computed polyhedron Xk:

f(x) ≈ Lk(x) = f(x∗k) + J(x∗k)(x− x∗k)



where J is the Jacobian matrix of the function f . Let us denote Fk = J(x∗k) and
hk = f(x∗k)−J(x∗k)x∗k, then in a neighborhood of x∗k the nonlinear dynamics can
be roughly approximated by xk+1 = Fkxk + hk. Assuming that Fk is invertible,
this gives xk = F−1k xk+1 − F−1k hk. Transposing the constraints on xk given by
Xk to xk+1, we obtain

AkF
−1
k xk+1 ≤ bk +AkF

−1
k hk

Then, it appears that a reasonable template for Xk+1 should be Ak+1 = AkF
−1
k .

This new template Ak+1 can then be used in next iteration for the computation
of the polyhedron Xk+1 using the method described in the previous section. Let
us remark that this choice implies that our reachability algorithm is exact if f
is an affine map.

Dynamical templates for parallelotope Qk:

It can be useful in some cases to take static axis aligned boxes for Qk (i.e. Ck
is the identity matrix for all k = 0, . . . ,K). This allows us to preserve the degrees
of the polynomials when making the change of basis. However, as explained be-
fore, using static templates may produce increasingly large approximation errors.
Similar to the polyhedra Xk, the accuracy will be better if we use dynamical
templates which take in consideration the dynamic of the system (essentially the
rotation effects).

We should mention that the image of an oriented rectangular box Qk by
the linear map Fk is not necessarily an oriented rectangular box so we can
not use directly the matrix F−1k computed previously. To solve this problem
we will use an popular technique in interval analysis [17] based on the QR-
Decomposition of matrices. Essentially, Fk will be written as the product of
two matrices Fk = QkRk where Qk is an orthogonal matrix and R is an upper
triangular one. Then, to choose the template Ck+1 of the next oriented box
Qk+1, we apply our rotation transformation matrix Qk to the given rectangular
box Qk which is equivalent to choose the template Ck+1 = CkQ

>
k . Of course,

in that case, we will deal with non-aligned-axis boxes which can cause higher
degrees for our polynomial but the approximation will be less conservative than
using static templates for Qk.

3.4 Computation cost and related work

We have presented two approaches to compute the Bernstein form of the poly-
nomial after a change of variable: either we compute explicitly the change of
variable and then use equation (3) or we proceed by using equation (4). Both
methods have polynomial time and space complexity in N∆′ = (δ′1 + 1)× · · · ×
(δ′n + 1). The size of the matrix B∆′ introduced in the interpolation method is
(δ′1+1)×· · ·×(δ′n+1). Let us remark that in the context of reachability analysis,
the inverse matrix B−1∆′ has to be computed only once and can be used in each
iteration to compute Bernstein coefficients by a simple matrix vector product



operation.
In fact, we shall see from numerical experiments that both methods have their
advantages depending on the form of the parallelotope Q. If Q is an axis-aligned
box, we have already seen that the change of variable does not increase the
degrees of the polynomial. So, the matrix B∆′ has a reasonnable size and the
computation of the coefficients hI using equation (4) is generally more efficient.
If Q is a general parallelotope, then B∆′ might be much larger. In that case,
since several coefficients fI of the polynomial f might actually be zero, it will
be more efficient to compute explicitly the change of variable and use equation
(3) to determine the coefficients hI .
Then, as we mentioned before, the linear program has polynomial complexity
in its number of decision variables which is also N∆′ . Therefore, the complexity
of the overall procedure is polynomial in N∆′ , and so is the complexity of the
reachability procedure described in Lemma 1.
Finally, following the discussion in Remark 1, we would like to highlight that
N∆′ might be much smaller when the parallelotope Q is an axis-aligned box.
Indeed, in that case N∆′ = (δ1 + 1)× · · · × (δn + 1) whereas in the general case
we have N∆′ = (δ + 1)n. This point might be taken into consideration in the
reachability algorithm when choosing the template for parallelotopes Qk+1.
One could also use interval analysis [18] for computing the reachable sets of
polynomial systems. However, these methods are generally used with rectangu-
lar domains. Moreover, our approach obtains enclosures that are always finer
than those obtained the using Bernstein coefficients and it has been shown that
these are generally more accurate than those computed using interval arith-
metics [19]. Interval analysis methods can be improved using preconditionning
techniques (see e.g.[17]), however these can also be used in our approach as
shown in the previous section.
Also, a popular approach for nonlinear systems is to characterize reachable sets
using Hamilton-Jacobi formulation [20], and then solve the resulting partial dif-
ferential equations which requires expensive computations. Recent results of this
approach can be seen in [21].
Another approach is based on a discretization of the state-space for abstraction
(see e.g [22, 23]) and approximation especially using linearization (see e.g [24,
25]). For the particular class of polynomial systems, Thao Dang has proposed
direct methods for reachability analysis [26, 2] without state-space discretization.
The improvement over [2] has also been discussed in Section 2.2.
Concerning set representation, the work presented in this paper draws inspi-
ration from the approach using template polyhedra [1]. In the hybrid systems
verification, polynomial optimization can also be used to compute barrier cer-
tificates [27, 1], and algebraic properties of polynomials are used to compute
polynomial invariants [22] and to study computability issues of the image com-
putation in [28].



