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Abstract: We study a framework for the specification of architecture styles as families of architectures
involving a common set of types of components and coordination mechanisms. The framework combines
two logics: 1) interaction logics for the specification of architectures as generic coordination schemes in-
volving a configuration of interactions between typed components; and 2) configuration logics for the
specification of architecture styles as sets of interaction configurations. Configuration logics can be con-
sidered as a power-set extension of interaction logics. The relation between the two logics is similar to
the relation between programs and their specifications. As program specifications can be expressed, eg.
in temporal logics, architecture styles can be specified in configuration logics.

The presented results build on previous work on architecture modelling in BIP. We show how proposi-
tional interaction logic can be extended into a corresponding configuration logic by adding new operators
on sets of interaction configurations. In addition to the usual set-theoretic operators, configuration logic is
equipped with a coalescing operator + to express combination of configuration sets. This operator proves
to be particularly useful for the specification of architecture styles including a given class of configurations.
We provide a complete axiomatization of propositional configuration logic as well as decision procedures
for checking that an architecture satisfies given logical specifications.

To allow genericity of specifications, we study first-order and second-order extensions of the propo-

sitional configuration logic. First-order logic formulas involve quantification over component variables.

Second-order logic formulas involve additional quantification over sets of components. We provide several

examples illustrating the application of the results to the characterisation of various architecture styles.

We also provide an experimental evaluation using the Maude rewriting system to implement the decision

procedure for the propositional flavour of the logic. We conclude with a discussion of the related work

and of future directions dealing with the application of the results through the development of specific

methods and tools.
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1 Introduction

Architectures are common means for organizing coordination between components in order to
build complex systems and to make them manageable. They depict generic coordination principles
between components and embody design rules that can be understood by all. Architectures allow
thinking on a higher plane and avoiding low-level mistakes. They are a means for ensuring global
coordination properties between components and thus, achieving correctness by construction [2].

Using architectures largely accounts for our ability to master complexity and develop systems
cost-effectively. System developers extensively use reference architectures ensuring both functional
and non-functional properties, e.g. fault-tolerant, time-triggered, adaptive, security architectures.

Many languages have been proposed for architecture description such as architecture descrip-
tion languages, e.g. [20], coordination languages, e.g. [8] and configuration languages [25]. All
these works rely on the distinction between behaviour of individual components and their co-
ordination in the overall system organization. Informally architectures are characterized by the
structure of the interactions between a set of typed components. The structure is usually specified
as a relation, eg. connectors between component ports.

The field of software architecture remains relatively immature [14]. A lot of foundational issues
remain open. One is the distinction between architectures and their properties. Architecture styles
characterize not a single architecture but a family of architectures sharing common characteristics
such as the type of the involved components and the topology induced by their coordination struc-
ture. Simple examples of architecture styles are Pipeline, Ring, Master/Slave, Pipe and Filter. For
instance, Master/Slave architectures integrate two types of components, masters and slaves such
that each slave can interact only with one master. Figure 1 depicts four Master/Slave architectures
involving two master components M1, M2 and two slave components S1, S2. Their communication
ports are respectively m1, m2 and s1, s2. The architectures correspond to interaction configura-
tions:

{
{s1,m1}, {s2,m2}

}
,
{
{s1,m2}, {s2,m1}

}
,
{
{s1,m1}, {s2,m1}

}
and

{
{s1,m2}, {s2,m2}

}
.

The set {si,mj} denotes an interaction between ports si and mj . A configuration is a non-empty
set of interactions. The Master/Slave architecture style characterizes all the Master/Slave archi-
tectures for arbitrary numbers of masters and slaves.

m1

s1

m2

s2

S2S1

{{s1,m1}, {s2,m2}}

M1 M2

m1 m2

s1 s2

M2

S1
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Figure 1: Master/Slave architectures.

The paper studies the relation between architectures and architecture styles. This relation is
similar to the relation between programs and their specifications. As program specifications can be
expressed by using logics, e.g. temporal logics, architecture styles can be specified by configuration
logics characterizing classes of architectures.

First, we propose a propositional configuration logic whose formulas represent, for a given set
of components, the allowed configuration sets. Then, we introduce first-order and second-order
logics as extensions of the propositional logic. These allow genericity of description as they are
defined for types of components.
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(a) I(P ) = 2P (b) C(P ) = 2I(P )\{∅} (c) CS(P ) = 2C(P )\{∅}

Figure 2: Lattices of interactions (a), configurations (b) and configuration sets (c) for P = {p, q}.

The proposed formalism is declarative and has some similarities with languages used for a
feature-oriented analysis of architectures, such as OCL [32]. It differs from formalisms used to
describe the possible configurations of a dynamic architecture by using graph grammars [27, 24].

The meaning of a configuration logic formula is a configuration set. A configuration on a set
of components represents a particular architecture. Thus, configuration logic formulas describe
architecture sets. The definition of configuration logics requires considering three hierarchically
structured semantic domains:

The lattice of interactions. An interaction a is a non-empty subset of P , the set of ports of the
integrated components. Its execution implies the atomic synchronization of all component
actions (at most one action per component) associated with the ports of a.

The lattice of configurations. Configurations are non-empty sets of interactions characterizing
architectures.

The lattice of configuration sets. Sets of configurations are properties described by the con-
figuration logic.

Figure 2 shows the three lattices for P = {p, q}. For the lattice of configuration sets, we show
only how it is generated.

This work consistently extends results on modelling architectures by using propositional inter-
action logic [3, 4, 5], which are Boolean algebras on the set of ports P of the composed components.
Their semantics is defined via a satisfaction relation between interactions and formulas. An inter-
action a ⊆ P satisfies a formula φ (we write a |=i φ) if φ evaluates to true for the valuation that
assigns true to the ports belonging to a and false otherwise. It is characterized exactly by the
formula

∧
p∈a p ∧

∧
p 6∈a p .

Configuration logic is a powerset extension of interaction logic. Its formulas are generated
from the formulas of the propositional interaction logic by using the operators union, intersection
and complementation, as well as a coalescing operator +. To avoid ambiguity, we refer to the
formulas of the configuration logic that syntactically are also formulas of the interaction logics as
interaction formulas. The semantics of the configuration logic is defined via a satisfaction relation
|= between configurations γ = {a1, ..., an} and formulas. An interaction formula f represents any
configuration consisting of interactions satisfying it; that is γ |= f if, for all a ∈ γ, a |=i f . For
set-theoretic operators we take the standard meaning. The meaning of formulas of the form f1 +f2

is all configurations γ that can be decomposed into γ1 and γ2 (γ = γ1∪γ2) satisfying, respectively,
f1 and f2. The formula f1 + f2 represents configurations obtained as the union of configurations
of f1 with configurations of f2.

Despite its apparent complexity, configuration logic is easy to use because of its stratified con-
struction. From interaction logic it inherits the Boolean connectives of conjunction (∧), disjunction
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(∨) and negation (̄ ). It also uses the set-theoretic operations of union (t ), complementation (¬ )
and coalescing (+). It can be shown that intersection coincides with conjunction.

The following simple example illustrates the difference between interaction and configuration
logic. For P = {p, q, r, s}, the monomial p∧q∧r specifies in interaction logic the interactions {p, q}
and {p, q, s}. In configuration logic, it specifies all the configurations built from these interactions,
i.e.

{
{p, q}

}
,
{
{p, q, s}

}
and

{
{p, q}, {p, q, s}

}
. The formula p ∧ q ∧ r + true characterizes all

the configurations of the form γ = γ1 ∪ γ2, where γ1 satisfies p ∧ q ∧ r and γ2 is an arbitrary
configuration.

Formulas of the form f + true, denoted ∼f , present a particular interest for writing specifica-
tions. Their characteristic configuration set is the largest set containing configurations satisfying
f . The formula ∼f admits the modal interpretation “possible f”. We show that ¬ f = ∼f . This
means that the complement of the characteristic configuration set of f is the set “possible f ”.
Dually, the complement of f is “possible f”.

We provide a full axiomatization of the propositional configuration logic and a normal form
similar to the disjunctive normal form in Boolean algebras. The existence of such normal form
implies the decidability of formula equality and satisfaction of a formula by an architecture model.

To allow genericity of specifications, we study first-order and second-order extensions of the
propositional configuration logic. First-order logic formulas involve quantification over component
variables. Second-order logic formulas involve additionally quantification over sets of components.
For instance, the first-order formula ∀c :Filter. ∃c′ :Pipe. ∼(c.in ∧ c′.out) expresses the fact that
for any component c of type Filter there exists a component c′ of type Pipe such that the port
in of c interacts with the port out of c′. Second-order logic is needed to express some interesting
topological properties, e.g. the existence of cycles of interactions.

The report is structured as follows. Section 2 presents basic facts about interaction logic.
Section 3 presents the propositional configuration logic. Section 4 includes basic theorems and
properties of the propositional configuration logic, as well as the results about the normal form and
the decision method. Section 5 introduces an architecture specification methodology. Section 6
presents first-order and second-order logics and their application to the specification of architecture
styles. Section 7 presents the results of an implementation of the decision procedure in the Maude
rewriting system. Section 8 presents an analysis of related work. Section 9 concludes the paper
and discusses directions for future work.

2 Propositional interaction logic

The propositional interaction logic (PIL), studied in [3, 4], is a Boolean logic used to characterize
the interactions between components on a global set of ports P . In this section, we present only
the results needed to introduce the propositional configuration logic (Section 3). Below, we assume
that the set P is given.

Definition 2.1. An interaction is a non-empty set of ports a ⊆ P such that a 6= ∅.

Syntax. The propositional interaction logic is defined by the grammar:

φ ::= true | p | φ | φ ∨ φ , with any p ∈ P .

Conjunction is defined as usual: φ1 ∧ φ2
def
= (φ1 ∨ φ2 ) . To simplify the notation, we omit it in

monomials, eg. writing pqr instead of p ∧ q ∧ r.

Semantics. The meaning of a PIL formula φ is defined by the following satisfaction relation. Let
a ⊆ P be a non-empty interaction. We define: a |=i φ iff φ evaluates to true for the valuation
p = true, for all p ∈ a and p = false, for all p 6∈ a. Thus, the semantic domain of PIL is the lattice
of configurations C(P ) = 2I(P )\{∅}, where I(P ) = 2P (Figure 2).
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The operators meet the usual Boolean axioms and the additional axiom
∨
p∈P p = true meaning

that interactions are non-empty sets of ports.
An interaction a can be associated to a characteristic monomial ma =

∧
p∈a p ∧

∧
p 6∈a p such

that a′ |=i ma iff a′ = a.

Example 2.2. Consider a system consisting of three components: a sender with port p and two
receivers with ports q and r, respectively. We can express the following interaction patterns:

• Strong synchronization between the components is specified by a single interaction involving
all components. In PIL it is represented by the monomial pqr.

• Broadcast defines weak synchronization among the sender and any number of the receivers:{
{p}, {p, q}, {p, r}, {p, q, r}

}
, represented by the formula p, which can be expanded to pq r ∨

pqr ∨ pqr ∨ pqr.

