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Abstract

This paper presents the tools ALDEBARAN, CRSAR,

CESAR.ADT and CL fiOPilTRE which constitute a tool-

box for compiling and verifying LOTOS programs. The

principles of these tools are described, as well as their

performances and limitations. Finally, the formal verifi-

cation of the rel/REL atomic multicast protocol is given

as an example to illustrate the practical use of the tool-

box.
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Introduction

There is an increasing need for reliable software, which

is especially critical in some areas such as communi-

cation protocols, distributed systems, real-time control

systems, and hardware synthesis systems. It is now

agreed that reliability can only be achieved through the

use of rigorous design techniques. This has motivated

a lot of research on specification formalisms and associ-

ated verification met hods and tools.

Verification means the comparison of a system —

given as a program in a language with a formal oper-

ational semantics — with its specifications, namely the

description of its expected service. There are two main

approaches to the verification problem:

proof-based methods which attempt to carry out

verification at the source program level using theo-

rem provers;
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model-based methods which first translate the

source program into a (possibly finite) model, then

comparing this model with the specifications.

In this paper, only model-based methods are consid-

ered. The reasons for this choice are discussed in [GS90]:

basically, model-based methods are expected to be more

efficient on practical examples and they are also fully au-

tomated. However, their main limitation is their com-

plexity (often exponential in the size of the program).

Model-based techniques are usually divided into two

classes, according to the formalism used for the specifi-

cations [Sif86]. Both are useful, depending on the nature

of the specification to verify:

behavioral specifications describe the behavior of

the system, possibly taking into account some ab-

straction criteria. Such specifications are usually

expressed in terms of transition systems (i.e., states

and transitions between these states). Process al-

gebras, automata, or even the language used to de-

scribe the system under verification, can be used

for this purpose.

As the program and its behavioral specifications

are both represented by transition systems, verifi-

cation consists in comparing them with respect to

some equivalence or preorder relation. Any decision

procedure for such relations defines a verification

method.

logical specifications characterize the global proper-

ties of the system, such as deadlock freedom, mu-

tual exclusion, or fairness. Temporal logics have

been designed so as to express such properties.

In this case, a satisfaction relation between the pro-

gram and logical formulas is defined; a property is

an assertion stating that the program satisfies a

given formula. Any decision procedure for the sat-

isfaction relation constitutes a verification method.

A well-studied class of verification methods for finite

systems is based on the model of transition systems (also

labeled transition systems, finite state automata, or state

graph, or graphs). In fact, the study of parallel and

reactive systems has shown that the essential features of

their functioning can be modeled using finite transition

systems.
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Many formalisms have been proposed for describing

parallel systems; among them, the standardized For-

mal Description Technique LOTOS [IS088b] holds the

attention of the scientific community. LOTOS (Lan-

guage Of Temporal Ordertng Specification) combines

ideas from process algebras (especially CSP [Hoa78]

[Hoa85] and CCS [Mi180]) and abstract data types

(namely AcTONE[EM85]).

This language has been the object of extensive stud-

ies, leading to the production of tools covering vari-

ous user needs: simulators [G HL88] [vE89], compilers

[MdM88], program analysis [QPF89], etc. However, the

application of model-based techniques to LOTOS has not

been studied enough, despite the fact that LOTOS se-

mantics is fully formalized.

This paper presents a model-based toolbox for the

formal verification of LOTOS programs. This toolbox

provides an integrated set of tools, able to deal with

both behavioral and logical specifications. The paper

is organized as follows. Section 1 describes the overall

architecture of the toolbox. Sections 2 upto 5 present

in turn each of the toolbox components. Section 6 illus-

trates the toolbox use for the verification of an atomic

multicast protocol.

1 Presentation of the toolbox

The toolbox components can be conceptually divided

into two classes:

compilers: they translate the program into a graph.

The toolbox contains two compilers, CfiSAR.ADT

and C~SAR, which respectively handle the data

and control parts of LOTOS programs.

verifiers: they perform verifications on the graphs gen-

erated by compilers. The toolbox cent ains a verifier

for behavioral specifications, ALDtiBARAN, which

compares two graphs with respect to several equiv-

alence and preorder relations, and a verifier for

logical specifications, CLfiOPiTRE, which evaluates

formulas of the branching-time temporal logic LTAC

[QS83] on a graph. If the graphs under verification

are not correct, both tools provide diagnostics in

terms of execution sequences, in order to help the

user to understand the reason of the error.

