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Abstract. We study glue operators used in component-based frame-
works to obtain systems as the composition of atomic components de-
scribed as labeled transition systems (LTS). Glue operators map tuples
of LTS into LTS. They restrict the behavior of their arguments by per-
forming memoryless coordination. In a previous paper, we have proposed
a simple format for SOS rules that captures, in particular, glue operators
from known frameworks such as CCS, SCCS, CSP, and BIP.

This paper studies a new way for characterizing glue operators: as
boolean glue constraints between interactions (sets of ports) and the
state of the coordinated components. We provide an SOS format for
glue, which allows a natural correspondence between glue operators and
glue constraints. This correspondence is used for automated synthesis of
glue operators implementing given glue constraints. By focusing on the
properties that do not bear computation, we reduce a very hard (and, in
general, undecidable) problem of synthesizing controllers to a tractable
one. The examples in the paper show that such properties are natural
and can be expressed as glue constraints in a straightforward manner.
Finally, we compare expressiveness of the proposed formalisms with the
glue used in the BIP framework and discuss possible applications.

1 Introduction

A central idea in systems engineering is that complex systems are built by assem-
bling components. Large components are obtained by “gluing” together simpler
ones. “Gluing” can be considered as a generalized composition operation on sets
of components that allows building complex components from simpler ones.

Various component frameworks exist for developing hardware, software or
mixed hardware/software systems. They all focus rather on the way compo-
nents interact than on their internal behavior. They often use domain specific
mechanisms for composing components, each mechanism implying specific ap-
proaches for organizing their interaction. For instance, hardware systems are
built by using buses implementing usually synchronous multi-party interaction.
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Asynchronous message passing is very common in operating systems and mid-
dleware. For software the main paradigms are using lock/unlock operations or
(blocking) function calls, although domain-specific design languages may rely on
different mechanisms, e.g., broadcast for synchronous languages like Esterel and
rendezvous in ADA. Such a heterogeneity is a main obstacle for

– comparing functionally equivalent designs integrating identical sets of com-
ponents but using different types of “glue” for their coordination: How to
evaluate the merits of different solutions by using theoretical tools and rea-
soning rather than experimental analysis of their implementations?

– composing systems based on different composition paradigms, often based
on different models of computation that cannot be consistently combined.

In previous papers, we have advocated for component frameworks using rather
families of composition operators than a single composition operator. This allows
mastering complexity in designs and enhanced expressiveness. BIP (Behavior-
Interaction-Priority) [1] is such a framework combining two families of compo-
sition operators: interactions and priorities. In [2], we formalized the concept of
glue operator for behavior coordination by using SOS inference rules in a very
simple restriction of the GSOS format [3]. Each operator gl composing behaviors
B1, . . . , Bn is defined by a set of inference rules of the form

{Bi : qi
ai→ q′i}i∈I {qi = q′i}i�∈I {Bj : qj � b

k
j−→}j∈J

k∈Kj

gl(B1, . . . , Bn) : q1 . . . qn
a−→ q′1 . . . q′n

, (1)

where a, in the conclusion, is the interaction obtained as the union of the inter-
actions occurring in positive premises.

Example 1 (Mutual exclusion by preemption). Let T1 and T2 be two mutually
preemptable tasks sharing a single processor for their computations. No interac-
tions other than those needed for the preemption mechanism are possible.
Tasks can be modeled by the generic behavior shown to the
right. This behavior has three states: 1–the task is running, 2–
the task is waiting to begin computation, and 3–the task has
been preempted and is waiting to resume computation. The
transitions are labeled b, f , p, and r for begin, finish, preempt,
and resume respectively, and can be synchronized with external
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events through the corresponding ports of the behavior. Mutual preemption is
described by two statements:

1. A running task is preempted, when the other one begins computation.
2. A preempted task resumes computation, when the other one finishes.

The glue operator gl ensuring this behavior in the composition of the two
tasks is defined by the inference rules shown in Fig. 1 (for i, j = 1, 2 and i �= j).

In [2], we have introduced a notion of expressiveness for component frame-
works and have shown that BIP is as expressive as the family of the glue oper-
ators specified by (1).
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Bi : qi
bi→ q′i Bj : qj �pj→

gl(B1, B2) : qiqj
bi→ q′iqj

Bi : qi
bi→ q′i Bj : qj

pj→ q′j

gl(B1, B2) : qiqj

bipj→ q′iq
′
j

Bi : qi
fi→ q′i Bj : qj �rj→

gl(B1, B2) : qiqj
fi→ q′iqj

Bi : qi
fi→ q′i Bj : qj

rj→ q′j

gl(B1, B2) : qiqj

firj→ q′iq
′
j

Fig. 1. Inference rules for the mutual exclusion example

This paper studies a new way for characterizing glue operators for behavior
coordination. We consider that a glue operator on a set of components is a glue
constraint. This is a boolean constraint between interactions that can be fired
and the state of the coordinated components. The state is characterized by the
set of the ports through which interactions are possible. For each port of a com-
ponent, the constraint has two variables—an activation variable p and a firing
variable ṗ—connected by an additional axiom ṗ ⇒ p. For a given valuation of
activation variables corresponding to some state of the interacting components,
glue constraints characterize all the possible interactions. An interaction is pos-
sible from this state if the valuation setting to true only the firing variables
corresponding to its ports satisfies the constraint. The axiom ṗ ⇒ p expresses
the fact that a port cannot participate in an interaction unless it is active.

