
NXC – Overview
– The NXT has a bytecode interpreter (provided by LEGO), which can be used to

execute programs.
– The NXC compiler translates a source program into NXT bytecodes, which can then

be executed on the target itself.
– Although NXC is very similar to C, NXC is not a general-purpose programming

language - there are many restrictions that stem from limitations of the NXT bytecode
interpreter.

– The NXC Application Programming Interface (API) describes the system functions,
constants, and macros that can be used by programs.

– This API is defined in a special file known as a ”header file” which is, by default,
automatically included when compiling a program.

NXC – Main Features
– Multi-Threading support. A task in NXC directly corresponds to an NXT thread
task name()

{

// the task’s code is placed here

}

– A program must always have at least one task - named ”main” - which is started
whenever the program is run. Maximum number of tasks is 256.

– Scheduling mechanisms
Example : Precedes(task1, task2, ..., taskN)
– Schedule the specified tasks for execution once the current task has completed

executing.
– The tasks will all execute simultaneously unless other dependencies

– Task priorities

Example
mutex moveMutex;

task move_square()

{

while (true)

{

Acquire(moveMutex);

OnFwd(OUT_AC, 75); Wait(1000);

OnRev(OUT_C, 75); Wait(500);

Release(moveMutex);

}

}

task check_sensors()

{

while (true)

{

if (SENSOR_1 == 1)

{

Acquire(moveMutex);

OnRev(OUT_AC, 75); Wait(500);

OnFwd(OUT_A, 75); Wait(500);

Release(moveMutex);

}

}

}

task main()

{

Precedes(move_square, check_sensors);

SetSensorTouch(IN_1);

}

Lustre to NXC
– Automatic generation of NXC code from Lustre programs
– Normally, the Lustre compiler produces ansi-C code, too complex to be handled by the

nxc compiler. To produce very simple C code which can be compiled by NXC
compilers, use Lustre compiler (from version 0.5) with option -nxc.

– lus2c double_counter.lus double_counter -nxc

produces a file
double_counter.ec2nxc
which contains :
– void double_counter_I_c(bool)

is the input procedure that must be called to feed the program.
– void double_counter_step()

the procedure that performs one cycle of the program and calls the 2 output
procedures :
double_counter_O_x(int), double_counter_O_y(int)

These procedures should be defined by the user.

Writing a main NXC program
In order to compile and execute the code generated by the Lustre compiler, the user
should write a main NXC program that :

1. defines the output procedures,

2. includes the ec2nxc code,

3. defines the main task consisting in a loop that :
– call the input procedure
double_counter_I_c;
For a real application the input value should be obtained from the sensors

– call the step procedure

Example – double counter
node double_counter (c: bool) returns (x : int; y : int);

let

x = (0 -> pre x) + if c then 1 else 0 ;

y = (0 -> pre y) + if c then 0 else 1 ;

tel

Example
/* Output procs. <node-name>-O-<var-name>(<var-type>) */

void double_counter_O_x(int V) { NumOut(0, LCD_LINE3, V); }

void double_counter_O_y(int V) { NumOut(0, LCD_LINE4, V); }

/* Includes of the (compiled) Lustre code.

The input proc(s) is(are) defined here, and must be called

at each cycle, before calling the step procedure */

#include "double_counter.ec2nxc"

task main () {

int cycles_counter = 0;

bool c = false;

while (cycles_counter < 3000) {

//prepares and launches a step...

cycles_counter++;

c = !c;

double_counter_I_c(c);

double_counter_step(); }

}

Periodic Tasks
The rate of the cycles are not related to the ”real-time” : a new cycle begins as soon as
the previous cycle ends.

In real-time programming, it is very common that a task should be executed with a
known period (e.g. 100 ms). This can be approximated by enforcing the main task to wait
between two cycles :

task main () {

int cycles_counter = 0;

bool c = false;

while (cycles_counter < 3000) {

cycles_counter++;

c = !c;

double_counter_I_c(c);

double_counter_step();

Wait(msDelay);

}

Problem : It is hard to know the execution time of the step procedure

Periodic Tasks (cont’d)
Modified program : the step call is replaced by a start task statement.

task do_one_step () {

double_counter_step();

}

task main () {

int cycles_counter = 0;

bool c = false;

while (cycles_counter < 3000) {

cycles_counter++;

c = !c;

double_counter_I_c(c);

StartTask(do_one_step);

Wait(msDelay);

}

}

Delay between two step calls : msDelay + some constant overhead (5 statements).

Periodic Tasks (cont’d)
When the Worst Case Execution Time (WCET) of the step procedure is greater than the
expected period, a step will be ”re-launched” while the previous step has not yet finished.

