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1. The evolution of computer science
Computer Science is a young discipline. Its foundations were laid in 1936 by the seminal work of A.M. Turing and
K. Gödel. Its scope and focus have changed continuously over the past seven decades. The first computers ran numerical
software for defense applications. In the 70’s, the advent of mainframe computers broadened the scope to include
commercial applications. In parallel, large-scale circuit integration allowed exponential increases in computing power
(Moore’s law). In the 80’s, the convergence between information technologies and telecommunications opened the way
for the Internet, the Web and the Information Society. In the 90’s, another very important, but less visible, revolution
started with the dissemination of embedded systems technologies. More than 95% of the chips produced today are for
embedded applications. These are electronic components integrating software and hardware jointly and specifically
designed to provide given functionalities, which are often critical. They are hidden in devices, appliances and equipment
of any kind: mobile phones, cameras, home appliances, cars, aircraft, trains, medical devices etc. In 2008, the average
person used about 230 embedded chips every day: 80 chips in home appliances, 40 chips at work, 70 chips in cars,
40 chips in portable devices.
In the near future, another anticipated, important landmark will be the advent of the Internet of Things as the result of
the convergence between embedded technologies and the Internet. The idea is to use internet technologies to integrate
services provided by hundreds of billions of embedded systems. This will require an upgrade of the internet infrastructure
to make it more secure, safer and reactive. Current features for exchanging multimedia documents will be extended to
encompass real-time monitoring and control. Systems are becoming ubiquitous: the state of almost everything can be
sensed, measured and monitored; people and objects can communicate and interact in entirely new ways; intelligent
systems allow enhanced predictability of events and optimal use of resources.
It is hard to imagine what Computer Science will be in two decades. More than any other discipline, it is driven by
applications and exponential progress in technology. The broadening of its perimeter is accompanied by a shift in focus
from algorithms and programs to systems.
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2. From programs to systems
I see two main landmarks in the evolution of CS: the advent of Computers and the development of Theory of Computing.
The first allowed the move from mechanical computational devices to much faster and reliable automated electronic
circuits. The second opened the way for mechanizing computation by developing models of computation for studying
algorithms, programs and their properties. The central issue addressed is whether, and when, functions can be computed
by using models of computation. A remarkable fact about these models is that they ignore physical time and resources.
Computation is a finite sequence of steps corresponding to the execution of primitive operations. Complexity theory is
based on abstract notions of time and memory. Programs and algorithms are just relations independent from the physical
resources needed for their execution. Their behavior is terminating, deterministic and platform-independent.
In contrast to programs and algorithms, systems are reactive; that is, they continuously interact with an external
environment. Their inputs are stimuli that trigger state changes and computation of outputs that may modify the state
of their environment. System behavior can be modelled as a relation between histories of inputs and histories of
outputs. Systems are, in general, non-terminating and non-deterministic. Furthermore, their behavior is, in general,
platform-dependent as their correctness depends on the dynamic characteristics of the execution platform e.g. execution
times. Theory of computation is, by its nature, of little help for studying systems. Even if we perfectly understand the
properties of a program and the properties of a hardware target platform, we have no theory to predict the behavior of
the program running on the platform. The observed shift of focus in Computer Science from programs to systems should
be accompanied by research for extending the Theory of Computing. Models of computation should be enriched to take
into account physical resources and the interplay between systems and their physical environment.

3. Trends in system design
Embedded Systems break from traditional computing systems such as desktop computers and servers. They must jointly
meet technical requirements such as:

• Reactivity: responding within a known and bounded delay. This is essential not only for real-time applications
but also for efficient quality of service control.

• Autonomy: providing continuous service without human intervention. In particular, this means no manual restart
but also optimal power management for portable devices.

• Dependability: invulnerability to threats including attacks, hardware failures, software execution errors.

• Scalability: performance increase is commensurable with the increase of resources.

In addition to these requirements, embedded systems must meet requirements for optimal cost/quality as they are
integrated in mass-market products. Seeking an economic optimum in system design is much harder than achieving high
quality without cost-effectiveness constraints.
Embedded technologies challenge our capacity to develop systems of guaranteed functionality and quality at acceptable
costs.
Today we master, at high costs, two types of systems which are difficult to integrate: 1) safety and/or security critical
systems of low complexity such as flight controllers or smart cards; 2) complex best-effort systems such as telecommu-
nication systems and web-based applications. Dependability is the main concern for critical systems while best-effort
systems seek optimal use of resources at acceptable levels of quality of service.
For future systems, we urgently need technology for

• developing affordable critical systems. In many application areas such as transport, health and energy, embedded
technologies could be used to provide new services with significant impacts on quality of life and efficient resource
management. For instance, drive-by-wire and brake-by-wire in cars could lead to lower production and operational
costs by replacing “passive safety” with “active safety”.