Example 2. The two statements describing preemption in Ex. 1 are formalized
by the following constraints (for i, j = 1, 2 and i �= j):

– ṗi ⇒ ḃj, meaning that one task can be preempted only when the other one
starts computation;

– ḃi ∧ pj ⇒ ṗj , meaning that when one task begins computation, if the
other one is computing (can be preempted) it must be preempted;

– ṙi ⇒ ḟj , meaning that a preempted task can resume only when the other
one finishes computation;

– ḟi ∧ rj ⇒ ṙj , meaning that when one task finishes computation, if the other
one is preempted (can resume) it must resume.

In this paper, we define a new variation of the SOS format for glue operators
proposed in [2]. In the new format, inference rules operators have three types
of premises. The firing premises qi

ai→ q′i are the same as positive premises
in (1). The two other types—witness premises qi ↑ ai and negative premises
qi � ↑ ai —use a new predicate ↑ . In an atomic behavior Bi, qi ↑ ai is satisfied
iff, for every port p ∈ ai, there is a transition qi

b→ such that p ∈ b. In other
words, every port in ai is offered by some transition in the state qi of Bi. For
a composed behavior B, q ↑ a signifies that each port in a is offered by some
atomic component composing B. As in (1), the conclusion of a rule is labeled by
the union of interactions labeling its firing premises, that is neither witness nor
negative premises contribute to the resulting transition.

This new format has two advantages. Firstly, it is well adapted to formalizing
hierarchical composition of behaviors, as the predicate ↑ allows to explicitly
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capture the notion of “atomic” component. Secondly, for each glue constraint
there exists an equivalent glue operator defined by rules in the new SOS format.
For any such glue operator, it is possible to find an equivalent glue constraint.

This paper is structured as follows. In Sect. 2, we define a new class of glue
operators, which we call universal glue, as well as glue constraints. In Sect. 3,
we show that glue constraints can encode universal glue in a way that allows to
explicitly link glue operators to invariant properties of the composed systems.
In particular, this allows the synthesis of glue operators enforcing such proper-
ties as illustrated in Sect. 4. In Sect. 5, we show that each type of premises in
the proposed SOS format is essential for the expressiveness of universal glue.
In Sect. 6, we compare this new universal glue with the glue used in BIP. In
Sect. 7, we present a design methodology based on the introduced models and
transformations. Finally, we discuss the related work in Sect. 8.

2 Modeling Behavior and Glue

2.1 Behavior

Definition 1. A labeled transition system (LTS) is a triple (Q, P,→), where Q
is a set of states, P is a set of ports, and →⊆ Q×2P ×Q is a set of transitions,
each labeled by an interaction. For q, q′ ∈ Q and a ∈ 2P , we write q

a→ q′ iff
(q, a, q′) ∈→. An interaction a ∈ 2P is active in a state q ∈ Q (denoted q

a→),

iff there exists q′ ∈ Q such that q
a→ q′. We abbreviate q � a→def

= ¬(q a→).

To simplify notation, we write, pq for the interaction {p, q}.
Definition 2. A behavior is a pair B = (S,↑ ) consisting of an LTS S =
(Q, P,→) and an offer predicate ↑ on Q × P such that q ↑p holds (a port p ∈ P
is offered in a state q ∈ Q) whenever there is a transition from q containing p,
that is (∃a ∈ 2P : p ∈ a∧ q

a→) ⇒ q↑p. The set of ports P is the interface of B.

The offer predicate extends to interactions: for a ∈ 2P , q ↑ a
def
=

∧
p∈a q ↑ p. For

p ∈ P , we have q ↑p = q ↑ {p}. It is also important to observe that ↑ and → do
not coincide: e.g., for a state q and ports p1, p2, if the only transitions possible
from q are q

p1→ and q
p2→, one has q↑p1p2, but q �p1p2−→.

We write B = (Q, P,→,↑) for B = ((Q, P,→),↑).

Definition 3. A behavior B = (Q, P,→,↑ ) is atomic iff, ∀q ∈ Q, p ∈ P, (q ↑
p ⇔ ∃a ∈ 2P : p ∈ a ∧ q

a→). A behavior is composed if it is not atomic.

According to this definition, the same transition system S can define an atomic
or a composed behavior B = (S,↑ ), depending on the offer predicate. Thus,
the offer predicate allows to capture elements of the components in a composed
behavior as illustrated by the following example.

Example 3. Consider the following transition systems:
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S1:
�q0

�q1p1 p2

�
p1 �p2

S2:

p3

�q2

�p3

S3:
�q02

�q12p1 p2

p3

�
p1

�
p2 �

p1p3

S3 can be considered as a composition of S1 and S2 with an operator that
enforces for port p3 a synchronization with port p1, i.e. each of p1 and p2 can
happen alone, but p3 can happen only together with p1. Thus, in the state q12

of S3, there is no transition containing p3, even though p3 is active in the state
2 of S2. This can be reflected by considering the behaviors Bi = (Si,↑ i), for
i = 1, 2, 3, with ↑i defined by the first three truth tables below.

