Modélisation et commande d'un robot mobile

- Problème
- Étape de conception
 - Modélisation
 - Étude du cahier de charges
 - Stratégie de commande
 - Test par simulation
 - Implantation numérique, génération de code (cours suivant)

Énoncé et cahier de charges

- Faire suivre au robot une ligne noire sur le sol
- Deux capteurs de lumière, positionnés sur le devant et qui pointent vers le sol afin de détecter la ligne noire.

Contrainte : le robot peut seulement, à partir des informations venant des capteurs, estimer sa déviation par rapport à la ligne.

Étapes à suivre

- Trouver le modèle du système (états, entrées et sorties)
- Proposer une loi de commande
 - Commande de direction (orientation) du robot
 - Commande de vitesse du robot
- Tester par simulation
- Implantation, validation, déboggage

Modèle du robot

$$\dot{x} = \frac{v_g + v_d}{2} \cos(\theta) \tag{1}$$

$$\dot{y} = \frac{v_g + v_d}{2} sin(\theta) \tag{2}$$

$$\dot{\theta} = \frac{v_d - v_g}{l} \tag{3}$$

- l: distance entre deux roues, v_g et v_d sont les vitesses des deux roues gauche et droite. $\theta = -wt$.
- Capteurs : 2 capteurs de lumière.
- Actionneurs : 2 servomoteurs.
- **Consigne** : La ligne noire.

Modèle des capteurs

- Hypothèse : Supposons que les capteurs soient calibrés sur une échelle de 0 (noir) à 100 (blanc). Il faut vériér cette hypothèse et ajuster le calibrage si besoin !
- La zone est complètement noire, le capteur retourne 0.
- La zone est complètement blanche, le capteur retourne 100.
- Si un capteur retourne une valeur c < 100, le robot n'est plus aligné avec la ligne Idée pour la loi de commande : Faire tourner le robot d'un angle proportionnel à la différence $(C_d - C_g)$.

Commande de trajectoire

- Commande par retour d'états
- Découpler la dynamique du système
 - Système d'orientation (θ).

$$\dot{\theta} = \frac{u_{ heta}}{l}$$

– Système de translation (x, y)

 $\dot{x} = u_{\delta} cos(\theta)$ $\dot{y} = u_{\delta} sin(\theta)$

avec

$$u_{\delta} = \frac{v_d + v_g}{2}$$
$$u_{\theta} = v_d - v_g$$

- 1. Trouver la fonction de transfert entre θ et u_{θ} (en Laplace).
- 2. Boucler le système avec un correcteur (type PI) et calculer la fonction de transfert en boucle fermée.
- 3. Réglage du correcteur : trouver les paramètres de correcteur pour avoir un comportement désiré (stable, rapide, sans dépassement, avec une erreur statique nulle..).
- 4. Tester en simulation (en utilisant Matlab).

Question 1 : De l'équation (3) nous avons

$$\dot{\theta} = \frac{u_{\theta}}{l},$$

ce qui donne en transformée de Laplace

$$s\theta(s) = \frac{u_{\theta}(s)}{l}$$

(en supposant que les conditions initiales sont 0). La fonction de transfert de θ par rapport à l'entrée u_{θ} est alors :

$$H_{\theta}(s) = \frac{\theta(s)}{u_{\theta}(s)} = \frac{1}{ls}$$

Question 2 : Le schéma de commande

La sortie u_{θ} du correcteur $C_{\theta}(s)$ est connectée à l'entrée du bloc $H_{\theta}(s)$ (correspondant à la dynamique de l'orientation θ du robot). L'entrée du correcteur $C_{\theta}(s)$ est l'écart entre la sortie θ de $H_{\theta}(s)$ et l'orientation désirée θ^* .

Pour un correcteur de type PI nous avons : $C_{\theta}(s) = k_{p\theta} + \frac{k_{p\theta}}{s}$

La fonction de transfert en boucle fermée

$$H(s) = \frac{C_{\theta}(s)H_{\theta}(s)}{1 + C_{\theta}(s)H_{\theta}(s)} = \frac{\frac{k_{p\theta}}{l}s + \frac{k_{i\theta}}{l}}{s^2 + \frac{k_{p\theta}}{l}s + \frac{k_{i\theta}}{l}}$$

Question 3 : Réglage du correcteur de l'orientation du robot

Notons $\alpha = 1/l$.