4 Experimental results

We implemented our reachability computation method and tested it on various
examples. To solve linear programs, we use the publicly available lp solve library.

4.1 FitzHugh-Nagumo neuron model

The first example we studied is a discrete time version of the FitzHugh-Nagumo
model [29] which is a polynomial dynamical system modelling the electrical
activity of a neuron:{

x1(k + 1) = x1(k) + h
(

(x1(k)− x1(k)
3

3 − x2(k) + I
)

x2(k + 1) = x2(k) + h (0.08(x1(k) + 0.7− 0.8x2(k)))

where the model parameter I is equal to 7
8 and the time step h = 0.05. This

system is known to have a limit cycle.

Fig. 1. Reachability computation for the FitzHugh-Nagumo neuron model using static
(left) and dynamical (right) template polyhedra Xk with static bounding boxes.

Figure 1 shows two reachable set evolutions where the initial set is a regular
octagon included in the bounding box [0.9, 1.1]× [2.4, 2.6]. The figure on the left
was computed using static templates for polyhedra Xk where dynamical tem-
plates are used for the figure on the right. In both cases, we use axis-aligned
boxes for Qk. For a better readability, the reachable sets are plotted once every
5 steps. We observed a limit cycle after 1000 iterations. The computation time is
1.16 seconds using a static template and 1.22 seconds using the dynamical tem-
plates. We can see from the figure a significant precision improvement obtained
by using dynamical templates, at little additional cost.

4.2 Prey predator model and performance evaluation

Now we consider the generalized Lotka-Volterra equations modelling the dynam-
ics of the population of n biological species known as the prey predator model.



Its equations are given by ẋi = xi(ri +Aix) where i ∈ {1, 2, . . . , n}, ri is the ith

elements of a vector r ∈ Rn and Ai is the ith line of a matrix A ∈ Rn×n.

Fig. 2. Reachability computation for a 2 dimensional predator-prey model using dy-
namical template polyhedra Xk with axis aligned (left) and oriented (right) bounding
boxes.

We performed reachable set computation for an Euler discretized Lotka-
Voltera system for the case n = 2:{

x1(k + 1) = x1(k) + h(0.1x1 − 0.01x1x2)
x2(k + 1) = x2(k) + h(−0.05x2 + 0.001x1x2)

Figure 2 shows the cyclic behavior of the reachable set analysis computed using
a discretization time h = 0.3 with an initial box included in [49, 51] × [14, 16]
during 700 iterations. The figure on the left was computed in 1.87 seconds using
dynamical template polyhedra and bounding boxes aligned with axis. The other
one was computed in 3.46 seconds using dynamical templates and oriented boxes.
A significant gain of precision using the oriented box can be observed however
the computation time is almost double.

We also evaluated the performance of our method using two ways of comput-
ing the Bernstein coefficients (explicitly and by interpolation) with recursively
generated n-dimensional Lotka-Volterra equations given by: x1(k + 1) = x1(k) + h (x1(k)(1− x2(k) + xn(k)))

xi(k + 1) = xi(k) + h (xi(k)(−1− xi+1(k) + xi−1(k)))
xn(k + 1) = xn(k) + h (xn(k)(−1− x0(k) + xn−1(k)))

where i ∈ {2, . . . , n − 1}. We used axis aligned bounding boxes to make the
change of variable. (see tables 1).

We observe that the interpolation method provides more effective results
than the explicit computation of Bernstein coefficient but requires to compute
the matrix B−1∆′ before starting the analysis. A similar evaluation was done using
oriented boxes but the results show that this method is not tractable over 4
dimension due to the degree elevation of polynomials by the change of variable
when we don’t use axis-aligned boxes.



dim explicit interpol B−1
∆′

2 0.0235 0.0221 0.0001
3 0.0536 0.0484 0.0004
4 0.1112 0.1008 0.0008
5 0.2612 0.2124 0.0052
6 0.68 0.499 0.016

dim explicit interpol B−1
∆′

7 1.905 1.274 0.099
8 5.682 3.674 0.494
9 19.35 12.65 2.66
10 63.92 44.41 16.23

Table 1. Computation time for one reachable set computation iteration for some
generated Lotka-Voltera systems

5 Conclusion

In this paper we proposed an approach for computing reachable sets of poly-
nomial dynamical systems. This approach combines optimization and set repre-
sentation using template polyhedra. The novelty of our results lies in a efficient
method for relaxing a polynomial optimization problem to a linear programming
problem. On the other hand, by exploiting the evolution of the system we pro-
posed a way to determine templates dynamically so that the reachable sets can
be approximated more accurately. The approach was implemented and our ex-
perimental results are promising, compared to the existing results (see e.g. [2]).
We intend to continue this work in a number of directions. One direction involves
an extension of the approach to systems with parameters and uncertain inputs.
Additionally, the evolution of templates can be estimated locally around each
facet rather than globally at the centroid of a template polyhedron.
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