B1:
↑1 p1 p2

q0 T F
q1 F T

B2:
↑2 p3

q2 T
B3:

↑3 p1 p2 p3

q02 T F T
q12 F T T

B′
3:

↑′3 p1 p2 p3

q02 T F T
q12 F T F

Although, there is no interaction a such that p3 ∈ a and, in B3, q12
a→, we

have q12 ↑p3, reflecting the fact that, in the behavior B2 composing B3, the port
p3 is active. On the other hand, S3 can also be considered as “atomic”, that is
without any explicit information about its structure, by considering a behavior
B′

3 = (S3,↑′3) with ↑′3 defined by the fourth truth table above.

Note 1. In the rest of the paper, whenever we speak of a set of component
behaviors Bi = (Qi, Pi,→,↑) with i ∈ [1, n], we always assume that {Pi}n

i=1 are

pairwise disjoint (i.e. i �= j implies Pi ∩ Pj = ∅) and P
def
=

⋃n
i=1 Pi.

Also, to avoid excessive notation, here and in the rest of the paper, we drop
the indices on the transition relations → and offer predicates ↑ , as they can
always be unambigously deduced from the state variables, e.g., qi → always
refers to the transition relation of the corresponding component Bi.

2.2 SOS Characterization of Glue

Structured Operational Semantics (SOS) [4] has been used to define the meaning
of programs in terms of Labeled Transition Systems (LTS). A number of SOS
formats have been developed, using various syntactic features [5].

In the context of component-based systems, definition of glue only requires
the specification of parallel composition operators, as sequential and recursive
computation can be represented by individual behaviors.

The SOS rules format below is a modification of the one defined in [2].

Definition 4. An n-ary glue operator gl on a set of interfaces {Pi}n
i=1 is defined

as follows. The application of gl to behaviors Bi = (Qi, Pi,→,↑ ), for i ∈ [1, n],
is a behavior gl(B1, . . . , Bn) = (Q, P,→,↑), with

– the set of states Q =
∏n

i=1 Qi—the cartesian product of the sets of states Qi,
– the set of ports P =

⋃n
i=1 Pi,

– the minimal offer predicate ↑ satisfying, for i ∈ [1, n], the inference rules

Bi : qi ↑p
gl(B1, . . . , Bn) : q1 . . . qn ↑p

, (2)
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– the minimal transition relation → satisfying a set of rules of the form

r =
{Bi : qi

ai−→ q′i}i∈I {Bj : qj ↑bj}j∈J {Bk : qk � ↑cs | s ∈ Lk}k∈K

gl(B1, . . . , Bn) : q1 . . . qn
a−→ q̃1 . . . q̃n

(3)

where I, J, K ⊆ [1, n] and I �= ∅; a =
⋃

i∈I ai; and q̃i denotes q′i, for i ∈ I,
and qi, for i ∈ [1, n] \ I. In (3), we have three types of premises respectively
called firing, witness, and negative premises. Firing and witness premises
are collectively called positive.

The condition I �= ∅ means that r has at least one firing premise. Firing premises
identify transitions that must actually be taken should the rule be applied; hence
there is at most one firing premise per component behavior.

Notice that q ↑ b1 ∧ q ↑ b2 = q ↑ b1b2, i.e. several witness premises can al-
ways be merged into a single more complex one. Hence one witness premise per
component behavior is sufficient to define any inference rule.

On the contrary, the conjunction of two negative premises q � ↑ b1 ∧ q � ↑ b2 =
¬(q ↑ b1 ∨ q ↑ b2) cannot be expressed as a primitive expression in terms of the
transition relation → or offer predicate ↑ . Hence, several negative premises for
the same component behavior can be necessary to define an inference rule.

A rule is completely defined by its premises.
We identify the glue operator gl with its set of inference rules (3). A glue

operator having no negative premises in any of its rules is called a positive
glue operator. We call glue a set of glue operators and universal glue the glue
consisting of all the glue operators in the sense of Def. 4. We denote the latter
FWN (for Firing-Witness-Negative; see also Sect. 5).

2.3 Boolean Characterization of Glue

Let P be a set of ports, we denote Ṗ
def
= {ṗ | p ∈ P}.

Definition 5. The Algebra of Glue Constraints on P , denoted GC(P ), is the
boolean algebra B[P, Ṗ ] on the set of variables P ∪ Ṗ with an additional axiom
ṗ ⇒ p. We call p ∈ P activation variables and ṗ ∈ Ṗ firing variables.

Activation variables indicate which ports are offered; firing variables indicate
which ports will actually participate in a transition (interaction). Clearly, a port
can participate in a transition only if it is offered; hence the axiom ṗ ⇒ p.

Note 2. Below, we overload the symbol P : depending on the context, it will
denote the set of ports in a system or the set of the associated boolean variables.