• Atomic broadcast ensures that either all or none of the receivers are involved in the interac-
tion:

{
{p}, {p, q, r}

}
and can be characterised by the formula pq r ∨ pqr.

3 Propositional configuration logic

Syntax. The propositional configuration logic (PCL) is an extension of PIL defined by the gram-
mar:

f ::= true | φ | ¬ f | f + f | f t f , (1)

where φ is a PIL formula; ¬ , + and t are, respectively, the complementation, coalescing and
union operators.

Additionally, we define the usual notation for intersection and implication:

f1 u f2
def
= ¬ (¬ f1 t ¬ f2) ,

f1 ⇒ f2
def
= ¬ f1 t f2 .

The language of PCL formulas is generated from PIL formulas by using union, coalescing and
complementation operators. The binding strength of the operators is as follows (in the decreasing
order): PIL negation, complementation, PIL conjunction, PIL disjunction, coalescing, union.

Henceforth, to avoid confusion, we refer as interaction formulas to the subset of PCL formulas
that syntactically are also PIL formulas. Furthermore, we will use Latin letters f, g, h for general
PCL formulas and Greek letters φ, ψ, ξ for interaction formulas. Interaction formulas inherit all
axioms of PIL.

Semantics. Let P be a set of ports. The semantic domain of PCL is the lattice of configuration
sets CS(P ) = 2C(P )\{∅} (Figure 2(c)). The meaning of a PCL formula f is defined by the following
satisfaction relation. Let γ ∈ C(P ) be a non-empty configuration. We define:

γ |= true , always, (2)

γ |= φ , if ∀a ∈ γ, a |=i φ, where φ is an interaction formula and
|=i is the satisfaction relation of PIL,

(3)

γ |= f1 + f2 , if there exist γ1, γ2 ∈ C(P ) \ {∅}, such that γ = γ1 ∪ γ2,
γ1 |= f1 and γ2 |= f2,

(4)

γ |= f1 t f2 , if γ |= f1 or γ |= f2, (5)

γ |= ¬ f , if γ 6|= f (i.e. γ |= f does not hold). (6)
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In particular, the meaning of an interaction formula φ in PCL is the set 2Ia \ {∅}, with Ia =
{a ∈ I(P ) | a |=i φ}, of all configurations involving any number of interactions satisfying φ in PIL.

The semantics of intersection and implication can also be stated directly as follows:

γ |= f1 u f2 , if γ |= f1 and γ |= f2, (7)

γ |= f1 ⇒ f2 , if γ 6|= f1 or γ |= f2. (8)

We say that two formulas are equivalent f1 ≡ f2 iff, for all γ ∈ C(P ) such that γ 6= ∅,
γ |= f1 ⇔ γ |= f2.

We denote by |f | def= {γ ∈ C(P ) \ {∅} | γ |= f} the characteristic configuration set of the for-
mula f . Clearly f1 ≡ f2 iff |f1| = |f2|.

Proposition 3.1. Equivalence ≡ is a congruence w.r.t. all PCL operations.

Proof. In order to prove the proposition, it is sufficient to show that for each binary operator op
from the PCL grammar (1), the characteristic configuration set of the formula f1 op f2 can be
expressed as a function of characteristic configuration sets of f1 and f2. In other words, we have
to exhibit a binary operator op′ on sets, such that |f1 op f2| = op′(|f1|, |f2|). Similarly, we have to
exhibit a unary operator on sets, expressing the characteristic configuration set of the formula ¬ f
in terms of the characteristic configuration set of f .

Clearly, the set operators corresponding to ¬ and t are, respectively, complementation with
respect to C(P ) \ {∅} and set union. For the coalescing operator +, it is easy to see that, defining

op′+(X,Y )
def
= {γ1 ∪ γ2 | γ1 ∈ X, γ2 ∈ Y } ,

we have |f1 + f2| = op′+
(
|f1|, |f2|

)
.

Example 3.2. The Master/Slave architecture style for two masters M1,M2 and two slaves S1, S2

with ports m1, m2, s1, s2, respectively, characterizes the four configurations of Figure 1 as the
union: ⊔

i,j∈{1,2}

(φ1,i + φ2,j),

where φi,j = si ∧ mj ∧ si′ ∧ mj′ for i 6= i′, j 6= j′ are monomials defining a binary interaction
between ports si and mj , respectively.

This formula can be alternatively written as a coalescing of interactions for each slave:

(φ1,1 t φ1,2) + (φ2,1 t φ2,2).

Any configuration satisfying this formula consists of two parts, which satisfy, respectively, the
left and the right terms of the coalescing operator. The left term requires either an interaction
{s1,m1} or an interaction {s1,m2}. Similarly, the right term requires exactly one interaction
among {s2,m1} and {s2,m2}. Therefore, there are four possible pairs of interactions corresponding
to the four configurations of Figure 1.

4 Properties of PCL

In this section, we present some properties of PCL. In particular, we show that PCL is a con-
servative extension of PIL (Section 4.1). We also present the key properties of PCL operators
(Sections 4.2–4.7), which allow us to define a normal form (Section 4.8), a sound and complete
axiomatization of PCL (Section 4.9) and decision procedures for the equality and satisfaction of
PCL formulas (Subsection 4.10).
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4.1 Conservative extension

Notice that from the PCL semantics of interaction formulas, it follows immediately that PCL is
a conservative extension of PIL. Below we extend the PIL conjunction and disjunction operators
to PCL.

PCL intersection is a conservative extension of PIL conjunction.

Proposition 4.1. φ1 ∧ φ2 ≡ φ1 u φ2, for any interaction formulas φ1, φ2.

Proof. First of all, notice that for any two interaction formulas φ1 and φ2, φ1 ∧ φ2 is also an
interaction formula. Hence, by (3), γ |= φ1∧φ2 iff γ ⊆ {a | a |=i φ1 ∧ φ2} = {a | a |=i φ1 ∧ a |=i φ2}.

On the other hand, by (7) γ |= φ1 u φ2 iff γ |= φ1 and γ |= φ2, that is γ ⊆ {a | a |=i φ1} ∩
{a | a |=i φ2} = {a | a |=i φ1 ∧ a |=i φ2}.

Thus, conjunction and intersection coincide on interaction formulas. In the rest of the paper,
we use the same symbol ∧ to denote both operators.

Disjunction can be conservatively extended to PCL with the following semantics: for any PCL
formulas f1 and f2,

γ |= f1 ∨ f2 , if γ |= f1 t f2 t f1 + f2. (9)

Proposition 4.2. For any interaction formulas φ1 and φ2 and any γ ∈ C(P ) such that γ 6= ∅,
we have γ |= φ1 ∨ φ2 iff ∀a ∈ γ, a |=i φ1 ∨ φ2.

Proof. The PCL semantics defines γ |= φ1 ∨ φ2 if γ |= φ1 or γ |= φ2 or there exist γ1 and γ2, such
that γ = γ1 ∪ γ2, γ1 |= φ1 and γ2 |= φ2, where γ |= φ if for all a ∈ γ, a |=i φ. Thus, in all three
cases all interactions in γ either satisfy φ1 or φ2 and consequently, for all a ∈ γ, a |=i φ1 ∨ φ2.
Conversely, if γ consists of interactions a, such that a |=i φ1 ∨ φ2, these interactions can be split
into two possibly empty sets γ1 and γ2 such that for all a ∈ γj , where j ∈ [1, 2], a |=i φj . If one
of these groups is empty then the second one contains all interactions and γ |= φj . Otherwise,
γ1 |= φ1 and γ2 |= φ2, where γ1 ∪ γ2 = γ. In all cases γ |= φ1 ∨ φ2.

Union, complementation and conjunction have the standard set-theoretic meaning.

Proposition 4.3. The operators t , ¬ , ∧ satisfy the usual axioms of propositional logic.

Proof. The proof is immediate from the semantics (5), (6) and (7).

4.2 The coalescing operator

Notice that coalescing + combines configurations, as opposed to union t , which combines con-
figuration sets. Coalescing has the following properties:

Proposition 4.4. + is associative, commutative and has an absorbing element false
def
= ¬true.

Coalescing distributes over union, as shown in the following proposition:

Proposition 4.5. For any formulas f, f1, f2, the following distributivity result holds:

f + (f1 t f2) ≡ f + f1 t f + f2 .

Proof. If γ |= f + (f1 t f2) then there exist γ1 and γ2, such that γ1 ∪ γ2 = γ, γ1 |= f and
γ2 |= f1 t f2. If γ2 |= f1 then γ |= f + f1. Otherwise, γ2 |= f2 and γ |= f + f2. Combining these
two cases we obtain γ |= f + f1 t f + f2.

If γ |= f + f1 t f + f2 then either γ |= f + f1 or γ |= f + f2. In the first case there exist
γ1 and γ2, such that γ1 ∪ γ2 = γ, γ1 |= f and γ2 |= f1. Since γ2 |= f1 implies γ2 |= f1 t f2,
γ |= f + (f1 t f2). The second case is similar.
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Associativity of coalescing and union, together with the distributivity of coalescing over union,
immediately imply the following generalisation of the extended semantics of disjunction (9).

Corollary 4.6. For any set of formulas {fi}i∈I , we have∨
i∈I

fi ≡
⊔
∅6=J⊆I

∑
j∈J

fj ,

where
∑
j∈J fj denotes the coalescing of formulas fj, for all j ∈ J .

Example 4.7. A configuration γ satisfying the formula f = f1 ∨ f2 ∨ f3 can be partitioned into
γ = γ1 ∪ γ2 ∪ γ3, such that γi |= fi. However, by the semantics of disjunction, some γi can be
empty. On the contrary, the semantics of coalescing requires all elements of such partition to be
non-empty. Hence, in order to rewrite f without the disjunction operator, we take the union of
all possible coalescings of f1, f2 and f3. Thus, we have f ≡ f1 t f2 t f3 t (f1 + f2) t (f1 + f3) t
(f2 + f3) t (f1 + f2 + f3).

The following proposition shows distributivity results involving disjunction. In particular, it
shows that disjunction distributes over union and coalescing distributes over disjunction.

Proposition 4.8. For any formulas f, f1, f2, the following distributivity results hold:

1. f ∨ (f1 t f2) ≡ (f ∨ f1) t (f ∨ f2),

2. f + (f1 ∨ f2) ≡ (f + f1) ∨ (f + f2).

Proof. We have

f ∨ (f1 t f2) ≡ f t (f1 t f2) t f + (f1 t f2)

≡ f t f1 t f + f1 t f t f2 t f + f2 ≡ (f ∨ f1) t (f ∨ f2)

and

f + (f1 ∨ f2) ≡ f + (f1 t f2 t f1 + f2)

≡ f + f1 t f + f2 t f + f1 + f2 ≡ (f + f1) ∨ (f + f2) .

The following example shows that coalescing does not distribute over conjunction.