We can modify the program in order to check this problem at run time :

int nb_problems;

int running;

task do_one_step () {

running = true;

double_counter_step();

running = false;

}

task main () {

int cycles_counter = 0;

bool c = false;

nb_problems = 0;

running = false;

while (cycles_counter < 3000) {

cycles_counter++;

c = !c;

double_counter_I_c(c);

if(running) nb_problems++;

StartTask(do_one_step);

Wait(msDelay);

}

TextOut(0, LCD_LINE8, "problems:");

NumOut(10*6, LCD_LINE8, nb_problems);

Wait(10000);

}

Motor commands in NXC
//NXC: TO BE DEFINED BY USER

//ud et ug sont les puissances qui varient de 0 a 100

void Controller_O_u_d(_real ud) {

OnFwd(OUT_A, ud);

}

//NXC: TO BE DEFINED BY USER

void Controller_O_u_g(_real ug) {

OnFwd(OUT_B, ug);

}

Configuring and Reading Sensors in NXC
SetSensorLight(IN_1, true);

SetSensorLight(IN_2, true);

SetSensorType(IN_1, SENSOR_TYPE_LIGHT_ACTIVE);

SetSensorMode(IN_1, SENSOR_MODE_PERCENT);

SetSensorType(IN_2, SENSOR_TYPE_LIGHT_ACTIVE);

SetSensorMode(IN_2, SENSOR_MODE_PERCENT);

sensD = Sensor(IN_1);

sensG = Sensor(IN_2);

– The program first configures port 1 and 2 as light sensors.
– It then configures the mode (scaled value from 0 to 100) and type (with LED on) of the

sensors
– It then reads the values of the sensors

Calibration of Sensors
– Note that the controller was designed under the assumption that the value range of a

light sensor is [0, 100]. In practice, this interval can be different.
– Before executing the control program, it is necessary to determine the real values of

the white and black.
– To do so, we write a calibration subroutine and call it before the Main task

– Point the light sensor on the black zone, the subroutine reads the sensor value and
memorizes it as the value for the ”black”

– Repeat the same procedure for determining the sensor value for the ”white”

Type Definition
Example of a generated ec2nxc program

/********

* ec2c version 0.65

* c file generated for node : Controller

* context method = NXC

* ext call method = MACROS

********/

/* This program needs external declarations */

#define _Controller_EC2C_SRC_FILE

#define _boolean bool

#define _integer int

#define _false false

#define _true true

/*--------

* the following ‘‘constants’’ must be defined:

extern _real pi;

extern _real kp_teta;

extern _real ki_teta;

extern _real T;

--------*/

⇒ The user needs to define, in the main program, the (generic) type _real generated by
Lustre. The type float of NXC (or by int) can be used. Floating point arithmetic will
be slower than integer operations !

Type Conversion
– Simulink models allow real number representation in double precision, but NXC

allows only float in simple precision (32-bit IEEE 754 single precision floating point)
representation.

– Rounding error, a small non-zero number in Simulink can become zero in NXC
– For the computation that may produce small results, multiply the terms to get a

larger number and then scale down in the end to get the true result.
– Some rules

1. When adding and substracting, both numbers must have the same scale factor.

2. When multiplying/dividing, the numbers need not have the same scale factor. The
scale factor of the product/quotient is the product/quotient of the scale factors of
the original numbers.

– Overfow may occur ! Check the range of floats/int. Some useful constants in NXC :
NEG_FLT_MIN -1E-37

FLT_MIN 1E-37

NEG_FLT_MAX -1E+37

FLT_MAX 1E+37

Summary - Writing a main NXC program for the controller
Must include at least the following :

1. definition of the ”real” type

2. defining the output procedures,

3. including the ec2nxc code,

4. defining the main task :

– it first calls subroutines to configure sensors, calibrate sensors
– it then executes a ‘while’ loop

– call the input procedure
– call the step procedure

Useful functions for debugging
char TextOut (int x,

int y,

string str,

unsigned long options = DRAW_OPT_NORMAL

)

Draw a text value on the screen at the specified x and y location.

Example :
TextOut(0, LCD_LINE1, "calib blanc", DRAW_OPT_NORMAL);

See more in the online manual at

http://bricxcc.sourceforge.net/nbc/nxcdoc/nxcapi/index.html

	NXC – Overview
	NXC – Main Features
	Example
	Lustre to NXC
	Writing a main NXC program
	Example – double counter
	Example
	Periodic Tasks
	Periodic Tasks (cont'd)
	Periodic Tasks (cont'd)
	Motor commands in NXC
	Configuring and Reading Sensors in NXC
	Calibration of Sensors
	Type Definition
	Type Conversion
	Summary - Writing a main NXC program for the controller
	Useful functions for debugging