We give the semantics of GC(P ) by associating a glue operator (Def. 4) to
each term of the algebra. For behaviors {Bi}n

i=1, such that P =
⋃n

i=1 Pi where
Pi is the set of the ports of Bi, and a glue constraint ϕ ∈ GC(P ), the composed
behavior ϕ(B1, . . . , Bn) can be described intuitively as follows. For each i ∈ [1, n],
the current state of qi ∈ Qi defines a valuation on the activation variables of ϕ:
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for each variable p ∈ Pi, the valuation is p = true iff qi ↑p (the underlying port
is offered in the current state of the behavior). An interaction a ⊆ P defines
a valuation on the firing variables Ṗ by putting ṗ = true iff p ∈ a. Finally, a
is possible in the composite behavior ϕ(B1, . . . , Bn) iff the valuation on P ∪ Ṗ
defined as above satisfies ϕ and the constituent interactions of a are possible in
the corresponding component behaviors.

To formalize the above intuition, let us consider behaviors Bi = (Qi, Pi,→,↑)

for i ∈ [1, n] and a glue constraint ϕ ∈ GC(P ). Denote νqi

Bi
(p)

def
= qi ↑ p the

valuation on the activation variables in Pi associated to the state qi ∈ Qi of Bi.
For an interaction a ⊆ P , denote Ia(ṗ)

def
= (p ∈ a) the corresponding valuation on

firing variables. The behavior obtained by composing {Bi}n
i=1 with ϕ is defined

by ϕ(B1, . . . , Bn) = (Q, P,→,↑), with Q =
∏n

i=1 Qi, the offer predicate↑ defined
by (2), and the transition relation → defined as follows. For any q1 . . . qn ∈ Q

and a ⊆ P , and for all q′i ∈ Qi such that qi
a∩Pi−→ q′i for i ∈ [1, n], we put

q1 . . . qn
a→ q′1 . . . q′n

def⇐⇒ (νq1
B1

, . . . , νqn

Bn
, Ia) |= ϕ.

3 Transformations

3.1 From Glue Operators to Glue Constraints

Recall that a glue operator on a set of interfaces {Pi}n
i=1 is identified with the

set of its defining rules. Thus, we first present the translation into GC(P ) of
individual rules. Let r be a rule as in (3). Denoting A =

⋃
i∈I ai, B =

⋃
j∈J bj ,

we associate to r a formula ϕr ∈ GC(P ) defined by

ϕr
def
=

∧

p∈A

ṗ ∧
∧

p∈P\A

ṗ ∧
∧

p∈B

p ∧
∧

k∈K

∧

s∈Lk

cs , (4)

where cs =
∨

p∈cs
p. A formula ϕgl ∈ GC(P ) associated to a glue operator gl is

then defined by putting ϕgl
def
=

∨
r∈gl ϕr.

Proposition 1. Let gl ∈ FWN be defined on interfaces {Pi}n
i=1 and let ϕgl ∈

GC(P ) be the glue constraint formula constructed as above. For any set of behav-
iors Bi = (Qi, Pi,→,↑), with i ∈ [1, n], holds gl(B1, . . . , Bn) = ϕgl(B1, . . . , Bn).

3.2 From Glue Constraints to Glue Operators

Let again {Pi}n
i=1 be a set of interfaces and P =

⋃n
i=1 Pi. The transformation

from GC(P ) to FWN can be defined by giving, for a glue constraint formula
ϕ ∈ GC(P ), an equivalent operator glϕ ∈ FWN on {Pi}n

i=1. In order to do so
we have to rewrite ϕ as a disjunction of formulæ of the form (4).

Let ϕ ∈ GC(P ) be a glue constraint formula. Observe first that ϕ has a
unique representation in the firing-full DNF, i.e. a disjunctive normal form such
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that all firing variables ṗ ∈ Ṗ are explicitly present in each monomial. Thus
ϕ =

∨
m∈M ϕm, with monomials (indexed by the set M) of the form

ϕm =
∧

p∈Am

ṗ ∧
∧

p∈P\Am

ṗ ∧
∧

p∈Bm

p ∧
n∧

i=1

∧

p∈Cm∩Pi

p . (5)

This formula has the same form as in (4). Denote, for m ∈ M and i ∈ [1, n],
am

i = Am ∩ Pi and bm
j = Bm ∩ Pj ; Im = {i ∈ [1, n] | am

i �= ∅} and Jm = {j ∈
[1, n] | bm

j �= ∅}. The glue operator glϕ corresponding to the formula ϕ is defined
by the set of inference rules, containing, for each m ∈ M , the rule (6), where q̃i

denotes q′i, for i ∈ Im, and qi, for i ∈ [1, n] \ Im.

{Bi : qi
am

i→ q′i}i∈Im {Bj : qj ↑bm
j }j∈Jm {Bk : qk � ↑p | p ∈ Cm ∩ Pk}n

k=1

glϕ(B1, . . . , Bn) : q1 . . . qn
Am−→ q̃1 . . . q̃n

(6)