Figure 1 illustrates the toolbox architecture in a typ-

ical situation: a protocol is checked against its expected

service. The protocol to verify is described in LOTOS,

and then translated into a graph. The service is either

specified by a LOTOS program (translated into a graph),

or by LTAC logical formulas.

2 The CJ!ESAR.ADT tool

CESAR.ADT [Gar89b] is a compiler which translates

the abstract data type definitions of a LOTOS program

into a C program. Therefore CA? AAR. ADT produces au-

tomatically a corresponding prototype implementation

from a formal specification.

2.1 Functional description

CWSAR.ADT takes as input a LOTOS program. Only the

data part of this program is taken into account (process

definitions are discarded).

CAMAR.ADT generates as output a C library contain-

ing for each sort (resp. operation) defined in the LOTOS

program a corresponding C type ( resp. function).

Some special comments must be inserted in the

LOTOS program, in order to provide a correspondence

between the names of LOTOS objects and the names of

the C objects implementing them.

CAX+AR.ADT lays down restrictions on the subset of

accepted LOTOS programs. The user has to follow the

constructor programming discipline, consisting in:

●

●

●

Dividing the set of LOTOS operations into construc-

tors (primitive operations) and non-constructors

(derived operations, defined in terms of construc-

tors). Constructor operations must be explicitly

indicated using special comments.

Orienting the equations, in order to consider them

as term rewrite rules, the right-hand side specify-

ing how the left-hand side is to be rewritten. The

rewrite strategy used is call-by-value, enhanced

with a decreasing-priority rule between equations

(whenever several equations simultaneously apply,

the one which appears first in the LOTOS source

text is selected).

Making sure that each equation has either the form:

f(q,...,vn) = v

or the conditional form:

cl, . . . ,Cp ==+’ f(vl, ....vn)=’V

where:

— n> Oandp>l;

– ~ is a non-constructor operation;

— VI, ..., Vn are terms containing only construc-

tors and universally quantified variables;

– v, c1, . . . . CP are terms such that any variable

occurring in these terms also occurs in some

vi.
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Figure 1: Architecture of the LOTOS toolset.
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These restrictions achieve a good tradeoff between ex-

pressiveness and efficiency. Practically, they lead to a

methodology for defining abstract data types in a simple

manner and, provided that the constructors are known,

any LOTOS data type definition can be transformed into

the required form (even in presence of conditional equa-

tions). Due to these restrictions, CmSAR.ADT can gen-

erate fastly an efficient code and carry out a number of

static and dynamic verifications, in order to check the

completeness and consistency of the equations.

CRMAR.ADT allows sorts and operations to be de-

clared “external”, which means that the implementa-

tion in C of those sorts and operations is provided by

the user, instead of being generated automatically by

CmSAR.ADT. This feature is very useful in practice:

when efficiency (in space or time) is needed, the most

critical parts of a LOTOS program can be coded man-

ually; the changes needed for such an implementation

refinement are minimal and do not mess up the formal

specification. This feature also allows to interface ex-

isting code: sorts and operations can be mapped onto

hand-written data structures and functions; it is there-

fore possible to create abstract “views” of existing soft-

ware, which is suitable for reverse engineering.

The current version of CAMAR.ADT has de facto lim-

it ations (for inst ante, parameterized types are not han-

dled yet). However, this is only a matter of implemen-

tation, not a theoretical impossibility.

2.2 Functioning principles

CRSAR.ADT translates a declarative formalism (LOTOS

abstract data types) into an imperative language (the

C language). After the syntax analysis phase — using

the SYNTAXl compiler construction system — and the

static semantics analysis phase, the translation is per-

formed in three steps:

The first step performs various verifications and

transforms the equations in order to put them un-

der a suitable form for further processing.

The second step determines the implementation of

sorts and constructors. The way a given sort S is

represented in C only depends on the set of con-

structors returning a result of sort S. CESAR.ADT

uses a general algorithm able to compile any sort,

enhanced by a collection of specialized algorithms

which provide optimal implementations for partic-

ular cases of common use (numerals, enumerations,

and tuples).

The third step implements the non-constructors,

using a pattern-matching compiling algorithm

] SYNTAX is a registered trademark of INRIA

[SC1188]. The C function generated for a non-

constructor F is built from the equations defining

F.

2.3 Results and perspectives

Most of the algorithms used in CESAR.ADT are linear,

so that combinatorial explosion (in time, space, or size

of the generated code) does not happen.

For instance, a “real” LOTOS program containing

2000 lines of abstract data types (20 sorts and 170

operations) compiles in 20 seconds on a SUN Sparc-

Station and produces 6000 lines of C code. Moreover,

it is proven that the generated code is, in some sense,

optimal [Sch88].