Si l'on choisit $k_{i\theta} = \omega^2/\alpha$ et $k_{p\theta} = 2\xi\omega/\alpha$ (avec $\omega > 0, \xi > 0$), le système en boucle fermée est du deuxième ordre avec un gain statique de 1, une pulsation ω et un amortissement ξ .

Notons que les pôles du système en boucle fermée sont

$$p_{1,2} = -\omega\xi \pm i\sqrt{\omega^2(1-\xi^2)}$$

avec les parties réelles $Re(p_{1,2}) < 0$, ce qui garantit la stabilité de θ .

Il nous reste la liberté de choisir des valeurs de ω et de ξ afin d'obtenir des performances désirées (temps de réponse, dépassement, etc).

Question 3 : Réglage du correcteur de l'orientation du robot (suite)

Rappel : la réponse d'un système du deuxième ordre ayant le polynôme caractéristique $\pi(s) = s^2 + 2\xi\omega s + \omega^2$ avec les racines $p_{1,2} = -\omega\xi \pm i\sqrt{\omega^2(1-\xi^2)}$

– Temps de montée (rise time) 10 - 90% :

$$t_r = \frac{1 + 1.1\xi + 1.4\xi^2}{\omega}$$

- Temps de stabilisation (settling time)

$$t_s = \frac{3}{\xi\omega}$$

- Temps de pic (time to peak amplitude)

$$t_p = \frac{\pi}{\omega\sqrt{1-\xi^2}}$$

- Dépassement (peak overshoot) :

$$M_p = e^{-\xi \omega t_p}$$

Commande de la vitesse du robot

- En ligne droite : Vitesse du robot constante. Donc un écart de vitesse constant à l'entrée du correcteur \Rightarrow Idée : utiliser un correcteur de type P et de garder l'entrée proportionelle à la somme $(C_d + C_g)$.
- Au virage : Vitesse réduite pour éviter des dépassements à la courbure. Réduire l'erreur à l'entrée du correcteur de vitesse.
- Détecter un virage : c'est quand la commande u_{θ} a une grande valeur absolue. Idée : soutraire de la sortie u_{δ} (du correcteur de vitesse) une quantité proportionnelle à la valeur absolue $|u_{\theta}|$

Modèle Simulink pour le calcul d'écarts

Détermination des vitesses de deux roues

À partir de

$$u_{\delta} = \frac{v_d + v_g}{2}$$
$$u_{\theta} = v_d - v_g$$

on obtient les vitesses des deux roues en fonction des valeurs de u_{θ} et u_{δ}

$$v_d = \frac{u_\delta + u_\theta}{2}$$
$$v_g = \frac{u_\delta - u_\theta}{2}$$

Modèle Simulink des correcteurs

Modèle du robot et l'environnement

Le bloc "Environment" a pour l'objectif d'émuler les comportements des capteurs de lumière d'un robot sur une ligne donnée.

Modèle de l'environnement

Exercise : Modélisation et simulation avec Simulink

- 1. Télécharger le modèle SIMULINK (robot + contrôleur + environnement) (ExRobotAndEnvironmentControllerCont.mdl). L'archive contient également :
 - InitRobotAndEnvironment.m: Ce fichier Matlab sert à initialiser les paramètres du modèle (tels que la distance entre deux roue, les paramètres du contrôleur, la position et l'orientation initiales du robot, le nom de l'image de circuit à tester)
 - quelques fichiers d'image de circuits
 - robot_anim.met sensors.m: fonctions Matlab pour l'émulation de l'environnment

Exercise : Modélisation et simulation avec Simulink

- 2. Lancer Matlab/Simulink et ouvrir le modèle.
- 3. Exécuter le script "InitRobotandEnvironment.m" (taper simplement "InitRobotandEnvironment" dans la "Command Window" de Matlab)
- 4.Utiliser le menu "Simulation" pour simuler le modèle
- 5. Régler les correcteurs pour améliorer la performance