Example 4. Let P1 = {p1, p2} and P2 = {p3, p4, p5}, and consider an oper-
ator gl on these two interfaces that allows only transitions labelled p1 (i.e.
ṗ1ṗ2 ṗ3 ṗ4 ṗ5) and, moreover, only when either p2p3 is not active or neither is
p4 nor p5 (i.e. ṗ1 ⇒ p2p3 ∨ p4 p5). Taking the firing-full DNF of the conjunction,
we obtain ṗ1ṗ2 ṗ3 ṗ4 ṗ5 ∧ (ṗ1 ⇒ p2p3 ∨ p4 p5) = ṗ1ṗ2 ṗ3 ṗ4 ṗ5 ∧ (p2p3 ∨ p4 p5) =
ṗ1ṗ2 ṗ3 ṗ4 ṗ5 p2 ∨ ṗ1ṗ2 ṗ3 ṗ4 ṗ5 p3 ∨ ṗ1ṗ2 ṗ3 ṗ4 ṗ5 p4 p5. The inference rules for the
glue operator gl are shown below:

B1 : q1
p1→ q′1 B1 : q1 � ↑p2

gl(B1, B2) : q1q2
p1−→ q′1q2

B1 : q1
p1→ q′1 B1 : q1 � ↑p3

gl(B1, B2) : q1q2
p1−→ q′1q2

B1 : q1
p1→ q′1 B2 : q2 � ↑p4 B2 : q2 � ↑p5

gl(B1, B2) : q1q2
p1−→ q′1q2

Lemma 1. Let ϕ ∈ GC(P ) be a glue constraint, glϕ ∈ FWN constructed as
above, and ϕglϕ ∈ GC(P ) constructed as in Sect. 3.1 to glϕ. Then ϕglϕ = ϕ.

Proposition 2. Let {Pi}n
i=1 be a set of interfaces, ϕ ∈ GC(P ) a constraint

formula, and glϕ ∈ FWN constructed as above. For any set of behaviors Bi =
(Qi, Pi,→,↑), with i ∈ [1, n], we have ϕ(B1, . . . , Bn) = glϕ(B1, . . . , Bn).

4 Synthesis of Glue: A Rescue Robot Example

The following example was inspired by the hill-climbing robot discussed in [6].
Consider a robot R confined to a square paved region (Fig. 2(a)) and consisting of
four modules: an engine E, a sensor S, a transmitter T , and a navigation system
N . The engine can perform two actions: advance the robot one step forward and
rotate 90◦, controlled respectively through ports a (advance) and r (rotate). The
sensor can measure the temperature in front of the robot and signal whether it is
above a given threshold. The action of measuring is controlled through the port
m (measure), whereas the produced signal can be observed on the port h (hot).
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(a) (b)
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Fig. 2. (a) A rescue robot confined to a square paved region saving Betty Boop from
fire; (b) architectural view of the robot.

The transmitter can send the robot’s coordinates to the mission control. This
action is controlled through the port s (send). Finally, the navigation system
detects whether the robot is facing the border of the region and whether it has
reached the objective. The navigation system data can be updated by an action
controlled through the port u (update), the proximity of the border is signalled
through the port b (border) and the objective through the port f (finish). Thus,
the four interfaces are PE = {a, r}, PS = {m, h}, PT = {s}, and PN = {u, b, f}.

We want to synthesize the glue ensuring the following properties, which we
encode by glue constraints. Notice, that the synthesized glue only has to ensure
the safety of the robot and not that it reaches an objective.

1. The robot must not advance and rotate at the same time: ȧ ṙ ;
2. The robot must not leave the region: b ⇒ ȧ ;
3. The robot must not drive into hot areas: h ⇒ ȧ ;
4. If the robot reaches the objective, it must stop and transmit its coordinates:

f ⇒ ȧ ṙ u̇ ṁ ṡ ;
5. The robot must only transmit its coordinates when it reaches the objective:

ṡ ⇒ f ;
6. Every time the robot moves (advances or rotates) the navigation system and

the sensor must update their data: ȧ ∨ ṙ ⇒ u̇ ṁ .

The architecture of the robot is illustrated in Fig. 2(b), with the controllable
ports shown on the left-hand side of each component and the controlling ones
on the right-hand side. The ports a and r of the engine are both controllable
and controlling, so we duplicate them. The arrows indicate the control influence
given by the constraints above.

In order to compute the required glue, we take the conjunction of the six
constraints above and the progress constraint (ȧ∨ ṙ∨ u̇∨ ṁ∨ ṡ)∧ ḣ ḃ ḟ—stating
that some controllable action (a, r, u, m, or s) must be taken, but not the non-
controllable actions h, b, and f—and apply the procedure described in Sect. 3.2.
We rewrite the obtained glue constraint formula in the firing-full DNF: ȧ ṙ∧(b ⇒
ȧ)∧(h ⇒ ȧ)∧(f ⇒ ȧ ṙ u̇ ṁ ṡ)∧(ṡ ⇒ f)∧(ȧ∨ṙ ⇒ u̇ ṁ)∧(ȧ∨ṙ∨u̇∨ṁ∨ṡ)∧ḣ ḃ ḟ =
(ȧ ṙ u̇ ṁ ṡ f∨f ṡ ȧ ṙ u̇ ṁ∨f ṡ ȧ ṙ u̇ ṁ∨f ṡ ȧ ṙ u̇ ṁ∨ȧ ṙ f ṡ u̇ ṁ∨ȧ ṙ b h f ṡ u̇ ṁ)∧ḣ ḃ ḟ
Positive parts of all the monomials in this formula are distinct. Therefore no
further transformations are necessary, and we directly obtain the following rules
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defining the required glue operator (we drop the component names, as they are
clear from the context):