At present, CRWAR.ADT is mainly used in conjunc-

tion with CAMAR to carry out formal verification of

protocols and distributed systems. But abstract data

types are naturally applicable to other areas; for exam-

ple,

●

●

CESAR.ADT has beed used:

to develop quickly prototype compilers, one for the

extended temporal logic XTL and another one for

the timed process algebra ATP [NS90];

to obtain a prototype implementation of the

MAA (Message Authenticator Algorithm) stan-

dard [1S087] from its formal description in LOTOS

[Mun91].

The current version of CRSAR.ADT is approximately

5500 lines of C code. A major rewrite of CA? SAR.ADT

has been undertaken. Most of the new version will be

written directly in LOTOS abstract data types (instead

of C in the current version). The new version will be self-

compiled, using the existing version for bootstrapping.

It should bring various improvements, such as the

optimal implementation for a broader class of type

definitions, the removal of certain restrictions on the

form equations by applying semantic transformations,

and the introduction of memory management schemes

specifically adapted to model-based verification.

3 The CIESAR tool

CESAR [Gar89a] [GS90] is a tool for compiling and ver-

ifying LOTOS programs according to the model-based

approach2. It translates the source program into a

graph which describes all possible evolutions. The edges

of the graph are labelled by actions corresponding to

LOTOS rendez-vous; each action consists of a synchro-

nization gate, possibly accompanied by the list of values

sent or received during the rendez-vous communication.

The states of the graph are labelled by the values of pro-

gram variables , i.e., the local variables of all concurrent

processes.

2The development of this tool was supported in part by INRIA
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3.1 Functional description

CIESAR takes as input the LOTOS program to verify

and a C implementation of the abstract data types (ei-

ther written by hand, or automatically generated by

CmSAR.ADT), as shown on Figure 2.

C~SAR generates as output an extended Petri net

and a graph. The information cent ained in the graph

can be exploited by various tools (automata minimiz-

ers, temporal logic or p-calculus evaluators, diagnostic

tools). CAMAR is able to generate this graph in mul-

tiple formats to interface with various existing tools:

ALDti~ARAN and CL fiOPiTRE, but also AUTO and

AUTOGRAPH (INRIA), MEC (University of Bordeaux),

PIPN (LAAS-VERILOG), XESAR (LGI-IMAG), etc.

CAMAR lays down the following restriction: to be ac-

cepted, a LOTOS program must not contain any recur-

sive process instantiation either on the left or right-hand

side of a parallel operator “ I [...] I”, or on the left-hand

side of an enabling operator “>>”, or on the left-hand

side of a disabling operator “ [>”.

These constraints aim at forbidding the dynamic cre-

ation/destruction of process instances. In practice, they

reach a good compromise between the expressive power

left to the user and the efficiency of the compilation

and verification algorithms. This issue is discussed in

[GS90].

3.2 Functioning principles

After the phases of syntax and static semantics anal-

ysis (the same as in CiESAR.ADT), the translation of a

LOTOS program into a graph is performed in four succes-

sive steps, formally defined in [Gar89a] and summarized

in [GS90]:

The ezpansion phase translates the LOTOS pro-

gram into an equivalent SUBLOTOS program,

SUB LOTOS being a process algebra which can be

viewed as a simplified subset of LOTOS.

The generation phase translates the SUBLOTOS

program into an intermediate form, called network,

defined by:

— a control part, represented as a Petri net, con-

sisting of places and transitions, with an ad-

ditional structure of units to keep track of

the communicating processes decomposition

which exists in the LOTOS source program;

– a data part, consisting of global and typed

variables, the values of which can be accessed

or modified by actions attached to the transi-

tions.

The optimization phase attempts to reduce the net-

work complexity (i.e., to decrease the number of

●

places, transitions, units, and variables) by apply-

ing transformations which preserve strong bisimu-

lation equivalence (cf. \ 4.2). These optimizations

address both the control part of the network (us-

ing Petri nets-like transformations) and the data

part (using data flow analysis techniques similar to

those used in compiler optimizers).

The exhaustive simulation phase produces the

reachability graph corresponding to the optimized

net work. All visit ed states are stored in main mem-

ory, whereas the edges of the graph are written on

a file as soon as they are generated. Basically, this

phase is analogous to the marking graph construc-

tion for a Petri net, but it also takes into account

the data part (this is done by generating, compil-

ing and finally executing a C program which in-

cludes the C implementation provided for the ab-

stract data types of the LOTOS program).