Example 4.9. Let P = {p, q} and consider f = p t q, f1 = p and f2 = q. We then have
(f + f1) ∧ (f + f2) =

(
(p t q) + p

)
∧
(
(p t q) + q

)
and f + (f1 ∧ f2) = (p t q) + (p ∧ q). The

configuration
{
{p}, {q}

}
satisfies the former, but not the latter.

Proposition 4.10. For any formulas f, f1, f2, the following implication is true:

f + (f1 ∧ f2)⇒ (f + f1) ∧ (f + f2) .

Proof. If γ |= f + (f1 ∧ f2) then there exist γ1 and γ2, such that γ = γ1 ∪ γ2, γ1 |= f , γ2 |= f1

and γ2 |= f2. Hence, we have both γ |= f + f1 and γ |= f + f2.

In general, neither conjunction distributes over coalescing nor coalescing over conjunction. To
provide more distributivity results, we introduce the following classes of PCL formulas.

Definition 4.11.
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• A formula f is downward-closed iff γ |= f implies ∀γ1 ⊆ γ, γ1 |= f .

• A formula f is upward-closed iff γ |= f implies ∀γ1 ⊇ γ, γ1 |= f .

• A formula f is ∪-closed iff γ1 |= f and γ2 |= f implies γ1 ∪ γ2 |= f .

Example 4.12.

• p t q is downward-closed,

• ¬ (p t q) is upward-closed,

• p ∨ q is ∪-closed.

The following propositions show properties of these classes and their relations.

Proposition 4.13. If f and g are downward- (resp. upward-) closed then f t g and f ∧ g are
also downward- (resp. upward-) closed.

Proof. If γ |= f t g then γ |= f or γ |= g. If γ |= f then ∀γ1 ⊆ γ γ1 |= f . Thus, γ1 |= f t g. The
case γ |= g is similar.

If γ |= f ∧ g then γ |= f and γ |= g. If γ |= f then ∀γ1 ⊆ γ γ1 |= f and similarly for g. Thus,
γ1 |= f ∧ g.

If γ |= f t g then γ |= f or γ |= g. If γ |= f then ∀γ1 ⊇ γ γ1 |= f . Thus, γ1 |= f t g. The
case γ |= g is similar.

If γ |= f ∧ g then γ |= f and γ |= g. If γ |= f then ∀γ1 ⊇ γ γ1 |= f and similarly for g. Thus,
γ1 |= f ∧ g.

Proposition 4.14. For any formula f , the formula f + true is upward-closed.

Proof. Let γ |= f + true. There exists γ1 ⊆ γ such that γ1 |= f . For any γ2 ⊇ γ holds γ2 ⊇ γ1

and γ2 |= f + true, since true is satisfied by any configuration.

Proposition 4.15. If f is upward-closed then f ≡ f + true.

Proof. If γ |= f then γ ∪ γ = γ |= f + true.
If γ |= f + true then there exists γ1 ⊆ γ such that γ1 |= f . Since f is upward-closed, for any
γ ⊇ γ1, holds γ |= f .

Proposition 4.16. If f and g are ∪-closed then f + g is also ∪-closed.

Proof. If γ1 |= f+g and γ2 |= f+g then there exist γ1,1, γ1,2, γ2,1 and γ2,2, such that γi = γi,1∪γi,2,
γi,1 |= f and γi,2 |= g for i ∈ {1, 2}. Since f and g are ∪-closed, γ1,1 ∪ γ2,1 |= f and γ1,2 ∪ γ2,2 |= g
and consequently, γ1 ∪ γ2 |= f + g.

The following proposition shows that the complement of a downward-closed formula is an
upward-closed formula.

Proposition 4.17. A formula f is downward-closed iff the formula ¬ f is upward-closed.

Proof. Assume that f is downward-closed and ¬ f is not upward-closed. The latter means that
there exist γ1 and γ2 ⊇ γ1 such that γ1 |= ¬ f and γ2 6|= ¬ f . This is equivalent to γ1 6|= f and
γ2 |= f , which contradicts the fact that f is downward-closed.

Conversely, assume that ¬ f is upward-closed and f is not downward-closed. The latter means
that there exist γ1 and γ2 ⊆ γ1 such that γ1 |= f and γ2 6|= f . This is equivalent to γ1 6|= ¬ f and
γ2 |= ¬ f , which contradicts the fact that ¬ f is upward-closed.
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Figure 3: Correspondence between the lattices of PIL and PCL.

Proposition 4.18. A formula is ∪-closed and downward-closed iff it is an interaction formula.

Proof. Let φ be an interaction formula. Consider two configurations γ1 |= φ and γ2 |= φ. Any
γ′ ⊆ γ1 contains only interactions from γ1, thus, γ′ |= φ. For all a ∈ γ1 ∪ γ2 holds a |=i φ,
consequently γ1 ∪ γ2 |= φ. This shows that φ is ∪-closed and downward-closed.

Conversely, suppose that f is a ∪-closed and downward-closed formula and consider its char-
acteristic configuration set |f | = {γ ∈ C(P ) \ {∅} | γ |= f}. Let I =

⋃
γ∈|f | γ be the set of all

interactions belonging to configurations satisfying f . Since f is downward-closed, {a} |= f for any
a ∈ I. By the definition of ∪-closed formulas, the union of models is also a model. Thus, γ |= f ,
for any ∅ 6= γ ⊆ I. Consequently, |f | = {γ ⊆ I | γ 6= ∅} and f =

∨
a∈I ma, where ma denotes the

characteristic monomial of the interaction a.

Thus, interaction formulas are represented by formulas that are both downward-closed and
∪-closed. Figure 3 shows the correspondence between the PIL lattice and the PCL lattice. Notice
that, in general, φ t φ′ is not ∪-closed and φ+ φ′ is not downward-closed.

As shown before, conjunction does not distribute over coalescing. Nevertheless, it distributes
for interaction formulas as shown in the following proposition.

Proposition 4.19. For any formulas f1, f2 and interaction formula φ, we have:

φ ∧ (f1 + f2) ≡ (φ ∧ f1) + (φ ∧ f2) .

Proof. If γ is a configuration satisfying φ ∧ (f1 + f2) then γ |= φ and there exist γ1, γ2, such that
γ = γ1 ∪ γ2, γ1 |= f1 and γ2 |= f2. Since φ is an interaction formula, it is also downward-closed
(Proposition 4.18). Thus, γ |= φ implies γ1 |= φ and γ2 |= φ. Consequently, γ1 |= φ ∧ f1 and
γ2 |= φ ∧ f2.

Conversely, if γ is a configuration satisfying (φ ∧ f1) + (φ ∧ f2) then γ = γ1 ∪ γ2 such
that γ1 |= f1, γ1 |= φ, γ2 |= f2 and γ2 |= φ. Since φ is ∪-closed, γ |= φ and consequently,
γ |= φ ∧ (f1 + f2).

Notice that coalescing is not idempotent in general, as it is shown in the following example.

Example 4.20. (p t q)+(p t q) 6≡ p t q. The configuration {{p}, {q}} satisfies (p t q)+(p t q),
but it does not satisfy p t q .

Nevertheless, coalescing is idempotent on ∪-closed formulas.

11



Proposition 4.21. f + f ≡ f for any ∪-closed formula f .

Proof. The implication γ |= f ⇒ γ |= f + f for any γ is trivial.
Conversely, consider a configuration γ |= f + f . By the semantics of coalescing, there exist

γ1, γ2, such that γ = γ1 ∪ γ2, γ1 |= f and γ2 |= f . Since f is ∪-closed, γ1 ∪ γ2 |= f . Consequently,
γ |= f .

4.3 The closure operator

Coalescing with true presents a particular interest for writing specifications, since they allow
adding any set of interactions to the configurations satisfying f . Notice that true is not a neutral
element of coalescing: only the implication f ⇒ f + true holds in general.

Definition 4.22. For any formula f , the closure operator ∼ is defined by putting ∼f def
= f+ true.

We give ∼ the same binding power as ¬ .

Although closure is not a primitive operator of PCL, it is easy to see that the semantics of
closure can be directly defined by putting γ |= ∼f iff exists γ1 ⊆ γ such that γ1 |= f .

Example 4.23. For P = {p, q, r} the formula f characterizing all the configurations such that p
must interact with both q and r, is f = pq+pr+true = ∼(pq+qr). Notice that the only constraint
imposed by the formula f is that configurations that satisfy it must contain an interaction pqr or
both interactions pq and qr. Configurations satisfying f can contain any additional interactions.

Proposition 4.24. ∼∼f ≡ ∼f for any formula f .

Proof. ∼∼f ≡ ∼f + true ≡ f + true+ true ≡ f + true ≡ ∼f .

Notice that, as an immediate corollary of Proposition 4.15, the closure of any formula is upward-
closed. The following proposition shows that ∼ f is the smallest upward-closed formula greater
than f in the lattice of PCL formulas ordered by implication.

Proposition 4.25. For any formula f , holds f ⇒∼ f . Furthermore, for any upward-closed
formula f ′, such that f ⇒ f ′, holds ∼f ⇒ f ′.

Proof. f ⇒ ∼ f follows directly from the semantics of the ∼ operator. Assume that there exists
an upward-closed f ′, such that f ⇒ f ′, and a configuration γ, such that γ |=∼ f and γ 6|= f ′.
Since γ |=∼f there exists γ1 ⊆ γ such that γ1 |= f . Since f ⇒ f ′, we have γ1 |= f ′. The formula
f ′ is upward-closed, therefore γ1 |= f ′ implies γ |= f ′, which contradicts our assumption.

The closure operator can be interpreted as a modal operator with existential quantification.
The formula ∼ f characterizes configurations γ, such that there exists a sub-configuration of γ
satisfying f . Thus, ∼ f means “possible f”. Dually ¬ ∼¬ f means “always f” in the following
sense: if a configuration γ satisfies ¬ ∼¬ f , all sub-configurations of γ satisfy f .

Corollary 4.26. For any formula f , holds ¬ ∼¬ f ⇒ f . Furthermore, for any downward-closed
formula f ′, such that f ′ ⇒ f , holds f ′ ⇒ ¬ ∼¬ f .

Proof. By 4.25, for any formula f , we have ¬ f ⇒ ∼¬ f , which immediately implies ¬ ∼¬ f ⇒ f .
For any downward-closed f ′, such that f ′ ⇒ f , we observe that, by Proposition 4.17, ¬ f ′ is
upward-closed. Hence, by Proposition 4.25, ∼¬ f ⇒ ¬ f ′ and, consequently, f ′ ⇒ ¬ ∼¬ f .

Clearly, if f is downward-closed then ¬ ∼ ¬ f ≡ f . However, this is not true in general.
Consider f = ma + mb, where ma and mb are characteristic monomials of interactions a and
b, respectively. The only configuration satisfying f is γ = {a, b}. In particular, none of the
sub-configurations {a}, {b} ⊂ γ satisfies f . Thus, ¬ ∼¬ (ma +mb) ≡ false.

12
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Figure 4: Correspondence between negation and complementation of interaction formulas.