qn
u→ q′n qn � ↑f

qeqsqnqt
u→ qeqsq

′
nqt

,
qs

m→ q′s qn
u→ q′n qn � ↑f

qeqsqnqt
mu−→ qeq

′
sq

′
nqt

,
qs

m→ q′s qn � ↑f

qeqsqnqt
m→ qeq

′
sqnqt

,

qt
s→ q′t qn ↑f

qeqsqnqt
s→ qeqsqnq′t

,
qe

r→ q′e qs
m→ q′s qn

u→ q′n qn � ↑f

qeqsqnqt
rmu−→ q′eq

′
sq

′
nqt

,

qe
a→ q′e qs

m→ q′s qn
u→ q′n qs � ↑h qn � ↑b qn � ↑f

qeqsqnqt
amu−→ q′eq

′
sq

′
nqt

.

It is important to observe here that this glue operator ensures the required
safety properties independently of the specific implementation of the behaviors
of the atomic components (Engine, Sensor, Navigation system and Transmitter),
as long as this implementation respects the specified interfaces.

5 The Glue Expressiveness Hierarchy

The rule format for defining glue operators that we introduced in Sect. 2.2 allows
three types of premises: firing, witness, and negative. In this section, we use the
notion of glue expressiveness [2] to show that all three types are essential for
the expressiveness of the glue that can be defined with these rules. To do so, we
compare the following four classes of glue operators:

F: the class of glue operators obtained by using rules with only firing premises (of
the form q

a→ q′). Classical composition operators, e.g., parallel composition
in CCS or CSP belong to this class;

FW: the class of glue operators obtained by using rules with only positive
premises (firing premises, as above, and witness premises of the form q↑a);

FN: the class of glue operators obtained by using rules with only firing and
negative (of the form q � ↑a) premises;

FWN: the universal glue obtained by using rules with all three types of premises.

Let B be a set of behaviors with a fixed equivalence relation R ⊆ B × B. A
glue is a set G of operators on B. We denote by Glue the set of all glues on B.
We denote G(n) ⊆ G the set of all n-ary operators in G. Thus, G =

⋃
n≥1 G(n).

To determine whether one glue is more expressive than another, we compare
their respective sets of behaviors composable from the same atomic ones. This
consists in exhibiting for each operator of one glue an equivalent operator in the
other one. We only consider strong expressiveness [2], i.e. , where the exhibited
glue operator must be applied to the same set of behaviors as the original one.

Although the results we present can also be extended to weak expressiveness
[2], where the exhibited glue operator must be applied to the same set of be-
haviors as the original one with an addition of some fixed set of coordination
behaviors, we do not present these extensions to avoid overcharging the paper.
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Definition 6. For a given set B and an equivalence R on B, the expressiveness
preorder � ⊆ Glue × Glue w.r.t. R is defined by putting, for G1, G2 ∈ Glue,
G1 � G2 if, for any n ≥ 1 and B1, . . . , Bn ∈ B, holds ∀gl1 ∈ G

(n)
1 ∃gl2 ∈ G

(n)
2 :

gl1(B1, . . . , Bn)R gl2(B1, . . . , Bn).

We consider the partial order induced by �, that is we say that G1 is less
expressive than G2 if G1 � G2 and G2 �� G1.

Definition 7. Let B1 = (Q1, P1,→,↑ ), B2 = (Q2, P2,→,↑ ). A binary relation
� ⊆ Q1 × Q2 is a simulation iff, for all q1 � q2 and a ⊆ P , q1 ↑a implies q2 ↑a
and q1

a→ q′1 implies q2
a→ q′2, for some q′2 ∈ Q2 such that q′1 � q′2.

We write B1 � B2 if there exists a simulation relating each state of B1 to
some state of B2. � is the simulation preorder on behaviors. The relation � =
� ∩ �−1 is the simulation equivalence on behaviors.

Proposition 3. With respect to the simulation equivalence, F is less expressive
than FW and FN , which are both less expressive than FWN .

6 Glue Constraints, FWN, and BIP

BIP [1,7] is a component framework for constructing systems by superposing
three layers of modeling: Behavior, Interaction, and Priorities. The lower layer
consists of a set of atomic components modeled by transition systems. The second
layer models interactions between components. Priorities are used to enforce
scheduling policies applied to interactions of the second layer. Below, we provide
a succinct formalization of the BIP component model.

Contrary to Def. 2, a behavior in BIP is an LTS (cf. Def. 1). Let Bi =
(Qi, Pi,→), for i ∈ [1, n], be a set of transition systems and P =

⋃n
i=1 Pi.

