Feedback Control Using The Laplace Transform

Course Feedback Control and Real-time Systems

Thao Dang

Master of Science in Informatics at Grenoble Univ. Grenoble Alpes, Laboratoire Verimag
thao.dang@univ-grenoble-alpes.fr
Stabilization by Feedback

• Stabilization by feed-back
• Pole Placement
Consideration of Disturbance

- disturbance $w(t)$ represents perturbations or modelling error
- the output $y(t)$ and the setpoint/reference $r(t)$
- the controller C and the system S are supposed to be rational fractions $C(s), S(s)$
We now compute the closed-loop transfer function:

\[
Y(s) = S(s)(C(s)(R(s) - Y(s)) + W(s))
\]

\[
(1 + S(s)C(s))Y(s) = S(s)(C(s)R(s) + W(s))
\]

where \(W(s)\), \(Y(s)\), \(R(s)\) are the Laplace transforms of the disturbance \(w(t)\), the output \(y(t)\) and the reference \(r(t)\).
We obtain the closed-loop transfer function:

\[Y(s) = \frac{S(s)C(s)}{1 + S(s)P(s)} R(s) + \frac{S(s)}{1 + S(s)C'(s)} W(s) \]
Control Problem Formulation

\[Y(s) = S(s)C(s) + R(s) + S(s) + S(s)P(s) \]

given the transfer function \(S(s) \) of the system, find \(C(s) \) such that

1. \(S(s)C(s) + S(s) \) is stable and close to the identity (fidelity)
2. \(S(s) + S(s)P(s) \) is small (robustness or disturbance rejection)
Control Problem Formulation

\[Y(s) = \frac{S(s)C'(s)}{1 + S(s)C'(s)} R(s) + \frac{S(s)}{1 + S(s)C'(s)} W(s) \]
Control Problem Formulation

\[Y(s) = \frac{S(s)C'(s)}{1 + S(s)C(s)} R(s) + \frac{S(s)}{1 + S(s)C'(s)} W(s) \]

given the transfer function \(S(s) \) of the system, find \(C'(s) \) such that
Control Problem Formulation

\[Y(s) = \frac{S(s)C'(s)}{1 + S(s)C(s)} R(s) + \frac{S(s)}{1 + S(s)C'(s)} W(s) \]

given the transfer function \(S(s) \) of the system, find \(C'(s) \) such that

1. \(\frac{S(s)C(s)}{1 + S(s)C(s)} \) is stable and close to the identity (fidelity)
Control Problem Formulation

\[
Y(s) = \frac{S(s)C'(s)}{1 + S(s)C(s)} R(s) + \frac{S(s)}{1 + S(s)C'(s)} W(s)
\]

given the transfer function \(S(s) \) of the system, find \(C'(s) \) such that

1. \(\frac{S(s)C'(s)}{1 + S(s)C(s)} \) is stable et close to the identity (fidelity)

2. \(\frac{S(s)}{1 + S(s)P(s)} \) is small (robustness or disturbance rejection)
We consider the system $S(s) = \frac{1}{s^2}$ (double integrator) and a proportional controller $C(s) = a$.
Exemple: PID controllers

We consider the system \(S(s) = \frac{1}{s^2} \) (double integrator) and a proportional controller \(C(s) = a \).

We calculate the denominator of \(\frac{S(s)C'(s)}{1 + S(s)C'(s)} \) which gives

\[D = s^2 + a \]

This is a second-order polynomial with purely imaginary roots, unstable!!
Exemple: PID controllers

We consider the system \(S(s) = \frac{1}{s^2} \) (double integrator) and a proportional controller \(C(s) = a \).

We calculate the denominator of \(\frac{S(s)C'(s)}{1 + S(s)C(s)} \)

which gives \(D = s^2 + a \).
Exemple: PID controllers

We consider the system $S(s) = \frac{1}{s^2}$ (double integrator) and a proportional controller $C(s) = a$

We calculate the denominator of $\frac{S(s)C'(s)}{1 + S(s)C'(s)}$

which gives $D = s^2 + a$

This is a second-order polynomial with purely imaginary roots
We consider the system \(S(s) = \frac{1}{s^2} \) (double integrator) and a proportional controller \(C(s) = a \).

We calculate the denominator of \(\frac{S(s)C'(s)}{1 + S(s)C'(s)} \) which gives \(D = s^2 + a \).

This is a second-order polynomial with purely imaginary roots unstable!!!
We consider the system $S(s) = \frac{1}{s^2}$ (double integrator) and a PI controller $C(s) = \frac{as + b}{cs + d}$.
We consider the system $S(s) = \frac{1}{s^2}$ (double integrator) and a PI controller $C(s) = \frac{as + b}{cs + d}$.

The denominator of \(\frac{S(s)C(s)}{1 + S(s)C(s)} \) is

\[D = s^2(cs + d) + as + b = cs^3 + ds^2 + as + b \]

This is a third-order polynomial with 3 roots that we can fix as we want. We choose stable roots

\[(s + 1)(s - e^{\frac{3i\pi}{4}})(s - e^{\frac{5i\pi}{4}}) = (s + 1)(s^2 + \sqrt{2}s + 1) = s^3 + 2.4s^2 + 2.4s + 1 \]
Pole Placement – Example: PID controller

We consider the system $S(s) = \frac{1}{s^2}$ (double integrator) and a PI controller $C(s) = \frac{as + b}{cs + d}$

The denominator of $\frac{S(s)C(s)}{1 + S(s)C(s)}$ is $D = s^2(cs + d) + as + b = cs^3 + ds^2 + as + b$

This is a third-order polynomial with 3 roots that we can fix as we want. We choose stable roots

$$(s + 1)(s - e^{\frac{3i\pi}{4}})(s - e^{\frac{5i\pi}{4}}) = (s + 1)(s^2 + \sqrt{2}s + 1) = s^3 + 2.4s^2 + 2.4s + 1$$

We identify: $c = 1, d = 2.4, a = 2.4, b = 1$
Use Simulink to simulate this PI controller and the system. Add some disturbance (by using the block named “Band-Limited White Noise”). Is the result satisfactory? If not, modify the controller to reject the disturbance.