Proposition 4.27. For any formulas f1, f2, the following distributivity results hold:

1. ∼(f1 t f2) ≡ ∼f1 t ∼f2 ≡ ∼(f1 ∨ f2),

2. ∼f1 + ∼f2 ≡ ∼(f1 + f2) ≡ ∼f1 ∧ ∼f2.

Proof. We have the following equalities:

∼(f1 t f2) ≡ (f1 t f2) + true ≡ f1 + true t f2 + true ≡ ∼f1 t ∼f2 ,

∼(f1 ∨ f2) ≡ f1 + true t f2 + true t f1 + f2 + true

≡ f1 + true t f2 + true ≡ ∼f1 t ∼f2 ,

∼f1+ ∼f2 ≡ f1 + true+ f2 + true ≡ f1 + f2 + true ≡ ∼(f1 + f2) ,

∼f1 ∧ ∼f2 ≡ (f1 + true) ∧ (f2 + true) ≡ f1 + f2 + true ≡ ∼(f1 + f2) .

4.4 The complementation operator

The following results allow us to address the relation between complementation and negation.

Lemma 4.28. For any interaction formula φ, the following two formulas are equivalent:

φ t φ t (φ + φ) ≡ true . (10)

Proof. The proof is immediate from Corollary 4.6 and the fact that φ∨φ ≡ true, for any interaction
formula φ.

Notice that the three terms in the left-hand side of (10) are mutually disjoint.

Proposition 4.29. For any interaction formula φ, holds ¬ φ ≡ ∼φ .

Proof. By Lemma 4.28, we have ¬ φ ≡ φ t (φ+ φ ) ≡ φ + true ≡ ∼φ .

In particular, this means that complementation can also be interpreted as a modality. Propo-
sition 4.29 shows that the complementation of f represents all configurations that contain φ .
Equivalences ¬ φ ≡ ∼ φ, ¬ ∼ φ ≡ φ , ¬ ∼ φ ≡ φ and ∼¬ φ ≡ ¬ φ, for interaction formulas φ,
are direct corollaries of Proposition 4.29 and, for the latter, Proposition 4.24. Figure 4 depicts the
relations between complementation and negation of the interaction formulas.
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4.5 Complementation of coalescings of interaction formulas

Proposition 4.30. For any formulas f , g, we have:

f + g ≡ ∼f ∧ ∼g ∧ (f ∨ g) .

Proof. By (9) and Proposition 4.27, we have

∼f ∧ ∼g ∧ (f ∨ g) ≡ ∼(f + g) ∧ (f t g t f + g) .

Notice that γ |= ∼ (f + g) ∧ f iff γ |= f and there exists γ1 ⊆ γ such that γ1 |= g. Thus,
∼(f + g) ∧ f ≡ f + (f ∧ g). By applying a similar transformation to g, we obtain

∼(f + g) ∧ (f t g t f + g) ≡
(
f + (f ∧ g)

)
t
(
g + (f ∧ g)

)
t (f + g) ≡ f + g ,

where the last equality is an immediate consequence of the fact that f ∧ g ⇒ f and f ∧ g ⇒ g.

Proposition 4.31. For any interaction formulas φ, ψ, the following two formulas are equivalent:

¬ (φ+ ψ) ≡ φ t ψ t ∼(φ ∧ ψ ) .

Proof. By Proposition 4.30 φ+ψ ≡∼φ∧ ∼ψ ∧ (φ∨ψ). Thus, ¬(φ+ψ) ≡ ¬(∼φ∧ ∼ψ ∧ (φ∨ψ)) ≡
¬ ∼ φ t ¬ ∼ψ t ¬ (φ ∨ ψ). Since φ, ψ and φ ∨ ψ are interaction formulas, the application of
Proposition 4.29 gives ¬ (φ+ ψ) ≡ φ t ψ t ∼(φ ∧ ψ )

Proposition 4.31 allows the elimination of complementation as shown in the following example.

Example 4.32. Consider a formula f = ¬ (pq + pr) and a configuration γ |= f . The PCL
semantics requires that γ cannot be split into two non-empty parts γ1 |= pq and γ2 |= pr. This
can happen in two cases: 1) there exists a ∈ γ such that a does not satisfy neither pq nor pr;
2) one of the monomials is not satisfied by any interaction in γ. The former case can be expressed
as ∼ (pq pr ) and the latter as pq t pr . The union of these formulas gives the equivalence
¬ (pq + pr) ≡ pq t pr t ∼(pq pr ).

Propositions 4.30 and 4.31 can be generalized as follows:

Proposition 4.33. For any set of formulas F , we have:∑
f∈F

f ≡
∧
f∈F

∼f ∧
∨
f∈F

f .

Proposition 4.34. For any set of interaction formulas Φ, the following two formulas are equiv-
alent:

¬
∑
φ∈Φ

φ ≡
⊔
φ∈Φ

φ t ∼
∧
φ∈Φ

φ .

Proofs of Propositions 4.33 and 4.34 are similar to the proofs of Propositions 4.30 and 4.31,
respectively.

4.6 Conjunction of coalescings of interaction formulas

Conjunction of coalescings of interaction formulas can be eliminated by using the following dis-
tributivity result to push it down within the formula tree.
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Proposition 4.35. If Φ and Ψ are sets of interaction formulas, then∑
φ∈Φ

φ ∧
∑
ψ∈Ψ

ψ ≡
∑

ξ∈Φ∪Ψ

(
ξ ∧

∨
(φ,ψ)∈Φ×Ψ

(φ ∧ ψ)
)
.

Proof. Notice that∑
φ∈Φ

φ ∧
∑
ψ∈Ψ

ψ ≡ ¬ ¬
(∑
φ∈Φ

φ ∧
∑
ψ∈Ψ

ψ
)
≡ ¬

(
¬
∑
φ∈Φ

φ t ¬
∑
ψ∈Ψ

ψ
)
.

By Proposition 4.34, this can be further transformed into

¬

⊔
φ∈Φ

φ t ∼
∧
φ∈Φ

φ t
⊔
ψ∈Ψ

ψ t ∼
∧
ψ∈Ψ

ψ

 ≡ ¬

 ⊔
ξ∈Φ∪Ψ

ξ t ∼
∧
φ∈Φ

φ t ∼
∧
ψ∈Ψ

ψ

 ,

which we further transform by applying twice the De Morgan’s law (once for complementation
and union and once for negation and disjunction) and Proposition 4.29:∧

ξ∈Φ∪Ψ

¬ ξ ∧ ¬
(
∼
∧
φ∈Φ

φ
)
∧ ¬

(
∼
∧
ψ∈Ψ

ψ
)
≡

∧
ξ∈Φ∪Ψ

∼ξ ∧
∧
φ∈Φ

φ ∧
∧
ψ∈Ψ

ψ .

By Proposition 4.27 and another application of De Morgan’s law, we obtain

∼
∑

ξ∈Φ∪Ψ

ξ ∧
∨
φ∈Φ

φ ∧
∨
ψ∈Ψ

ψ ≡ ∼
∑

ξ∈Φ∪Ψ

ξ ∧
∨

(φ,ψ)∈Φ×Ψ

(φ ∧ ψ) .

Let γ be a configuration satisfying the formula in the right-hand side of this equation. By (7),
any interaction a ∈ γ satisfies the second conjunct in this formula. Hence, there exists a pair
(φ, ψ) ∈ Φ × Ψ, such that a |=i φ ∧ ψ and, a fortiori, there exists ξ ∈ Φ ∪ Ψ, such that a |=i ξ.
Thus, the closure operator in the first conjunct of this formula can be discarded. Finally, by
Proposition 4.19, we have( ∑

ξ∈Φ∪Ψ

ξ
)
∧

∨
(φ,ψ)∈Φ×Ψ

(φ ∧ ψ) ≡
∑

ξ∈Φ∪Ψ

(
ξ ∧

∨
(φ,ψ)∈Φ×Ψ

(φ ∧ ψ)
)
.

Example 4.36. Consider a formula f = (φ1 + φ2) ∧ (φ3 + φ4), where φ1, φ2, φ3 and φ4 are
interaction formulas, and a configuration γ |= f . The semantics requires that there exists two
partitions of γ: γ = γ1 ∪ γ2 and γ = γ3 ∪ γ4, such that γi |= φi for i ∈ [1, 4]. Considering an
intersection γi,j = γi∩γj we have γi,j |= φi ∧ φj . Thus, γ =

⋃
γi,j satisfies φ1φ3∨φ1φ4∨φ2φ3∨φ2φ4

even if some γi,j are empty. Nevertheless, disjunction allows configurations such that no interaction
satisfy one of the disjunction terms and consequently some φi. A coalescing of φi allows only
configurations such that each φi is satisfied by at least one interaction. Thus, the conjunction of
these formulas gives the equivalent representation:

f ≡ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4) ∧ (φ1 + φ2 + φ3 + φ4)

= φ1 ∧ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4) + φ2 ∧ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4)

+ φ3 ∧ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4) + φ4 ∧ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4) .
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4.7 The PCL lattice

The PCL lattice is illustrated in Figure 5. The circle nodes represent interaction formulas, whereas
the red dot nodes represent all other formulas. Notice that the PCL lattice has two sub-lattices
generated by monomials:

• through disjunction and negation (isomorphic to the PIL lattice);

• through union and complementation (disjunction is not expressible).

Notice that coalescing cannot be expressed in any of these two sub-lattices. Although some
formulas involving the closure operator can be expressed in the second sub-lattice, eg. ∼φ ≡ ¬φ,
in general this is not the case, eg. the formulas ∼ (φ ∧ ψ ) and ∼φ t ∼ψ are not part of either
sub-lattice. However, the closure operator is expressible by taking as generators the interaction
formulas:

Proposition 4.37. The lattice generated by interaction formulas through union and complemen-
tation is closed under the closure operator ∼.

Proof. We must prove that, for any formula f in this lattice, the formula ∼f is also in the lattice.
Since union and complementation satisfy the usual axioms of propositional logic, f can be

represented in the equivalent of the disjunction normal form:

f ≡
⊔
i∈I

( ∧
k∈Ki

φk ∧
∧
j∈Ji

¬ φj
)
,

where all φj and φk are interaction formulas. Furthermore, since the conjunction of interaction
formulas

∧
k∈Ki

φk is also an interaction formula, we can assume, without loss of generality, that
all Ki are singleton sets and

f ≡
⊔
i∈I

(
φi ∧

∧
j∈Ji

¬ φj
)
.

Applying the closure operator, we then have

∼f ≡ ∼
⊔
i∈I

(
φi ∧

∧
j∈Ji

¬ φj
)

≡
⊔
i∈I
∼
(
φi ∧

∧
j∈Ji

¬ φj
)

// by Proposition 4.27

≡
⊔
i∈I
∼
(
φi ∧ ∼

(∑
j∈Ji

φj

))
// by Propositions 4.29 and 4.27

≡
⊔
i∈I
∼
(
φi +

∑
j∈Ji

(
φi ∧ φj

))
// by Proposition 4.19

≡
⊔
i∈I

(
∼φi ∧

∧
j∈Ji

∼
(
φi ∧ φj

))
// by Proposition 4.27

≡
⊔
i∈I

(
¬ φi ∧

∧
j∈Ji

¬ φi ∧ φj
)

// by Proposition 4.29

≡
⊔
i∈I
¬
(
φi t

⊔
j∈Ji

φi ∧ φj
)
.