The composition of {Bi}n
i=1, parameterized by a set of interactions γ ⊆ 2P , is

the transition system γ(B1, . . . , Bn) = (Q, P,→), where Q =
∏n

i=1 Qi and → is
the minimal relation defined by the following set of rules:

{ {Bi : qi
a∩Pi−→ q′i | i ∈ Ia} {qi = q′i | i �∈ Ia}

γ(B1, . . . , Bn) : q1 . . . qn
a−→ q′1 . . . q′n

| a ∈ γ
}

, (7)

where, for a ∈ γ, Ia = {i ∈ [1, n] | a ∩ Pi �= ∅}. We call γ an interaction model.
Given a transition system γ(B1, . . . , Bn), a priority model π is a strict par-

tial order on 2P . For a, a′ ∈ 2P , we write a ≺ a′ iff (a, a′) ∈ π, meaning
that interaction a has less priority than interaction a′. The system obtained
by applying the priority model π to γ(B1, . . . , Bn) is the transition system
πγ(B1, . . . , Bn) = (Q, P,→), where Q and P are the same as above, while → is
the minimal set of transitions satisfying the set of inference rules

πγ =
{

γ(B1, . . . , Bn) : q
a−→ q′ {{a′}(B1, . . . , Bn) : q � a′

−→ | a ≺ a′}
πγ(B1, . . . , Bn) : q

a−→ q′

∣
∣
∣ a ∈ γ

}
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Intuitively, the premises of a rule for a ∈ γ mean that, in the state q ∈ Q, a
is possible in γ(B1, . . . , Bn), and, for each interaction a′ having higher priority
than a, there is at least one component Bi such that the constituent interaction
a′∩Pi is not possible in Bi. It is not required that a′ belong to γ. In [2], we have
shown that the glue of BIP is as expressive as the most general glue defined by
inference rules of the form (1).

Example 5. The glue operator for the mutual preemption (Ex. 1) is expressed in
BIP by considering the interaction model γ = {bi, fi, bipj, firj |i, j = 1, 2, i �= j}
and a priority model given by bi ≺ bipj and fi ≺ firj , for i, j = 1, 2 and i �= j.

Proposition 4. With respect to the simulation equivalence, FN is less expres-
sive than the glue in BIP; FWN and the glue in BIP are not comparable.

An important advantage of BIP is that it allows mastering the complexity of de-
signs by developers: separating glue into two layers corresponding to interactions
and priorities drastically simplifies readability of specifications. By redefining the
semantics of priority models in terms of the predicate ↑ , it can be shown that
this separation can be achieved for the glue operators of Def. 4.

Separation of the coordination level defined by the glue operators into inter-
actions and priorities allows the application of our previous results presented in
[7,8]. By comparing (1) and (3), one can observe that both Interaction layer of
BIP and positive glue operators of this paper are uniquely characterized by the
interactions appearing in their premises. For the former, interactions are subsets
of 2P ; for the latter, they are subsets of 2P∪Ṗ . The sets P and Ṗ being disjoint,
all the results from the two papers cited above can be applied to connectors of the
algebra AC(P ∪ Ṗ ). This allows considering structured hierarchical connectors
instead of exponential sets of interactions (in BIP) or rules (for glue operators
of this paper). Connectors are well suited for compositional design and can be
manipulated by symbolic techniques [7]. Furthermore, connectors can be syn-
thesized directly from causal rules, which are boolean constraints (implications)
on port variables similar to the constraints found in the examples of Sect. 4.

7 Design Methodology

Synthesis of reactive systems has been initiated by Pnueli and Rosner. They have
shown that synthesis of distributed systems is hard and, sometimes, undecidable
[9]. Lustig and Vardi have obtained similar hardness results for synthesis, where
reusable components must be selected from component libraries [10].

This paper lays ground to a less ambitious, but more tractable design method-
ology relying on the observation that one of the main difficulties of systems design
resides in the concurrent nature of modern software (particularly due to the state
space explosion). This methodology can be summarized by the following steps:

1. Choice of the functionalities to be realized by sequential atomic components.
This step does not involve specifying coordination among these atomic com-
ponents. It is usually driven by the functional requirements (e.g., function-
alities that must be provided by the system) or target platform hardware
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specifications. Tools and techniques needed for this design step are, in gen-
eral, well mastered by software engineers.

2. Independent design of sequential atomic components of the system. As men-
tioned above, development of sequential programs is much less complex than
that of concurrent ones and can also be successfully realized by engineers.

3. Specification of state safety properties to be satisfied by the system. The
general case complexity of this design step has yet to be investigated. All
the properties that we have encountered are obtained as causal rules in a
manner similar to that of the example in Sect. 4 (cf. [8]).

4. Automatic glue operator and connector synthesis. This implies that the un-
derlying state safety properties are satisfied by construction.

For safety properties other than state properties, compositional deadlock anal-
ysis can be performed by adding (sequential) observer components to the syn-
thesized model.

8 Related Work

A number of paradigms for unifying interaction in heterogeneous systems have
been studied [12,13,14]. In these works, unification is achieved by reduction to a
common low-level semantic model. Coordination mechanisms and their proper-
ties are not studied independently of behavior. Our approach is closest to that
of [15], where an algebra of connectors is developed that allows one to construct
stateless connectors from a number of basic ones.

This paper combines several notions that already exist in the literature. We
use boolean constraints expressed in terms of activation and firing variables in
order to synthesize glue operators expressed in terms of SOS rules.

In concurrency, the term constraints appears primarily in connection with
the constraint automata [16,17], where constraints are used to restrict transition
non-determinism. These automata are now widely referred to as having guarded
transitions. We speak of interaction constraints that characterize mechanisms
used in architectures such as connectors, channels, synchronization primitives
and result from the composition of actions [18]. Architectural mechanisms are
used to constrain the interaction among parallel communicating components.