3.3 Results and perspectives

The current version of CAMAR is about 40000 lines of

C code. It can generate graphs of approximately one

million states (on SUN workstations). The generation

speed may reach 500 states per second, but it strongly

depends on the program considered and the amount of

main storage available.

Among various applications of CESAR, one can men-

tion the verifications of an atomic multicast protocol

[BM91] (cf. ~ 6), a subset of the FIP protocol [ADV90],

and a overtaking protocol for cars [EFJ90].

At present, model-based methods constitute a realis-

tic solution for verifying non-trivial programs. However,

they may fail when applied to large programs, due to the

state explosion problem (see, for instance, [GRRV89]).

In fact, model-based verifiers attempt to generate

large graphs (as does CRSAR during its simulation

phase) which may have to be reduced later (for instance,

by using ALDtiBARAN). An attractive alternative would

consist in verifying not after but during the simulation

phase [JJ89], or even before it[GS90]. Such approaches

are currently experienced in several ways.

By applying, during the optimization phase, various

transformations of the Petri nets generated by CAMAR,

reductions at the network level are obtained which, even

small, lead to large reductions at the graph level. Such

reductions preserve either strong bisimulation equiva-

lence or weaker equivalences, such as safety equivalence

[Rod88].

At the same time, work started in order to extend

the functionalities of CAWAR beyond mere graph gen-

eration. This initiative, named OPEN/CESAR, aims at

using the compiling algorithms of CmSAR as a basis for

elaborate verification techniques, especially ‘(intensive”

simulation [Wes86] [J GM88] [H0189] [ACD*92], “on the
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CESAR.AD~

Figure 2: Combined use of CiESAR and CBSAR.ADT,

fly” methods [JJ89] [JJ91] [Mou92], and “partial order”

methods [Va190] [VT91] [G W91a] [G W91b].

The OPEN/CmSAR tool should also have applications

in other domains than verification, for instance interac-

tive simulation, sequential or distributed code genera-

tion, and test case generation. In this respect, several

prototype tools based on OPEN/CmSAR have already

been developed.

4 The ALDEBARAN tool

ALDfiBARAN [Fer88] [Fer90] [FM91a] [FM91b] is a tool

performing reduction and comparison of graphs accord-

ing to various equivalence relations and preorders.

Several equivalence and preorder relations have been

proposed for the verification of parallel systems, among

which strong bisimulation equivalence [Par81] plays a

central role. This equivalence, characterized by an el-

egant fixed-point definition, is too strong from a pro-

gram verification point of view: it does not take into

account abstraction criteria, especially the concept of

silent (or internal, or invisible) actions [Mi180]. How-

ever, there are weaker equivalence relations (support-

ing abstraction criteria) whose definitions are based on

strong equivalence. Furthermore, the algorithms associ-

ated with strong equivalence can be extended to tackle

such weaker equivalences.

Apart from strong bisimulation, ALDkBARAN im-

plements other weaker bisimulation-based relations,

namely:

●

●

●

●

●

observational equivalence [Mi180]

acceptance model equivalence [GS86]

branching equivalence [vGW89] and its preorder

delay equivalence [NMV90]

T* a equivalence [FM90] and its preorder

● safety equivalence [Rod88] and its preorder.

4.1 Functional description

ALDtiBARAN has two major functionalities correspond-

ing to distinct practical needs:

graph comparison allows to compare, modulo vari-

ous equivalences or preorder relations, the graph of

a program with the graph of its behavioral specifi-

cation . In this case, the chosen relation and both

graphs are given as inputs to ALDhBARAN and the

result of the comparison (“true” or “false”) is ob-

tained w output. If the result is false, ALDtiBARAN

also provides diagnostic sequences leading from the

initial states of the graphs to two immediately dis-

tinguishable states (i.e., states that do not accept

the same set of actions).

graph reduction allows to generate the quotient of a

graph with respect to a given equivalence relation,

i.e, the smallest graph which is equivalent to the

original one. In this case, the graph and the equiv-

alence relation are given as inputs, and the quotient

is obtained as output.

4.2 Functioning principles

Two main approaches exist for deciding whether two

graphs are strongly bisimilar. Both of them can be ex-

tended to weaker bisimulation-based relations.

● The first approach consists in computing successive

refinements of an initial partition of the states of

the graph. When stabilization is reached, the par-

tition obtained coincides exactly with the equiv-

alence classes of strong bisimulation (which are

3Safet y equivalence is of interest because it exactly character.

izes safety properties [BFG*91] (see also section 5.1).
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the states of the quotient graph). Two graphs

are strongly bisimilar if and only if their quo-

tients are identical (modulo renaming of states).