Since, for all i and j, both φi and φi ∧ φj are interaction formulas, we conclude that ∼f belongs
to the lattice generated by interaction formulas through union and complementation.
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∼ φ∧ ∼ ψ ≡ ¬ (φ t ψ )

φ ∨ ψ

φ ∧ ψ ∼ (φ ∧ ψ) ≡ ¬ (φ ∨ ψ )

∼ ψ ≡ ¬ ψ

φ+ ψ

¬ (φ+ ψ)
¬ φ ≡∼ φ ¬ ψ ≡∼ ψ

ψφ
¬ (φ t ψ) ≡∼ φ ∧ ∼ ψ

¬ (φ ∨ ψ) ≡∼ (φ ∧ ψ )

¬ (φ ∧ ψ) ≡ ∼ φ t ∼ ψ

ψφ

φ t ψ

φ ∧ ψ

∼ φt ∼ ψ ≡ ¬ (φ ∧ ψ )

φ ∨ ψ

φ t ψ

∼ φ ≡ ¬ φ

Figure 5: PCL lattice (the blue arrows represent implications; red dashed and green solid lines
represent, respectively, PIL negation and complementation).

4.8 Normal form

To simplify the presentation, we assume in this subsection that disjunction can appear only within
interaction formulas, i.e. we do not consider the extension (9) of the disjunction operator to general
PCL formulas. We prove that any PCL formula can be expressed in the following normal form:⊔
i∈I
∑
j∈Ji

∨
k∈Ki,j

mi,j,k, where all mi,j,k are monomials. This normal form can be obtained
using the rewriting system given in Figure 6 and usual Boolean transformations for interaction
formulas. Notice that no two rules can be simultaneously applicable to the same node. Normal
form of a formula is computed by applying the procedure in Figure 7 to the root of its Abstract
Syntax Tree (AST).

An application of a rule to a node of an AST modifies only the subtree rooted at this node.
In order to simplify the reasoning, we impose the following additional constraint on the order of
application of the rules from the rewriting system in Figure 6.

Constraint 4.38. We require that any rule be applied to a node n only if no rule can be applied
to any other node in the subtree of n.

Remark 4.39. We extend Constraint 4.38 to include usual Boolean transformations. Hence, at
every step of the process, all interaction sub-formulas are maintained in Disjunctive Normal Form.

Example 4.40. The following example illustrates the normalization process:

(pq t r) ∧ (pr + ¬ q) ≡ (pq t r)
∧
(
pr + (q t q + true)

)
// rule 4 with Φ = {q}

≡ (pq t r) ∧ (pr + q + true) // absorption laws

≡
(
pq ∧ (pr + q + true)

)
t
(
r ∧ (pr + q + true)

)
// rule 1

≡
(
(pq ∧ pr) + (pq ∧ q ) + (pq ∧ true)

)
t
(
(r ∧ pr) + (r ∧ q ) + (r ∧ true)

)
// rule 5

≡ (pqr + false + pq) t (pr + rq + r) // Boolean laws

≡ pr + rq + r . // absorption and identity laws
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1.

g ∧
⊔
i∈I

fi⊔
i∈I

g ∧ fi

(Proposition 4.3)

2.

g +
⊔
i∈I

fi⊔
i∈I

fi + g

(Proposition 4.5)

3.

¬
⊔
i∈I

fi∧
i∈I
¬ fi

(Proposition 4.3)

4.

¬
∑
φ∈Φ

φ , all φ are interaction formulas⊔
φ∈Φ

φ t ∼
( ∧
φ∈Φ

φ
) (Proposition 4.34)

5.

∑
φ∈Φ

φ ∧
∑
ψ∈Ψ

ψ , all φ ∈ Φ and ψ ∈ Ψ are
interaction formulas∑

ξ∈Φ∪Ψ

(
ξ ∧

∨
(φ,ψ)∈Φ×Ψ

(φ ∧ ψ)
) (Proposition 4.35)

Figure 6: Rewriting system for computing the normal form by the procedure in Figure 7.

procedure normalise (node)
if (node is an interaction formula)

transform node into DNF;
return;

endif

foreach child of node do
normalise(child);

od

if (no rule applicable to node)
return;

else
apply rule to node;
normalise(node);

endif
end

Figure 7: Procedure for computing the normal form using the rewriting system of Figure 6.
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The first step removes the complementation. Then the application of distributivity rules pushes
conjunction down in the expression tree of the formula, to the level of monomials. Finally, the
formula is simplified, by observing that false is the absorbing element of coalescing and the
identity of union.

Theorem 4.41. Under Constraint 4.38, the rewriting system in Figure 6 has the following prop-
erties:

1. The rewriting system is terminating and confluent.

2. For any formula f ′ derived from a formula f by the application of rewriting rules, we have
f ′ ≡ f .

3. Any irreducible formula is in the normal form
⊔
i∈I
∑
j∈Ji

∨
k∈Ki,j

mi,j,k.

Proof. 1. In order to prove that the rewriting system is terminating, we define a ranking function
on the AST of a formula, with leaves representing interaction sub-formulas. First, we introduce
the following notations:

• Denote p(n) the number of nodes in the subtree with the root n.

• Denote d(n) the depth of the node n in the AST of the formula.

• Let N =
∑
n p(n)p(n), where the sum is taken over all ¬ -nodes.

• Let C =
∑
n p(n)p(n), where the sum is taken over all ∧ -nodes.

• Let U =
∑
n d(n), where the sum is taken over all t -nodes.

• Denote A the number of +-nodes in the AST of the formula.

The ranking function associates a tuple to a tree 〈N,C,U,A〉. We use lexicographical order to
compare the values of the function, i.e. 〈a1, a2, a3, a4〉 < 〈b1, b2, b3, b4〉 iff there exists i ≤ 4 such
that aj = bj , for all j < i, and ai < bi. We show that application of each rewriting rule strictly
reduces the value of the ranking function.

• Rule 1 does not change N and reduces C. Let n be the ∧ -node, to which we apply the Rule 1.
For each ∧ -node n′, generated by the application of the rule, we have p(n′) < p(n). The
number of generated ∧ -nodes n′ is less than p(n). Hence, p(n)p(n) > p(n)∗p(n′)p(n′), which
implies that the value of C decreases after the application of the rule. Although, application
of Rule 1 increases the value of U , the ranking function decreases by the definition of the
lexicographical order.

• Application of Rule 2 increases A, but decreases U as it transforms a non-empty set of
t -nodes into one with smaller depth. This rule does not change the values of N or C.

• Application of Rule 3 decreases N . A ¬ -node with value p(n)p(n) is transformed into less
than p(n) nodes of value less than p(n′)p(n

′) with p(n′) < p(n).

• Application of Rule 4 decreases N . It transforms a ¬ -node into a union of conjunctions and
coalescing.

• Application of Rule 5 decreases C and does not change N . It transforms a ∧ -node into a
coalescing of interaction formulas.

• Application of usual Boolean transformations makes modifications only inside leaves, thus
this rule does not affect the function value.
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Since all rewriting rules decrease the rank of the tree and each value is a tuple of finite natural
numbers, any sequence of applications of rewriting rules is finite.

Notice that applications of rules in different subtrees do not interfere and the order of rule
applications between subtrees does not affect the resulting formula. This observation, together
with Constraint 4.38, guarantees the confluence of the rewriting system.

2. Since all rewriting rules in Figure 6 preserve equality, the formula obtained by application
of these rules is necessarily equal to the initial one.

3. Let f be an irreducible formula. Let n be the deepest ¬ -node in the AST of f . Since Rules 3
and 4 cannot be applied to n, the child node n′ of n is not a union or an interaction formula.
Hence, since Rule 4 cannot be applied, n′ corresponds to a coalescing of PCL formulas, among
which at least one is not an interaction formula. Let n′′ be the node corresponding to this latter
formula. Since n is the deepest ¬ -node in the AST of f , n′′ is not a ¬ -node. If n′′ is a +-node,
we can relabel n′′ as n′ and repeat the same reasoning. Thus, without loss of generality, we can
assume that n′′ is a t -node. However, this would contradict the irreducibility assumption, since
Rule 2 would then be applicable to n′. Thus, we conclude that the AST of f does not contain
¬ -nodes.

Since none of the Rules 1, 2 and 3 are applicable, a t -node can only be the root of the AST
of f . Hence, since Rule 4 is not applicable and there are no ¬ -nodes in the AST of f , a +-node
can only be the root or a child of the t -node. Furthermore, for the same reason, the children of
a +-node can only be interaction formulas.

Since all interaction sub-formulas are in their DNF forms (see Remark 4.39), we conclude that
f is in normal form.

A full monomial is a monomial, which involves all ports, i.e. m =
∧
p∈P+

p ∧
∧
p∈P− p such

that P = P+ ∪ P− and P+ ∩ P− = ∅. We define a full normal form as
⊔
i∈I
∑
j∈J mi,j,k, where

mi,j,k are full monomials. We show that any formula has an equivalent full normal form.

Lemma 4.42. A formula f =
∑
i∈I mi, where mi are full monomials, is satisfied by exactly

one configuration γ = {ai}i∈I , where ai is an interaction corresponding to the full monomial mi:
mi =

∧
p∈ai p ∧

∧
p 6∈ai p .

Proof. Since mi is a full monomial, there exists exactly one valuation of ports such that the
monomial evaluates to true, i.e. there exists exactly one interaction ai such that ai |=i mi.

γ |=
∑
i∈I mi iff there exists {γi}i∈I such that γ =

⋃
i∈I γi and, for all i ∈ I, γi |= mi. For

each mi there exists only one interaction and consequently only one configuration γi |= mi. Thus,
there exists exactly one γ, such that γ |= f .

Theorem 4.43. Any formula f has a unique full normal form.

Proof. By Theorem 4.41 any formula f can be rewritten as a formula f ′ ≡ f in normal form.
In f ′, any non-full monomial can be transformed into a disjunction of full monomials, which, by
Corollary 4.6, can be further transformed into a union of coalesced full monomials. The application
of Proposition 4.5 leads to the full normal form. Uniqueness is a corollary of Lemma 4.42.

Example 4.44. Let P = {p, q, r} and consider the normal form formula pr + rq . It can be
transformed into full normal form as follows:

pr + rq ≡ (pqr t pq r t pqr + pq r) + (pq r t p q r t pq r + p q r)

≡ (pqr + pq r) t (pqr + p q r) t (pqr + pq r + p q r) t pq r t (pq r + p q r) t (pq r + p q r)

t (pqr + pq r) t (pqr + pq r + p q r) t (pqr + pq r + p q r).
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Input: A sub-formula f =
∑
j∈J

∨
k∈Kj

mj,k,

and a configuration γ = {a1, . . . , an}.
Output: true if γ |= f , false otherwise.
Algorithm: J ′ := ∅; l := 1; b := true;

while (l ≤ n and b) do
X := {j ∈ J | al |=i

∨
k∈Kj

mj,k};
if (X 6= ∅)
J ′ := J ′ ∪X;

else
b := false;

endif
l := l + 1;

od
return J ′ = J ;

Figure 8: Algorithm for checking satisfaction of formulas.