• safe integration of heterogeneous systems-of-systems. The vision is to develop global services by integrating
features provided by geographically distributed systems with different technical characteristics and using various
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communication media. A main issue for strong integration is mastering interaction of critical and non-critical
features, and error containment. How to prevent failures of non-critical services from affecting the behavior of
critical services raises difficult problems which lack theory to be tackled with.

There exist several incarnations of the systems-of-systems vision. The most general one is the internet of things
intended to develop global services by interconnecting everyday objects. One instance of this vision is smart grids
for efficient and reliable energy management. Another instance is intelligent transport systems to improve safety
and reduce vehicle wear, transportation times, and fuel consumption.

I believe that we cannot achieve any significant progress in these directions without considerable research effort into
developing foundations for rigorous system design. Despite progress in theory, methods and tools over the past decades,
there is an increasing gap between 1) the possibilities offered by progress in VLSI and telecommunications technology
such as many-core chips and sensor networks; 2) the state-of-the art in system design and integration. Today, research
in Computer Science lags far behind these needs. With a few exceptions [1, 2, 12, 13], the importance of system design
is seldom recognized as a priority in research agendas and roadmaps.

4. Three grand challenges
Rigorous system design raises three Grand Challenges: 1) Marrying Physicality and Computation; 2) Component-based
Design; 3) Adaptivity.

4.1. Marrying physicality and computation
We need theory and models encompassing continuous and discrete dynamics to predict the global behavior of a system
interacting with its physical environment [1, 2].
The development of application software and its implementation must take into account constraints from:

• the physical resources of the hardware execution platform so as to optimize their use. This requires mastering
interaction between software execution and the underlying hardware and, in particular, the impact of software
design choices on the dynamic behavior of the circuit.

• the physical environment of the system. These are often user-defined, real-time properties such as deadlines and
jitter.

We lack theory, methods and tools for tackling these problems. We need to revisit and revise computing to integrate
paradigms from Electrical Engineering and Control Theory. To achieve this aim, we should be able to consistently
combine models of computation with analytic models used in physical systems engineering. These describe the behav-
ior of electromechanical systems with sets of differential equations. Engineers extensively use linear approximations
represented as data-flow networks of interconnected components characterized by their transfer function. Components
transform concurrent input data flows into output data flows. In contrast to these models, models of computation are
procedural and inherently sequential. Interaction between components is control-flow e.g. by method call. We lack
theory unifying the two types of models. Existing unifications such as hybrid systems theory [3] establish relations at
semantic level (at transition system level). They cannot be used to relate analytic models and programming models
through structure-preserving translations. For instance, system engineers need techniques for consistently combining
formalisms such as Matlab/Simulink1 and procedural programming languages.

4.2. Component-based design
We need theory, models and tools for the cost-effective building of complex systems by assembling heterogeneous
components. This is essential for any engineering discipline. It confers numerous advantages such as productivity and
correctness.

1 http://www.mathworks.com/products/simulink/
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System designers deal with heterogeneous components, with different characteristics, from a large variety of viewpoints,
each highlighting different dimensions of a system. They often use several semantically unrelated formalisms e.g. for
programming, hardware description and simulation. This breaks the continuity of the design flow and jeopardizes its
coherency. System development is often decoupled from validation and evaluation.
System descriptions used along a design flow should be based on a single semantic model to maintain its overall
coherency by guaranteeing that a description at step n + 1 meets essential properties of a description at step n. The
semantic model should be expressive enough to directly encompass component heterogeneity. Three different sources of
heterogeneity exist [1]:

• Heterogeneity of computation: The semantic model should encompass both synchronous and asynchronous com-
putation to allow, in particular, modeling mixed hardware/software systems.

• Heterogeneity of interaction: The semantic model should enable natural and direct description of various mech-
anisms used to coordinate execution of components including semaphores, rendezvous, broadcast, method call,
etc.

• Heterogeneity of abstraction: The semantic model should support the description of a system at different abstrac-
tion levels from application software to its implementation.