An efficient partition refinement algorithm, pro-

posed by Paige & Tarjan [PT87], is implemented

in AL~iBAItAN.

This approach also applies to weaker bisimulation-

based relations. This is achieved by modifying each

graph, taking into account abstraction criteria, and

then computing its quotient with respect to strong

bisimulation.

The major drawback of this method lies in the fact

that the application of abstraction criteria is done

by adding new transitions to the graph. Therefore,

the number of transitions may become too large for

the available memory space.

Moreover, if two graphs are not related, the result-

ing diagnostic sequences are not easy to analyze,

since they come from the quotient graphs, and not

from the original graphs. It is therefore difficult for

the user to interpret such diagnostics in terms of

the source LOTOS program.

● The second approach consists in comparing the

two graphs by performing a depth-first traversal

of their synchronous product ( “on the fly” com-

parison [FM90]). By varying this product, several

bisimulation-based equivalences and preorders can

be processed. However, unlike the first approach,

these algorithms only perform comparisons but not

reductions.

Theoretically, the time and space complexities

of the “on the fly” algorithm are higher than

Paige & Tarjan’s ones in the general case. However,

the time complexity is reduced when one of the two

graphs is deterministic, which is usually the case

in practice. Similarly, it was shown that its space

complexity can be reduced without significantly in-

creasing the time required to perform the check

[JJ91]. Thus, its implementation in ALDfiBARAN

allowed to verify larger graphs and to reduce the

execution time. Moreover, this algorithm provides

diagnostic sequences extracted from the original

graphs.

4.3 Results and perspectives

The current version of ALDfiBARAN is about 24000 lines

of C code and 6000 lines of C++ code. Its perfor-

mances are fair: only a few minutes are needed (on SUN

workstations) to reduce graphs of some thousands states

modulo strong bisimulation or observational equiva-

lence, or to compare graphs of more than one hundred

thousands states modulo safety equivalence.

More often than not, ALDfiBARAN is used with

C.?MAR, for instance to compare the graph of a protocol

with the graph of its expected services. ALDtiBARAN

is also integrated in other tools: it plays the role of an

internal component used to reduce graphs. At present,

interfaces exist with CLfiOPiTRE and OCMIN, an opti-

mizer of the OC code generated from the synchronous

language LUSTRE and ESTEREL.

Keeping graphs in memory, as it was done initially

in ALDfiBARAN, makes the processing of very large

graphs prohibitive. A possible solution to this problem

is to combine the comparison and the graph generation

phase.

The latest version of ALDfiBARAN [Mou92] imple-

ments such an approach. It accepts as input a com-

position expression consisting of parallel processes com-

posed together using the LOTOS operators of parallel

composition (” I [. . .1 I”) and hiding (“hide”). A given

LOTOS specification (usually a protocol definition) can

be translated into such a composition expression by

splitting it into a tree of parallel processes. The leafs of

the tree are translated into graphs using CmSAR. In a

next step ALDtiBARAN is used to compare the compo-

sition expression with another graph (usually the ser-

vice definition). The comparison is done “on the fly”

and does not need to build the complete graph corre-

sponding to the comparison expression. Notice that the

splitting operation must be done by hand, since there

are often many possible solutions; choosing the “best”

splitting requires knowledge of the protocol and the ver-

ification techniques.

Another approach experimented in ALDEBARAN re-

lies on a minimal model generation algorithm [BFH90]

which is implemented using Binary Decision Diagrams

[Bry86] [EFT91]. The prototype implementation allows,

starting from a composition expression, to generate di-

rectly its quotient graph modulo various equivalence re-

lations, without generating the whole graph.

5 The CLEOP~TRE tool

CLEOPATRE is a validation tool for specifications ex-

pressed in the branching-time temporal logic LTAC

[QS83], which is expressively equivalent to CTL

[CES83]. This tool includes:

● a verification module [Rod88], which checks the va-

lidity of the formulas on a graph generated from the

source program,

. an explanation module [Ras9,0], which provides,

when a formula is not valid, diagnostic sequences

extracted from the graph.
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5.1 lhnctional description

CLfiOPATRE takes as inputs a graph generated by

CmSAR from the LOTOS program to verify and a set

of LTAC formulas. The subset of LTAC formulas used

for the verification of LOTOS programs is described by

the following grammar:

T I init I enable(a) I after(a) I sink I

f A g I -If I inev[f]g I pd[f]g

where ~ and g are formulas and a a label attached to a

transition of the graph.