4.9 Soundness and completeness

Axioms. PCL operators satisfy the following axioms:

1. The PIL axioms for interaction formulas.

2. The usual axioms of propositional logic for t , ∧ , ¬ .

3. + is associative, commutative and has an absorbing element false.

4. For any formulas f , f1 and f2, holds f + (f1 t f2) ≡ f + f1 t f + f2.

5. For any sets of interaction formulas Φ and Ψ, holds∑
φ∈Φ

φ ∧
∑
ψ∈Ψ

ψ ≡
∑

ξ∈Φ∪Ψ

(
ξ ∧

∨
(φ,ψ)∈Φ×Ψ

(φ ∧ ψ)
)
.

6. For any set of interaction formulas Φ, holds

¬
(∑
φ∈Φ

φ
)
≡
⊔
φ∈Φ

φ t ∼
( ∧
φ∈Φ

φ
)
.

Theorem 4.45. The above axiomatization is sound and complete for the equality in PCL.

Proof. Soundness of all the above axioms has been proved in previous sections. Completeness is
an immediate consequence of the existence of a unique full normal form.

4.10 Checking satisfaction of formulas

We provide a method for checking that a configuration of the form γ = {a1, . . . , an} satis-
fies a formula f . Without loss of generality, we assume that the formula is in normal form
f =

⊔
i∈I
∑
j∈Ji

∨
k∈Ki,j

mi,j,k. We have to check that γ satisfies at least one of the terms∑
j∈Ji

∨
k∈Ki,j

mi,j,k, for some i ∈ I. The algorithm in Figure 8 performs this verification for

one term (index i is omitted).
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We have to check the validity of the following two statements: 1) each interaction satisfies at
least one interaction formula and 2) each interaction formula is satisfied by at least one interac-
tion. The algorithm iterates through the interactions, checking the first part and memorising the
satisfied interaction formulas. After the iteration stops, it checks whether all interaction formulas
were satisfied by at least one interaction. Configuration γ satisfies the formula f iff the disjunction
of the results of the algorithm in Figure 8, for all terms of the union evaluates to true.

An alternative method for checking satisfaction of a formula f by a configuration γ is based
on the existence of a normal form and the completeness theorem.

Consider a formula f and a configuration γ = {a1, ..., an}. In order to decide whether γ |= f ,
we associate with γ a characteristic formula ϕγ = m1 + · · ·+mn, where mi =

∧
p∈ai p∧

∧
p 6∈ai p are

characteristic monomials of the respective interactions ai. Notice that ϕγ has exactly one model
γ (Lemma 4.42). If formulas ϕγ and ¬ f have no common models then γ is a model of f . Thus,
γ |= f iff ϕγ ∧ ¬ f ≡ false. This latter equality can be decided by verifying whether all terms of
the normal form of ϕγ ∧¬ f are equal to false. Recall that the terms of a formula in normal form
are coalescings of interaction formulas. Therefore, for a term to be equal to false, it is sufficient
that one of its participating interaction formulas be equal to false. Finally, as in Boolean logics,
a disjunction of monomials is equal to false iff all monomials contain one of the variables at least
twice in opposite (positive and negative) forms.

Example 4.46. Let P = {p, q, r} and consider f = p q + r p and γ =
{
{p, q, r}, {q, r}

}
. In order

to decide whether γ |= f , we first apply the algorithm in Figure 8. This algorithm iterates through
the interactions of γ and monomials of f : {p, q, r} satisfies p q, whereas {q, r} satisfies r p . For
both interactions the sets of monomials are not empty and all monomials were visited. Hence,
γ |= f .

Alternatively, we consider the characteristic formula ϕγ = p q r + q r p and check whether
ϕγ ∧ ¬ f = (p q r + q r p ) ∧ ¬ (p q + r p ) ≡ false. We have

(pqr + qrp ) ∧ ¬ (pq + rp )

≡ (pqr + qrp ) ∧
(

(p ∨ q ) t (r ∨ p)t ∼
(
(p ∨ q ) ∧ (r ∨ p)

))
≡
((
pqr ∧ (p ∨ q )

)
+
(
qrp ∧ (p ∨ q )

))
t
((
pqr ∧ (r ∨ p)

)
+
(
qrp ∧ (r ∨ p)

))
t
(

(pqr + qrp ) ∧
(
(p ∨ q ) ∧ (r ∨ p) + true

))
≡ (false+ p qr) t (pqr + false)

t
(

(pqr + qrp ) ∧
(
(p r ∨ q r ∨ p q ) + true

))
≡ false t false t

(
(pqr + qrp ) ∧

(
(p r ∨ q r ∨ p q ) + true

))
≡ (pqr ∨ qrp ) ∧ pqr + (pqr ∨ qrp ) ∧ qrp

+ (pqr ∨ qrp ) ∧ (p r ∨ q r ∨ p q ) + (pqr ∨ qrp ) ∧ true
≡ pqr + qrp + false+ (pqr ∨ qrp ) ≡ false .

5 Architecture style specification methodology

The methodology for writing architecture style specifications can be conceptually simplified from
the fact that an architecture can be considered as a hypergraph whose vertices are ports and
edges are interactions. If a is an interaction then its characteristic monomial ma specifies in PCL a
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Figure 9: Configurations of Example 5.1.

single configuration (hypergraph) that contains only the interaction (edge) a. In some frameworks,
the term of connector is used as a synonym of interaction. The formula ∼ma specifies all the
configurations (hypergraphs) that contain the interaction (edge) a. It can be considered as a
predicate on ports expressing their connectivity.

A key idea in writing architecture style specifications is that these can be expressed as logical
relations between connectivity formulas of the form ∼ m where m is a monomial. This allows
simplification through separation of concerns: first configurations are specified as the conjunction
of formulas on Boolean variables representing connectivity formulas; then after simplification, the
connectivity formulas are replaced. This may require another round of simplifications based on
specific properties of PCL. The idea is illustrated in Examples 5.1 and 5.2.

Example 5.1. Consider the four components in Figure 9 with the following connectivity con-
straints: 1) if A is connected to one of the components B and B′, it is also connected to the other
and similarly for A′; 2) precisely one of the components A and A′ interacts with B and B′.

First of all, let us assume that C(X,Y ) is the predicate “X is connected to Y ”, where X ∈
{A,A′} and Y ∈ {B,B′}. The above constraints can then be formalised by the formula:(

C(A,B)⇔ C(A,B′)
)
∧
(
C(A′, B)⇔ C(A′, B′)

)
∧
(
C(A,B)⇒ ¬C(A′, B)

)
∧
(
C(A,B) t C(A′, B)

)
≡
(
C(A,B) ∧ C(A,B′) t ¬ C(A,B) ∧ ¬ C(A,B′)

)
∧
(
C(A′, B) ∧ C(A′, B′) t ¬ C(A′, B) ∧ ¬ C(A′, B′)

)
∧
(
¬ C(A,B) t ¬C(A′, B)

)
∧
(
C(A,B) t C(A′, B)

)
≡
(
C(A,B) ∧ C(A,B′) ∧ ¬ C(A′, B) ∧ ¬ C(A′, B′)

)
(11)

t
(
¬ C(A,B) ∧ ¬ C(A,B′) ∧ C(A′, B) ∧ C(A′, B′

)
.

Notice now that the predicates C(A,B), C(A,B′), C(A′, B) and C(A′, B′) can be expressed,
respectively, as ∼(pq), ∼(pr), ∼(sq) and ∼(sr). Substituting these into (11), we obtain(

∼(pq) ∧ ∼(pr) ∧ ¬ ∼(sq) ∧ ¬ ∼(sr)
)

t
(
¬ ∼(pq) ∧ ¬ ∼(pr) ∧ ∼(sq) ∧ ∼(sr)

)
≡
(
∼(pq + pr) ∧ sq ∧ sr

)
t
(
pq ∧ pr ∧ ∼(sq + sr)

)
≡
(
∼(pq + pr) ∧ (s ∨ q r )

)
t
(
(p ∨ q r ) ∧ ∼(sq + sr)

)
. (12)

The left-hand choice in (12) imposes that any configuration has the port p connected with
both ports q and r without the participation of s; symmetrically for the right-hand choice. Notice
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Figure 10: Configuration of Example 5.2.

that this formula also allows configurations to contain arbitrary unary interactions and interactions
among p and s that do not involve q and r, which is consistent with the constraints of the example.
Indeed, Figure 9 shows only two among all the possible configurations. For instance, neither the
constraints above, nor (12) impose that the interactions be binary. In particular, the configurations
{pqr} and {sqr}, consisting of one ternary interaction each, satisfy both the constraints and (12).

Example 5.2. Consider a system with three ports p, q, r and the following connectivity constraint:
If any port is connected to the two others, the latter have to be connected between themselves.
Figure 10 represents a configuration corresponding to this constraint.

In order to specify this constraint in PCL, we first define three predicates X = ∼ (pq), Y =
∼ (qr) and Z = ∼ (pr). The above constraint can be formalised by the conjunction of three
implications:

(X ∧ Y ⇒ Z) ∧ (Y ∧ Z ⇒ X) ∧ (Z ∧ X ⇒ Y )

≡ ¬ Z ∧ ¬ Y t ¬ Y ∧ ¬X t ¬X ∧ ¬ Z t X ∧ Y ∧ Z
≡ ¬

(
(Z t Y ) ∧ (Y t X) ∧ (X t Z)

)
t X ∧ Y ∧ Z

≡ (Z t Y ) ∧ (Y t X) ∧ (X t Z)⇒ X ∧ Y ∧ Z
≡ (X ∧ Y ) t (Y ∧ Z) t (Z ∧ X)⇒ X ∧ Y ∧ Z . (13)

Substituting ∼(pq), ∼(qr), ∼(pr) for X, Y , Z, respectively, in (13) we obtain(
∼(pq)∧ ∼(qr)

)
t
(
∼(qr)∧ ∼(pr)

)
t
(
∼(pr)∧ ∼(pq)

)
⇒ (∼(pq)∧ ∼(qr)∧ ∼(pr))

≡ ∼(pr + qr)t ∼(pq + qr)t ∼(pq + pr)⇒ ∼(pq + qr + pr) .

6 First and second order extensions of PCL

PCL is defined for a given set of components and a given set of ports. On the contrary, architecture
styles are defined for arbitrary number of components. In order to specify architecture styles,
we introduce types of components and quantification over component variables. We make the
following assumptions:

• A finite set of component types T = {T1, . . . , Tn} is given. Instances of a component type
have the same interface and behaviour. We write c : T to denote a component c of type T .

• The interface of each component type has a distinct set of ports. We write c.p to denote the
port p of component c and c.P to denote the set of ports of component c.