Existing theoretical frameworks for composition are based on a single operator e.g., product of automata, function call.
Poor expressiveness of these frameworks may lead to complicated designs: achieving a given coordination between
components often requires additional components to manage their interaction [4]. For instance, if the composition is by
strong synchronization (rendezvous), modeling broadcast requires components for choosing the maximal amongst several
possible strong synchronizations. We need frameworks providing families of composition operators for the natural and
direct description of coordination mechanisms such as protocols, schedulers and buses. These should encompass a
unified composition paradigm for describing and analyzing the coordination between components in terms of tangible,
well-founded and organized concepts. In addition to that, they should be equipped with tractable methods for ensuring
correctness-by-construction, to avoid the limitations of monolithic verification. These methods use two types of rules [5]:

• Compositionality rules for inferring global properties of composite components from the properties of constituent
components e.g. the composition of deadlock-free components is, under some conditions, a deadlock-free compo-
nent. Compositionality rules should, in particular, take into account the emergence of new properties. For instance,
proving mutual exclusion for sharing a resource in a composite component under the assumption of atomicity of
actions of the constituent components. A special and very useful case of compositionality is when a behavioral
equivalence relation between components is a congruence [6]. In that case, substituting a component in a system
model by a behaviorally equivalent component leads to an equivalent model. Today, we lack compositionality
theory for progress properties as well as extra-functional properties.

• Composability rules ensuring that essential properties of components are preserved when they are used to build
composite components. Consider, for instance, two components: one is the composition of a set of components
sharing a common resource accessed in mutual exclusion; the other is obtained as the composition of the same
set of components scheduled for optimal use of the shared resource. Is it possible to obtain a single component
integrating this set of components and such that both mutual exclusion and the scheduling constraints hold?
System engineers face this type of non-trivial problem every day. They use libraries of solutions to specific
problems and they need methods for combining them without jeopardizing their essential properties. Feature
interaction in telecommunication systems, interference among web services and interference in aspect programming
are all manifestations of the lack of composability.

4.3. Adaptivity
Systems must provide a service meeting given requirements in interaction with uncertain environments. Uncertainty
can be characterized as the difference between average and extreme system behavior. Non-determinism of physical
environments increases uncertainty. Furthermore, execution platforms have varying execution times due to layering,
caches, speculative execution and variability due to manufacturing errors or aging.
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Uncertainty directly affects the predictability of analysis techniques. Predictability is the degree to which a correct
prediction of a property can be made either qualitatively or quantitatively. Due to uncertainty, system models represent
safe abstractions of the actual system behavior and may include additional unfeasible execution sequences. Furthermore,
for a given system model, exact analysis techniques are impossible due to non-computability of all essential system
properties. For example, due to uncertainty, execution times of an instruction may vary between a best-case-execution-
time (BCET) and a worst-case-execution-time (WCET) depending on the location of data e.g. cache memory or main
memory and their size [7]. Due to uncertainty, WCET may be a hundred times larger than BCET. WCET and BCET
cannot be exactly computed. Timing analysis tools provide only upper bounds and lower bounds, respectively. The
quality of these approximations may be very poor.
Uncertainty and lack of predictability have a deep impact on system design methods and increasing development costs.
Currently, there exist two diverging system design paradigms.

1. Critical engineering is based on worst-case analysis of all the potentially dangerous situations. Designers reserve
statically all the resources (memory, time) needed for safe operation, leading to over-dimensioned systems. The
amount of physical resources may be some orders of magnitude higher than necessary. This incurs high production
costs but also increased energy consumption.

For example, response times of tasks in a real-time system must be less than a given deadline. The response
time of a task is computed from safe approximations of WCET of its statements. As a result, hardware platforms
for hard-real time systems are extremely over-dimensioned.

Another principle from critical engineering consists in using massive redundancy to enhance reliability. Redun-
dancy techniques (e.g. TMR), lead to over-dimensioning and can be advantageously replaced by smart lightweight
monitoring and error recovery techniques.

2. Best-effort engineering is applied to complex non-critical systems. It is based on average case analysis and
dynamic resource management. Designers apply QoS management techniques for optimizing speed, memory,
bandwidth, and power. Physical resources are dimensioned for availability in nominal cases. In critical situations,
e.g., spike of service demands, the system service may be degraded or denied.

The separation between critical and best-effort systems is a means for coping with non-predictability by focusing
on essential properties for each class of systems. Nonetheless, most applications integrate both critical and best-
effort components. This raises multiple technical difficulties as attested by numerous problems experienced by car
manufacturers over the past decade.
Two avenues are anticipated to overcome current limitations of the state-of-the-art:

• One is to enhance predictability through determinism. The key idea is to reduce intrinsic and estimated uncertainty
by simplifying hardware architectures or by enforcing a time-deterministic observable behavior [8] e.g. by using
time-triggered architectures [9]. I do not believe that this is a realistic and viable approach. Predictability is
ensured by seriously penalizing performance. Furthermore, it requires significant changes in the way application
software is written [14].

• The other is to bridge the gap between critical and best-effort engineering by applying adaptive control techniques
to systems integrating both critical and best-effort components sharing global resources which are predictably
sufficient for satisfying critical properties. The main idea is to use an Adaptive Controller which manages the
resources dynamically so that critical properties are satisfied by assigning them a higher priority. The remaining
resources can be used to satisfy best-effort properties. This avoids costly static resource reservation and does
not require a very fine analysis to determine worst-case situations.