The models of the formulas of this logic are executzon

trees, i.e., infinite trees obtained by unfolding the graph

from one of its state. A state s satisjies a formula f,

which we note s ~ f, if and if only s is the root of

an execution tree for ~, Intuitively, the relation 1= is

defined as follows:

● any state satisfies T;

● the initial state of the program satisfies init;

● a state s satisfies enable(a) if it is possible to exe-

cute action a from state s;

● a state satisfies after(a)if it can only be reached

immediately after the execution of action a;

● a state satisfies sink if it has no outgoing transition;

● a state satisfies t A g if it satisfies f and g;

● a state satisfies =~ if does not satisfy f;

● a state s satisfies inev[f]g if, for every execution of

the program from s, ~ is true until g becomes true;

● a state s satisfies pot[f]g if there exists an execution

from s such that j is true until g becomes true.

In the sequel, we use the abbreviations:

al[f]g = -lpot[f]-lg

sorne[f]g = +nev[f]lg

fVg==(=f A1g)

f+g=~fvg

We call temporal operators the operators pot, some,

al, and inev. They are used to express usual properties

of the protocols. These properties are divided into two

classes [AL88]:

●

●

safety properties, meaning that something “bad”

can never happen. Such properties are expressed

by formulas like “lpot bad” or “al ~bacf ’,

liveness properties, meaning that something “good”

will event uall y happen. These properties are ex-

pressed by formulas like “inev good”.

CLfiOPiTRE gives as output the result, of the eval-

uation of each formula, i.e., one of the following mes-

sages: valid formula, formula always false or formula

false for k states out of n. If the formula is not valid,

CLfiOPiTRE also provides diagnostics, in order to ex-

plain the reason of the error. As safety and liveness

properties characterize all the executions of the pro-

gram, it is sufficient to exhibit a single counter-example

execution sequence.

5.2 Functioning principles

Logic formulas are evaluated by optimized algorithms

performing graph traversal [Rod88]. Every operator of

LTAC is evaluated by an algorithm which is linear (in

space and time) with respect to the size of the graph.

When a formula f’ is not valid, CL150PATRE explains

why there exists a state s satisfying f, where f = Tfl.

Then, a diagnostics for “f’ is not ua!id” is an expla-

nation of s 1= f. The first step of the generation of

an explanation of s ~ f consists in rewriting f under

canonical form vi Aj fij, where all fij are either:

●

●

predicates T, init, sink, enab/e(a), after(a) or

their negation,

or formulas like op[f]g, where op = al, inev, pot

or some, f and g being themselves under canonical

form.

Then, explanations are generated by structural in-

duction on f, the outermost operator being processed

first:

●

●

●

●

●

for T, init, sink and their negations, the explana-

tion is directly obtained by considering state s;

for after(a), enable(a), and their negations, the

explanation is obtained by considering the ingoing

and outgoing transitions ofs;

for f A g (resp. f V g), it is necessary to explain

why s ~ f and (resp. or) s ~ g;

formulas like ai[f]g and inev[f]g cannot be ex-

plained in terms of executions sequences, because

these formulas express properties of all executions

of the program; an explanation would therefore

contain the set of all executions from one state,

which is usually too large to be processed. Practi-

cally, this case does not happen when only safety

and liveness properties are considered.

for the operators pot and some, an explanation is

generated by searching a path from s, such that the

states of this path satisfy given conditions. The ex-

planation of the some operator may require to ex-

hibit an infinite path, which is done by computing

the strongly-connected components of the graph.
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Among all the possible paths, those with minimal

length are selected. Furthermore, CLfiOPiTRE can

display concisely the set of all these paths in term

of an w-regular expression over the set of actions of

the program.

As the formula evaluation algorithm, the diagnostic

generation algorithm is linear in time and space.

5.3 Results and perspectives

CLEOPATRE was first implemented for XESAR [Rod88],

a verification tool for a variant of ESTELLE [IS088a].

Then, CLIiOPATRE was adapted in order to provide for

the need of a diagnostic tool for LOTOS.

The current version of CLfiOP.iTRE (about 23000 lines

of C code) is able to analyze graphs with several hundred

thousands states. A formula with two nested temporal

operators is usually evaluated in a few seconds on a SUN

workstation.

Further evolution will consist in adapting this tool

to other specification formalisms, such as observers

[J GM88]. Also, CLfOPiTRE could be extended to gen-

erate test-case sequences guided by properties, since this

problem is closely related to the diagnosis problem.