6.1 First-order configuration logic

Syntax. The language of the formulas of the first-order configuration logic is an extension of the
PCL language by allowing set-theoretic predicates on component variables, universal quantification
and a specific coalescing quantifier Σc :T .
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F ::= true | φ | ∀c :T
(
Φ(c)

)
.F | Σc :T

(
Φ(c)

)
.F | F t F | ¬ F | F + F ,

where φ is an interaction formula, c is a component variable and Φ(c) is some set-theoretic predicate
on c (omitted when Φ = true).

Semantics. The semantics is defined for closed formulas, where, for each variable in the formula,
there is a quantifier over this variable in an upper nesting level. We assume that a finite set of
component types T = {T1, . . . , Tn} is given. Models are pairs 〈B, γ〉, where B is a set of component
instances of types from T and γ is a configuration on the set of ports P of these components. For
quantifier-free closed formulas the semantics is the same as for PCL formulas. For closed formulas
with quantifiers the satisfaction relation is defined by the following rules:

〈B, γ〉 |= ∀c :T
(
Φ(c)

)
.F , iff γ |=

∧
c′:T∈B ∧Φ(c′)

F [c′/c],

〈B, γ〉 |= Σc :T
(
Φ(c)

)
.F , iff γ |=

∑
c′:T∈B ∧Φ(c′)

F [c′/c],

where c′ : T ranges over all component instances of type T ∈ T satisfying Φ and F [c′/c] is obtained
by replacing all occurrences of c in F by c′.

For a more concise representation of formulas, we introduce the following additional notation:

](c1.p1, . . . , cn.pn)
def
=

n∧
i=1

ci.pi ∧
n∧
i=1

∧
p∈ci.P\{pi}

ci.p

∧
∧
T∈T

∀c :T
(
c 6∈ {c1, . . . , cn}

)
.
∧
p∈c.P

c.p

 .

The ](c1.p1, . . . , cn.pn) notation expresses an exact interaction, i.e. all ports in the arguments
must participate in the interaction and all other ports of the system cannot participate in the
interaction. If 〈B, γ〉 is a model, it can be shown that:

〈B, γ〉 |= ](c1.p1, c2.p2, . . . , cn.pn) iff c1, c2, . . . , cn ∈ B and γ =
{
{c1.p1, c2.p2, . . . , cn.pn}

}
.

The following three examples illustrate the specification of simple interactions.

Example 6.1 (Single interaction). Assume that there is only one type of components T with a
single port p. We characterize models with a single interaction {c1.p, c2.p}.

The formulas c1.p c2.p and ∼(c1.p c2.p) do not ensure the presence of interaction {c1.p, c2.p},
since the model with γ =

{
{c1.p, c2.p, c3.p}

}
satisfies these formulas. The correct specification

can be expressed by a monomial, which contains all the negated ports that are not included in
the interaction:

c1.p ∧ c2.p ∧ ∀c :T
(
c 6∈ {c1, c2}

)
. c.p . (14)

This formula is can be equivalently rewritten using the ] notation introduced above: ](c1.p, c2.p).

Example 6.2 (No interaction of arity greater than two). Assume again that all components are
of type T with a single port p. We want to express the property that all interactions involve at
most two ports.

If we have three components c1, c2, c3 the formula c1.p c2.p c3.p forbids interactions involving
all of the components. The desired specification is obtained by requiring that this formula holds
for any triple of components:

∀c1 : T. ∀c2 : T (c1 6= c2). ∀c3 :T
(
c3 6∈ {c1, c2}

)
.(c1.p c2.p c3.p ).
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Figure 11: Star architecture.

Example 6.3 (Binary interactions). Let us further restrict the specification of Example 6.2, so
that all binary interactions among components are included. The monomial c1.p c2.p represents
all interactions involving ports c1.p and c2.p. In order to allow other interactions, we take the
closure of this formula, i.e. ∼ (c1.p c2.p). To obtain the required specification, we conjunct that
of Example 6.2 with ∼(c1.p c2.p) for each pair of components as follows:

∀c1 : T. ∀c2 : T (c1 6= c2). ∼(c1.p c2.p)

∧ ∀c1 : T. ∀c2 : T (c1 6= c2). ∀c3 :T
(
c3 6∈ {c1, c2}

)
.(c1.p c2.p c3.p ) .

The following examples illustrate the specification of architecture styles and patterns.

Example 6.4. The Star architecture style, illustrated in Figure 11, is defined for a set of compo-
nents of the same type. One central component s is connected to every other component through
a binary interaction and there are no other interactions. It can be specified as follows:

∃s :T. ∀c :T (c 6= s).
(
∼(c.p s.p) ∧ ∀c′ :T

(
c′ 6∈ {c, s}

)
. (c′.p c.p )

)
∧ ¬

(
∃c :T. ∼](c.p)

)
.

The three conjuncts of this formula express, respectively, the properties: 1) any component is
connected to the center; 2) components other than the center are not connected among themselves;
and 3) unary interactions are forbidden.

Notice that the semantics of the first conjunct in (6.4), ∀c :T (c 6= s). ∼(c.p s.p), is a conjunction
of closure formulas. In this conjunct, the closure operator also allows interactions in addition to the
ones explicitly defined. Therefore, to correctly specify this style, we forbid all other interactions
by using the second and third conjuncts of the specification. A simpler alternative specification
uses the Σ quantifier:

∃s :T. Σc :T (c 6= s). ](c.p, s.p) . (15)

The ] notation requires interactions to be binary and the Σ quantifier allows configurations
that contain only interactions satisfying ](c.p, s.p), for some c. Thus, contrary to (6.4), we do not
need to explicitly forbid unary interactions and connections between non-center components.

Example 6.5. The Pipes and Filters architecture style [16] involves two types of components, P
and F , each having two ports in and out. Each input (resp. output) of a filter is connected to an
output (resp. input) of a single pipe. The output of any pipe can be connected to at most one
filter. One possible configuration is shown in Figure 12.
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Figure 12: Pipes and Filters architecture.

This style can be specified as follows:

∀f :F. ∃p :P. ∼(f.in p.out) ∧ ∀p′ :P (p 6= p′).
(
f.in p′.out

)
(16)

∧ ∀f :F. ∃p :P. ∼(f.out p.in) ∧ ∀p′ :P (p 6= p′).
(
f.out p′.in

)
(17)

∧ ∀p :P. ∃f :F. ∀f ′ :F (f 6= f ′).
(
p.out f ′.in

)
(18)

∧ ∀p :P.
(
p.in p.out ∧ ∀p′ :P (p 6= p′).

(
p.in p′.in ∧ p.in p′.out

))
(19)

∧ ∀f :F.
(
f.in f.out ∧ ∀f ′ :F (f 6= f ′).

(
f.in f ′.in ∧ f.in f ′.out

))
, (20)

The first conjunct (16) requires that the input of each filter be connected to the output of a single
pipe. The second conjunct (17) requires that the output of each filter be connected to the input
of a single pipe. The third conjunct (18) requires that the output of a pipe be connected to at
most one filter. Finally, the fourth and fifth conjuncts (19) and (20) require that pipes only be
connected to filters and vice-versa.

Notice that (16) and (17) in Example 6.5 can be simplified by introducing the additional
notation for “exists unique”:

∃!c :T
(
Φ(c)

)
. F (c)

def
= ∃c :T

(
Φ(c)

)
. F (c) ∧ ∀c′ :T

(
c 6= c′ ∧ Φ(c′)

)
. ¬F (c′) . (21)

Using this notation, (16) and (17) can be rewritten, respectively, as

∀f :F. ∃!p :P. ∼(f.in p.out) and ∀f :F. ∃!p :P. ∼(f.out p.in) .

Example 6.6. In the Blackboard architecture style [10], a blackboard component of type B holds
data1 that may be updated by a group of knowledge sources of type S. A controller of type C
enforces mutual exclusion of write access. Figure 13 depicts a model with three knowledge sources.
We provide specifications of models composed of: 1) a single blackboard b with two ports sh (share)
and ctrl (control); 2) a single controller c with a port ctrl; and 3) a set of knowledge sources with
a port acc (access). No knowledge can be shared without taking control of the blackboard through
the ctrl port.

The Blackboard architecture style can be specified as follows:

b.ctrl ∧ c.ctrl∧ ∼
(

Σs :S. (s.acc b.sh)
)
∧
(
∀s1 : S. ∀s2 : S(s1 6= s2). (s1.acc s2.acc )

)
.

The first two conjuncts require that the control ports of blackboard and controller components
participate in all interactions. The third conjunct requires that all knowledge sources be connected
to the blackboard. The last conjunct requires that there be no interactions involving two or more
knowledge sources.

1We omit the data representation in this example, since only the fact that the data is updated is relevant and
not the data itself.
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Figure 13: Blackboard architecture.

Example 6.7. The Request/Response pattern involves Clients and Services. It is defined as
follows [11]:

“Request/Response begins when the client establishes a connection to the service. Once a
connection has been established, the client sends its request and waits for a response. The service
processes the request as soon as it is received and returns a response over the same connection.
This sequence of client-service activities is considered to be synchronous because the activities
occur in a coordinated and strictly ordered sequence. Once the client submits a request, it cannot
continue until the service provides a response.”

From this informal description we can infer the following. There are two types of components:
a client Cl and a service S. Clients have three ports: Cl.con, Cl.req and Cl.rec that correspond to
the connect, request and receive actions defined in the pattern, respectively. Service components
have two ports S.get for receiving a request and S.send for sending a reply to the client that raised
a request.

We use a coordinator of type C to enforce the properties: 1) only one client can be connected
at a time to a service; and 2) a client has to connect to the service before sending a request. A
unique coordinator is needed per service and therefore, the number of coordinators must match
the numbers of services. There can be arbitrarily many clients. Each coordinator has three ports
con, get and dsc that correspond to connect, get a request and disconnect actions. Notice that
the behaviour of a coordinator is cyclic involving the sequence con → get → dsc → con. The
Request/Reply pattern is illustrated in Figure 14.

This pattern can be specified as follows:

Σcl :Cl. Σs :S. ∃c :C.
(
](cl.con, c.con) + ](cl.req, s.get, c.get) + ](cl.rec, s.send, c.dsc)

)
∧ Σcl :Cl. Σc :C. ∃s :S.

(
](cl.con, c.con) + ](cl.req, s.get, c.get) + ](cl.rec, s.send, c.dsc)

)
.

Notice that the ∃ quantifier has the semantics of union. Coalescing distributes over union.
Therefore, the meaning of the nested existential quantifier in the first conjunct is several configu-
rations, where in each configuration a service is connected to a single coordinator.

The property “a unique coordinator is needed per service” is enforced by the formula as follows:
1) the first conjunct requires that each service be connected to a single coordinator; and 2) the
second conjunct requires that each coordinator be connected to a single service.
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Figure 14: Request/Response architecture.

