
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Discretization of Continuous Controllers

Thao Dang

VERIMAG, CNRS (France)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Discretization of Continuous Controllers

• One way to design a computer-controlled control system is to make a
continuous-time design and then make a discrete-time approximation
of this controller ⇒ Analog Design Digital Implementation

• The computer-controlled system should now behave as the continuous-
time system



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Discretization of Continuous Controllers

• One way to design a computer-controlled control system is to make a
continuous-time design and then make a discrete-time approximation
of this controller ⇒ Analog Design Digital Implementation

• The computer-controlled system should now behave as the continuous-
time system



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Discretization of Continuous Controllers

• One way to design a computer-controlled control system is to make a
continuous-time design and then make a discrete-time approximation
of this controller ⇒ Analog Design Digital Implementation

• The computer-controlled system should now behave as the continuous-
time system

• This is crucially dependent on choosing fairly short sampling periods.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Difference Approximations (1)

• When the continuous-time controller is specified as a transfer function
C(s), it is natural to look for methods that will transform the contin-
uous transfer function C(s) to a pulse transfer function Cd(z) so that
the corresponding behaviors of the two systems are close to each other.

• z and s are related as z = exp(sT ), where T is the sampling period.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Difference Approximations (2)
The difference approximations correspond to the series expansions

• z = esT ≈ 1 + sT (Forward difference or Euler’s method)

• z = esT ≈ 1
1−sT (Backward difference)

• z = esT ≈ 1+sT/2

1−sT/2 (Trapezoidal method, or Tustin’s approximation)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Computing transfer function Cd(z)
To calculate Cd(z) we substitute s in C(s) with the following:

• s ≈ z − 1

T
(Forward difference or Euler’s method)

• s ≈ z − 1

zT
(Backward difference)

• s ≈ 2

T

z − 1

z + 1
(Trapezoidal method, or Tustin’s approximation)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Stability
the stability region (corresponding to the left half-plane Re(s) ≤ 0) in the
s-plane is mapped on the z-plane.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Stability - Remarks

• Forward-difference approximation: it is possible that a stable
continuous-time system is mapped into an unstable discrete-time sys-
tem.

• Backward approximation: a stable continuous-time system will always
give a stable discrete-time system.

• Tustin’s approximation: has the advantage that the left half s-plane is
transformed into the unit disc in the z-plane.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Selection of Sampling Period and
Anti-aliasing Filters

Choice of sampling rates and anti-aliasing flters are important

• Preserve stability

• Preserve performance



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Anti-aliasing Filters: Example
Example of a second order Butterwworth filter

G(s) =
ω2
o

s2 + 2
√
2ωos + ω2

o

ωo is the cut-off frequency.

The Butterworth filter: no ripple in the pass band or the stop band (max-
imally flat filter), at the expense of a relatively wide transition region from
pass band to stop band



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Anti-aliasing Filters: Example

The stop band frequency is generally 1
2

the sample rate, i.e. 1
2Te



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Designing Digital Anti-Aliasing Filters
using Bilinear Transformation

Given a second order Butterworth filter, ωo is the cut-off frequency:

G(s) =
ω2
o

s2 + 2
√
2ωos + ω2

o

To discretize the filter, we can use the bilinear transformation from the
s-domain to the z−-domain, Te is the sampling period.:

s =
2

Te

1− z−1

1 + z−1

Relation between the analogue frequency ωa and digital frequency ωd:

ωa =
2

Te

tan(
ωdTe

2
)

If we want the cutoff frequency after discretization to be ωdo, then from
the above formula we can calculate the corresponding (analogue) ωo.
Then we apply the relation between s and z to compute the transfer func-
tion in z from G(s)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Designing Digital Anti-Aliasing Filters
using matlab

Matlab offers functions to design digital digital anti-aliasing filter directly

Wp: Passband corner frequency Wp, the cutoff frequency, is a scalar or a
two-element vector with values between 0 and 1, with 1 corresponding to
the normalized Nyquist frequency, π radians per sample.

(the Nyquist frequency ωN = 2ωe)
Ws: Stopband corner frequency Ws, is a scalar or a two-element vector
with values between 0 and 1, with 1 corresponding to the normalized
Nyquist frequency.

Rp: Passband ripple in decibels.

Rs: Stopband attenuation in decibels. This value is the number of decibels
the stopband is down from the passband.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Designing Digital Anti-Aliasing Filters
using matlab

http://www.mathworks.fr/fr/help/signal/ref/buttord.html

Ex: For a signal sampled at ωe = 1/Te = 1000 Hz, design a lowpass filter
with no more than 3 dB of ripple in the passband from 0 to 40 Hz, and
at least 60 dB of attenuation in the stopband. Plot the filter’s frequency
response.

Wp = 40/500; Ws = 150/500;

[n,Wn] = buttord(Wp,Ws,3,60);

% Returns n = 5; Wn=0.0810;

[b,a] = butter(n,Wn);

freqz(b,a,512,1000);

title(’n=5 Butterworth Lowpass Filter’)

G(z) =
b(1) + b(2)z−1 + . . . b(n + 1)z−n

1 + a(2)z−1 + . . . a(n + 1)z−n



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Implementing in Simulink

Same principle for transfer functions in z!



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Exercise: Application to LEGO robots
1. Compute the continuous-time transfer function of the open loop FBO(s)

2. Estimate the crossover frequency ωc of FBO(s) using the function
”margin” in matlab.

3. Choose sampling period Te according to the rule: ωcTe is between
0.05 and 0.14

4. Discretize the controllers using one of the approximation methods and
the chosen sampling period. (Note that instead of replacing the whole
continuous-time controller with its discretized version, we can replace only

its components containing continuous-time blocs, such as the integrators
1

s
)

5 Add the digital anti-aliasing filter