6 Verification of the rel/REL

protocol

This section describes how the toolbox was used to ver-

ify an atomic multicast protocol. This experience is

reported in [BM91] and [Mou92]. Another example of

formal verification of a similar protocol can be found in

[BGR*90].

6.1 The rel/REL Service

The rel/REL protocol [SE90] supports atomic commu-

nications between a transmitter and several receivers,

in spite of an arbitrary number of failures from the sta-

tions involved in the communications. Two versions of

the reZ/REL protocol are described in [SE90]; this sec-

tion focuses on the rel/RELjijO version which preserves

the order of the messages sent by a given transmitter.

The service provided by the rel/RELjifo proto-

col consists of the two following (informal) properties,

which are both safety properties (cf. section 5.1):

atomicity: if a station E sends a message m to a group

of stations G, then either all the functioning ele-

ments of G receive m, or none of them does, even

if several crashes occur in the group {E} u G.

causality: if a station E sends a sequence of messages,

in a defined order, to a group of stations G, then

no functioning element of G may receive these mes-

sages in a different order.

Such an atomic multicast service has various appli-

cations. For instance, it is useful to implement trans-

actions in distributed databases; it is also needed to

manage the copies of replicated objects in fault-tolerant

systems, where integrity constraints between the copies

of an object have to be ensured.

6.2 The rel\REL Protocol

The rel/REL protocol is built on a transport layer pro-

tocol which provides a reliable (i.e., atomic and causal)

message transmission between any pair of stations. In

case of crash, stations are supposed to have a fail-szlent

behavior: they stop to send and to accept messages.

It is also assumed that, even if multiple crashes occur,

the network remains strongly connected: all functioning

stations may still exchange messages.

The protocol is based on the two phase commit al-

gorithm: the transmitter sends two successive copies of

the message to all receivers; each message is uniquely

identified, and an additional label indicates whether it

is the first or the second copy. On receipt of the first

copy, a station S waits for the second one; if it does not

arrive before the expiration of a delay, then S assumes

that the transmitter crashed and that some of the re-

ceivers may have not received a copy of the message.

Then, S relays the transmitter and multicasts the two

copies of the message, still using the rel/REL protocol.

To reduce the network traffic, a station stops to relay as

soon as a second copy of the message is received from

the transmitter or from any other receiver.

6.3 Formal Description of the Protocol

LOTOS proved to be suitable for the description of the

protocol and its data structures (message numbers, sta-

tion addresses, tables and queues for storing received

messages). The description process was straightfor-

ward; the only difficulty was the modeling of the fact

that a station may crash at any moment. This problem

was solved using the constraint-oriented programming

style of LOTOS: the behavior of a station is represented

by the parallel composition of a process describing the

normal behavior and another process describing the pos-

sible failures.

6.4 Formal Verification of Atomicity

As defined above, atomicity means that “an emitted

message is either received by al! its-functioning receivers,

or is not received by any of them”. If geti denotes the re-

ceipt of a first copy of a message by station i, and crash,

the crash of station i, this property can be rephrased in

the following way: “for any pair of stations (i,j), there

is no execution sequence containing the action get,, not
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contain~ng the actzon crashi (station i received a mes-

sage and it has not crashed), and containing neither

the actzongetj nor the action crashj (station j is still

waiting for the message).”

The atomicity property can be expressed using the

LTAC temporal logic. Let waitingi denote the fact that

station i is waiting for a message (it has not received it

yet and it has not crashed):

waiting~ = ~after(get~) A -after(crash~)

Moreover, the fail-silent behavior assumption implies

that a crashed station i cannot receive a message after

a crash:

al[T’l(crashi + al[T](lgeti))

The atomicity property is then expressed by the fol-

lowing formula:

7 ~ pot[waitin9jlfi,j

~#j

where:

ft,j = after(geti )Asorne[T](waitingj )A~after(crashi)

This property was verified using CLfOPITRE on a

graph generated by CAESAR (50000 states and 150000

transitions); the LOTOS program described a configu-

ration with a single transmitter, two receivers, and a

single message sent (an analysis of the protocol [BM91]

has shown that it is sufficient to verify the protocol for

a single message).

6.5 Formal Verification of Causality

The second service property concerns the preservation of

the message order: “messages from a given transmitter

are recezued in the same order as they were sent”. This

is a safety property expressing that the received mes-

sages respect some conditions, but not ensuring their

receipt. As it associates a transmitter and a receiver,

it is sufficient to verify it for any pair (transmitter, re-

ceiver).