6.2 Second-order configuration logic

Properties stating that two components are connected through a chain of interactions, are essential
for architecture style specification. For instance, the property that all components form a single
ring and not several disjoint ones can be reformulated as such a property. In [23], it is shown
that transitive closure, necessary to specify such reachability properties, cannot be expressed in
the first-order logic. This motivates the introduction of the second-order configuration logic with
quantification over sets of components.

This logic extends the first-order logic with variables ranging over component sets. We write
C : T to express the fact that all components belonging to C are of type T . Additionally, we
denote CT the set of all the components of type T . Finally, we assume the existence of the
universal component type U , such that any component or component set is of this type. Thus,
CU represents all the components of a model.

Syntax. The syntax of the second-order configuration logic is defined by:

S ::= true | φ | ∀c :T
(
Φ(c)

)
.S | Σc :T

(
Φ(c)

)
.S | S t S | ¬ S | S + S

| ∀C : T
(
Ψ(C)

)
.S | ΣC : T

(
Ψ(C)

)
.S ,

where φ is an interaction formula, c is a component variable, C is a component set variable
and Φ(c), Ψ(C) are some set-theoretic predicates (omitted when true).

Semantics. The semantics is defined for closed formulas, where, for each variable in the formula,
there is a quantifier over this variable in an upper nesting level. Models are pairs 〈B, γ〉, where
B is a set of component instances of types from T and γ is a configuration on the set of ports
P of these components. The meaning of quantifier-free formulas or formulas with quantification
only over component variables is as for first-order logic. We define the meaning of quantifiers over
component set variables as follows:

〈B, γ〉 |= ∀C :T
(
Ψ(C)

)
.S , iff γ |=

∧
C′:T⊆B∧Ψ(C′)

S[C ′/C],

〈B, γ〉 |= ΣC :T
(
Ψ(C)

)
.S , iff γ |=

∑
C′:T⊆B∧Ψ(C′)

S[C ′/C],
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where C ′ :T ranges over all sets of components of type T that satisfy Ψ.

Example 6.8. The Repository architecture style [9] consists of a repository component r with a
port p and a set of data-accessor components of type A with ports q. We provide below a list of
increasingly strong properties that may be used to characterize this style:

1. The basic property “there exists a single repository and all interactions involve it” is specified
as follows:

SingleRepo
def
= ∃r :R. (r.p) ∧ ∀r :R. ∀r′ :R. (r = r′) ,

where the subterm ∀r :R. ∀r′ :R. (r = r′) can be expressed in the logic as ∀r :R. ∀r′ :R(r′ 6=
r). false.

2. The additional property “there are some data-accessors and any data-accessor must be con-
nected to the repository” is enforced by extending the formula as follows:

DataAccessors
def
= SingleRepo ∧ ∃a :A. true ∧ ∀a :A. ∃r :R. ∼(r.p a.q) .

3. Finally, the additional property “there are no components of other types than Repository and
Data-accessor” is enforced by the formula:

DataAccessors ∧ ∀c :U. (c ∈ CR t c ∈ CA) ,

where the subterm ∀c : U. (c ∈ CR t c ∈ CA) can be expressed as ∀c : U(c 6∈ CR ∧
c 6∈ CA). false.

In the remaining examples of this section, we consider systems consisting of components of a
single type T with two ports in and out. We assume that every interaction has at least one in
port and at least one out port. Alternatively, this assumption can be enforced by the constraint
¬ (∀c :T. c.out ) ∧ ¬ (∀c :T. c.in ).

Example 6.9. The property that the graph, formed by components belonging to a set C and
interactions among their ports, is connected can be expressed as follows:

Connected(C)
def
= ∀C ′ :T (C ′  C).(

∃c′ :T (c′ ∈ C ′). ∃c :T (c ∈ C \ C ′). ∼(c.in c′.out)t ∼(c′.in c.out)
)
.

In particular, the formula requires that for any subset C ′ of C there exist an interaction that
involves a component that belongs to C ′ and a component that belongs to C \ C ′.
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Example 6.10. The component connection graph respects the Ring architecture style (Figure 15)
if the following predicate is satisfied:

Connected(U) ∧ Σc :T. ∃c′ :T (c 6= c′). ](c.in, c′.out) ∧ Σc :T. ∃c′ :T (c 6= c′). ](c.out, c′.in) ,

The constraint Connected(U) is used to ensure that all components form a single ring, rather
than several disconnected ones. The second and third conjuncts require that each input port be
connected to a unique output port.

Example 6.11. The Linear architecture style, illustrated in Figure 16, involves serially connected
components. It is similar to the Ring architecture style: the difference being that in the Linear
architecture style, there are two distinguished components that are the ends of the line such that
the input of the first component and the output of the last component are not connected.

Connected(U) ∧ ∃c1 :T. ∃c2 :T (c2 6= c1).(
Σc :T (c 6= c1). ∃c′ :T (c′ 6∈ {c, c2}). ](c.in, c′.out)

∧ Σc :T (c 6= c2). ∃c′ :T (c′ 6∈ {c, c1}). ](c.out, c′.in)
)
.

7 Implementation of the decision procedure

The decision procedure is based on the computation of the normal form followed by a decision
whether a model satisfies at least one union term of the normal form or not. We implemented
the decision procedure for PCL using Maude 2.0. Maude is a language and an efficient rewriting
system supporting both equational and rewriting logic specification and programming for a wide
range of applications. In the experimental evaluation we used a set of architecture styles including
Star, Ring, Request-Response pattern, Pipes-Filters, Repository and Blackboard. We used con-
figuration logic formulas (cf. Section 6) and models of different sizes, including both correct and
incorrect models. Quantifiers were eliminated externally and the decision procedure was applied
to quantifier-free formulas. All experiments have been performed on a 64-bit Linux machine with
a 2.8 Ghz Intel i7-2640M CPU with a memory limit of 1Gb and time limit of 600 seconds.

Figure 17 shows the average duration of the decision procedure for the six examples, as a
function of the total number of ports involved in the formula. Simple architecture styles like star
are decidable within seconds even for 50 ports. For architecture styles requiring more complex
specifications, the number of ports that can be managed in 600 seconds is smaller. For the ring
architecture the memory limit is attained for the model with 24 ports.

8 Related Work

An architecture style typically specifies a design vocabulary, constraints on how that vocabulary is
used and semantic assumptions about that vocabulary [14]. Constraints may be about the allowed
interactions between components, eg. strong synchronization between components. Semantic
assumptions concern the behaviour of the involved components, eg. loss-less channel, server etc.
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Figure 17: Decision procedure for architecture styles

A plethora of approaches exist for characterizing architecture styles. For instance, patterns
are very commonly used for this purpose. Patterns in [11, 19] incorporate explicit constructs for
architecture modelling. Nonetheless, they lack formal semantics and they are not amenable to
analysis.

Among the formal approaches for representing and analysing architecture descriptions, we
distinguish two main categories:

• Extensional approaches, where one explicitly defines every object that is needed for the
specification, i.e. the connections inducing interactions among the components (cf. the
specification (15) of the Star pattern). All connections, other than the ones specified, are
excluded. Most ADLs, for instance SOFA [22], Wright [1], XCD [28], adopt this approach.

• Intentional approaches, where one does not explicitly specify all the connections among the
components, but these are derived from a set of logical constraints, formulating the intentions
of the designer (cf. the specification (6.4) of the Star pattern). In this case specifications
are conjunctions of logical formulas.

The proposed framework encompasses both approaches. It allows the description of individual
interactions, eg. by using interaction formulas. It also allows specification of configuration sets,
eg. by using formulas of the form ∼f .

A large body of literature, originating in [18, 27], studies the use of graph grammars and trans-
formations [30] to define software architectures. Although this work focuses mainly on dynamic
reconfiguration of architectures, eg. [7, 24, 26], graph grammars can be used to extensionally
define architecture styles: a style admits all the configurations that can be derived by its defin-
ing grammar. The main limitations, outlined already in [27], are the following: 1) the difficulty
of understanding the architecture style defined by a grammar; 2) the fact that the restriction to
context-free grammars precludes the specification of certain styles (eg. trees with unbounded num-
ber of components or interactions, square grids); 3) the impossibility of combining several styles in
a homogeneous manner. To some extent, the latter two are addressed, respectively, by consider-
ing synchronised hyperedge replacement [13], context-sensitive grammars [12, 33] and architecture
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views [29]. Our approach avoids these problems. Combining the extensional and intentional ap-
proaches allows intuitive specification of architecture styles. The higher-order extensions of PCL
allow imposing global constraints necessary to specify styles that are not expressible by context-
free graph grammars. Finally, the combination of several architecture styles is defined by the
conjunction of the corresponding PCL formulas.

The proposed framework has similarities, but also significant differences, with the use of Al-
loy [21] and OCL [32] for intentional specification of architecture styles, respectively, in ACME
and Darwin [15, 17] and in UML [6]. Our approach achieves a strong semantic integration between
architectures and architecture styles. Moreover, configuration logic allows a fine characterization
of the coordination structure by using n-ary connectivity predicates. On the contrary, the connec-
tivity primitives in [15, 17, 32] are binary predicates and cannot tightly characterize coordination
structures involving multiparty interaction. To specify an n-ary interaction, these approaches
require an additional entity connected by n binary links with the interacting ports. Since the
behaviour of such entities is not part of the architecture style, it is impossible to distinguish, eg.,
between an n-ary synchronisation and a sequence of n binary ones.

Both Alloy and OCL rely on first-order logics extended with some form of the Kleene closure
operator that allows to iterate over a transitive relationship. In particular, this operator allows
defining reachability among components. It is known that the addition of the Kleene closure
increases the expressive power w.r.t. a first-order logic [23]. To the best of our knowledge, the ex-
pressiveness relation between a first-order logic extended with Kleene closure and a corresponding
second-order logic remains to be established.

9 Discussion

The presented work is a contribution to a long-term research program that we have been pursuing
for more than 15 years. The program aims at developing the BIP component framework for
rigorous systems design [31]. BIP is a language and a set of supporting tools including code
generators, verification and simulation tools. So far the theoretical work has focused on the study
of expressive composition frameworks and their algebraic and logical formalization. This led in
particular, to the formalization of architectures as generic coordination schemes applied to sets of
components in order to enforce a given global property [2].

The presented work nicely complements the existing component framework with logics for
the specification of architecture styles. Configuration logic formulas characterize interaction con-
figurations between instances of typed components. Quantification over components and sets of
components allows the genericity needed for architecture styles. We have shown through examples
that configuration logic allows full expressiveness combined with ease of use.

Configuration logic is a powerset extension of interaction logic used to describe architectures.
It is integrated in a unified semantic framework which is equipped with a decision procedure for
checking that a given architecture model meets given style requirements.

As part of the future work, we will extend the theoretical results in several directions. From
the specification perspective, we are planning to incorporate hierarchically structured interactions
and data transfer among the participating ports. From the analysis perspective, we will study
techniques for deciding satisfiability of higher-order extensions of PCL. Finally, from the practical
perspective, we also plan to extend to the higher-order logics the Maude implementation of the
decision procedures. We will also study sublogics that are practically relevant and for which more
efficient decision procedures can be applied.
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