Few authors have considered the approach by constraints in this context, e.g.,
[19]. The approach used in [20] is close to the one we adopted in our previous
paper [8]. The important difference is that, following the separation of concerns
principle, we distinguish coordination and data flow among components.

Separating the coordination layer allows to express coordination constraints as
boolean formulæ. In [8], we consider causal rules, which are boolean constraints
on port variables. Causal rules are used to synthesize connectors to describe
interactions among components in BIP. In the present paper, we extend this
methodology to the complete Coordination layer (Interactions and Priorities),
which requires a more sophisticated notion of boolean constraints on activation
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and firing port variables, where firing variables are exactly the port variables we
refer to in [8].

To the best of our knowledge, few authors in the domain of component-based
design use activation or firing variables as we do in this paper, and we are not
aware of any work making a combined use of both. The techniques closest to
ours can be found in [20] and in the use of clocks in synchronous languages such
as Lustre [21], Esterel [22], and Signal [23].

Several methodologies for synthesis of component coordination have been pro-
posed in the literature, e.g., connector synthesis in [24,25,26]. In [24], connectors
are synthesized in order to ensure deadlock freedom of systems that follow a
given architectural style. The proposed methodology is seriously limited by two
factors. Firstly, the proposed architectural style is very restrictive: components
can only be connected in a specific way and communicate by passing two types
of messages (notifications and requests). Secondly, in order to ensure deadlock
freedom, the authors rely on the analysis that requires computing the prod-
uct automaton representing the complete system, which is impractical for large
systems.

In [25], Reo circuits are generated from constraint automata. This approach
is limited, in the first place, by the complexity of building the automaton speci-
fication of interactions. An attempt to overcome this limitation is made in [26]
by generating constraint automata from UML sequence diagrams. A commonly
accepted problem of using UML, in general, and sequence diagrams, in partic-
ular, is the absence of formal semantics. Although the Reo approach effectively
provides such semantics, there is no guarantee that this semantics can be un-
derstood by the designer, as the synthesized constraint automata can be rather
complex. More importantly, synthesized Reo connectors (with the constraint
automaton semantics) have state. Hence, they contribute to the state space ex-
plosion hampering verification of the final system properties.

Our approach allows one to directly synthesize stateless glue from safety re-
quirements in a generic setting and circumvents the difficulty of behavior syn-
thesis by applying the separation of concerns principle; it develops the line of [8]
and has similarities with the synthesis of circuits from boolean specifications.

Finally, following the common practice, we use SOS rules to define composition
(glue) operators. Since their introduction in [4], numerous formats for SOS rules
have been proposed and extensively studied in order to provide generic properties
of objects defined by SOS rules. The rule formats that we use in this paper
represent two very simple special cases of the existing SOS formats. In particular,
the format given by (1) is a special case of GSOS [3].

9 Conclusion

We proposed and studied a general framework for component-based construction
of systems. The framework is based on an SOS-style characterization of compo-
sition operators, called glue operators. The presented boolean characterization
of glue operators allows moving from heavy SOS-style definition to a lightweight
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boolean representation. The representation distinguishes between firing and ac-
tivation variables. This distinction is essential for expressing priorities and, in
general, situations where the state of one component influences enabledness of
an interaction without participating in it. The use of the offer predicate ↑ is es-
sential for taking into account offers of the composed individual behaviors. This
leads to a concept of transition system richer than usual transition systems,
which allows to distinguish between composite and atomic behavior.

The equivalence between glue constraints and universal glue can drastically
simplify component-based design. We have shown through examples that glue
constraints can be used to express given safety requirements. The synthesis of
an implementation from such requirements can be automated by computing the
firing-full DNF and the corresponding operational semantics rules. This provides
means for deriving executable models from declarative safety requirements open-
ing the way for an automated synthesis paradigm similar to hardware synthesis.

Contrary to the algebra presented in [2], the Algebra of Glue Constraints, is
very general and intuitive. Indeed, the only axiom different from the standard
Boolean ones is, basically, a sanity check: a port cannot participate if it is not
active. Any formula in this algebra gives rise to a valid glue operator.

Furthermore, we have shown that, by focusing on the properties (expressed as
glue constraints) that do not bear computation, we reduce a very hard and, in
general, undecidable problem of synthesizing controllers to a tractable one. The
Rescue Robot example shows that such properties are quite natural and can be
expressed as glue constraints in a straightforward manner.

Amongst the formalisms discussed in the paper, BIP presents the advantage of
being more appropriate for mastering the complexity of designs by developers.
The principle of separating glue into two layers corresponding to interactions
(glue with positive premises) and priorities (glue with negative premises and a
single positive premise) drastically simplifies readability of specifications. The
presented results suggest an evolution of BIP semantics to encompass the uni-
versal glue defined in this paper.

This work is part of a broader research project around BIP, including the
development of the BIP language and associated tool-set for component-based
design. The tool-set includes compilers as well as compositional verification tools.
It has been successfully applied to modeling and validation of heterogeneous
systems [11,27]. We will continue our study to further explore relations between
three identified approaches: SOS-based, constraint-based, and layered.
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