This property can easily be expressed using a transi-

tion system. Assuming that messages sent by a trans-

mitter are identified by unique numbers 1, 2, . .. . n ac-

cording to their emission order, the expected behavior

of a receiver can be represented, modulo appropriate

abstraction and using safety equivalence, by the graph

on Figure 3.

In this example, safety equivalence proves to be in-

teresting, since it allows a straightforward expression of

the service property (using safety equivalence here is al-

lowed, since the property to be proven is a safety prop-

erty). Should another equivalence (e.g., observational

recvn

“----”---+

Figure 3: Graph expressing the atomicity property.

equivalence [Mi180] or branching bisimulation [vG W89])

be used, the transition system needed to express causal-

ity would be much more complex.

A first verification [BM91] of the causality property

was carried out on a LOTOS specification describing a

configuration with a single transmitter, two receivers

and three different messages. ALDfiBARAN was used to

compare, modulo safety equivalence, the graph of Fig-

ure 3 with the graph produced by CiESAR (650000 states

and 2000000 transitions). Due to the size of the latter,

the comparison was carried out using the “on the fly”

algorithm. The generation/reduction took less than 6

hours on an HP 9000 computer. Notice that the most re-

cent version of CiESAR generates, for the same example,

a smaller graph (125 000 states and 430000 transitions)

in less time (30 minutes on a DEC Station 5000 with 24

Mbytes main memory), because it manages to identify

classes of strongly-equivalent states at compile-t ime.

A second verification [Mou92] of the causality prop-

erty was performed using compositional reduction

(cf, section 4.3). The LOTOS specification was manually

split into 5 communicating processes. CXSAR was used

to generate the 5 corresponding graphs (the largest one

had only 10000 states and 200000 transitions). By ap-

plying parallel composition and reduction alternately,

ALDtiBARAN produced a graph with 3000 states and

10000 transitions. The full verification took about 15

minutes on a SUN SparcStation.

The formal verification of the re~/RELj~~o protocol

revealed ambiguities in the informal description of the

protocol. Furthermore, it provided additional informa-

tion of interest to implementors: for instance, it has

shown that messages queues are always of bounded size;

the value of the upper-bound was discovered automati-

cally.

Conclusion

This paper has presented a set of tools intended to the

formal verification of systems described in LOTOS. Our

contribution is motivated by the following ideas.

Formal verification tools are badly needed in soft-

ware development. We believe that such tools should

be “as automated as possible”; our work is oriented as

to achieve such a goal. This distinguishes our approach

from others based on axiomatic proofs, which require in-

teraction with the user; their efficiency and effectiveness

strongly relies upon users’s skills and efforts.
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We think that the actual state-of-the-art is not suf-

ficiently advanced to allow rigorous software engineer-

ing methodology based on successive refinements with

multiple formalisms. Indeed, approaches using different

languages (one for specification, another one for imple-

ment ation, possibly with additional intermediate lan-

guages) suffer from the lack of automatic translators

between various refinement levels, therefore leading to

inconsistencies or ambiguities.

On the contrary, we use a single high-level language

at the different design steps. our approach relies on

the existence a compiler generating intermediate forms

from which executable code can be produced and var-

ious analysis tools can be applied. This ensures that

‘(what you prove is what you execute”.

Our approach needs a language with a formally de-

fined operational semantics, in order to allow automated

verification. This language must also be abstract enough

to be used in the early steps of design. Yet, it must be

executable, in the sense that it can be implemented eff-

iciently on existing computers (even at the expense of in-

creased compiler complexity). From our experience, we

believe that the 1S0 language LOTOS is a good choice

according to these criteria.

In our approach, formal verification is not dissociated

from other problems, e.g., implementation, testing, etc.

All these problems are tackled in the same framework;

formal verification is the merely the problem which sets

the hardest performance constraints. Efficient tech-

niques developed for verification find immediately ap-

plications in other areas: our verification toolbox con-

stitutes a kernel on which we intend to build a com-

plete and integrated CASE environment, with LOTOS

as backbone, including verification, simulation, debug-

ging, prototyping, code generation, and test generation

Although our toolbox is currently limited in some as-

pects, it can be used on non-trivial examples and pro-

jects. We believe that the current limitations will be

circumvented by using new techniques (such as the “on

the fly” and “partial order” techniques) and also exist-

ing techniques (such as symbolic analysis, control- and

data-flow analysis at compile-time) that have not been

applied yet to process algebras.

The implementation of the toolbox is approximately

100000 lines of C and C-t+ code. The toolbox is dis-
tributed free of charge to universities and public re-

search centers. It can be obtained by sending an e-mail

request to caesar@imag .f r. It has been installed in

more than 40 sites.
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