An Adaptive Controller monitors the state of a system and steers its behavior to meet given requirements specified as a set
of objectives including hard constraints such as deadlines as well as constraints expressing the optimal use of resources.
It combines three hierarchically structured functions: Learning, Objective Management and Planning. Depending on
the state of the controlled system, the Objective Manager chooses an objective that meets the requirements. The
objective is passed to the Planning Function. The latter computes an execution plan used to drive system evolution.
The Learning Function is used to compute good estimates of parameters involved in the constraints on the Objective
Manager e.g. worst-case and average values of parameters such as execution times and throughput.

112



Joseph Sifakis

Adaptive control was initially studied in Control Theory [10]. It finds an increasing number of applications in computing
systems e.g. for quality control in multimedia systems, throughput control in networks, and self-maintenance and recovery
in distributed systems.
An important issue in adaptive systems design is reducing the overhead due to monitoring and control. We need execution
platforms that give up control to the application software for efficient resource management.
Adaptivity encompasses a new and realistic vision for “intelligent systems” quite different from the old vision of Artificial
Intelligence. The latter considered that human intelligence can be so precisely described that it can be matched by a
machine. Adaptivity is a means to enforce correctness in the presence of uncertainty by using control-based techniques.

5. A vision for computer science
5.1. Computer science as a discipline
Computer Science is a scientific discipline in its own right with its own concepts and paradigms. It deals with problems
related to the representation, transformation and transmission of Information. As such, it studies all aspects of computing
from models of computation to the design of software and computing devices.
Information is an entity distinct from matter and energy. It is a resource that can be stored, transformed, transmitted and
consumed. It is immaterial but needs media for its representation by using languages characterized by their syntax and
semantics. It should not be confused with physical information measured as entropy in Information Theory and Physics.
Computer Science is not merely a branch of Mathematics. As any scientific discipline, it seeks validation of its theories
on mathematical grounds. But mainly, and most importantly, it develops specific theory intended to explain and predict
properties of computation which can be tested experimentally.

5.1.1. Computer science vs. physics
Embedded Systems bring Computer Science closer to Physics. Marrying physicality and computation requires a better
understanding of differences and points of contact between them. Is it possible to define models of computation encom-
passing quantities such as physical time, physical memory and energy? Significant differences exist in the approaches
and paradigms adopted by the two disciplines.
Physics is based on continuous mathematics while Computer Science is rooted in discrete non-invertible Mathematics.
Physics studies a given “reality” and tries to discover laws governing physical phenomena while computing systems are
human artifacts. Its laws are declarative by their nature.
Physical systems are specified by differential equations involving relations between physical quantities. The essence
of many physical phenomena can be captured by simple linear laws. They are, to a large extent, deterministic and
predictable. Synthesis is the dominant paradigm in physical systems engineering. We know how to build artifacts
meeting given requirements e.g. bridges or circuits, by solving equations describing their behavior. In contrast, state
equations of very simple computing systems, such as a RS flip-flop, do not admit linear representations in any finite
field. Computing systems are described in executable formalisms such as programs and machines. Their behavior is
intrinsically non-deterministic. Non-decidability of their essential properties implies poor predictability. Synthesis is
an intractable problem. Computing systems engineering relies to a large extent on verification and testing.
Computer Science enriches our knowledge with theory and models enabling a deeper understanding of discrete dynamic
systems. It proposes a constructive and operational view of the world which complements the classic declarative approach
adopted by Physics.

5.1.2. Artificial vs. natural intelligence
Living organisms intimately combine interacting physical and computational phenomena that have a deep impact on their
development and evolution. They share several characteristics with computing systems such as the use of memory, the
distinction between hardware and software, the use of languages. However some essential differences exist. Computation
in living organisms is robust, has built-in mechanisms for adaptivity and, most importantly, it allows the emergence of
abstractions and concepts.
I believe that these differences delimit a gap that will never be filled by computing systems. Consider simply robustness
which means that the effects of small changes in a system are commensurably small. Discreteness makes practically
impossible this property for existing models of computation.
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Despite these differences, there exist today many opportunities for interactions and cross-fertilization between Com-
puter Science and Biology. For instance, results from neuromorphic and cognitive computing could inspire new non
von Neumann paradigms. Conversely, synthetic biology could benefit from existing CAD and systems engineering tech-
nology.

5.2. Research in computer science
Unfortunately, the current scope and focus of research in Computer Science fail to address basic problems raised by
system design and engineering. Three syndromes determine choices and priorities of research communities.

5.2.1. The business as usual syndrome
Following beaten tracks rather than taking the risk of exploring new ideas is a prevalent attitude of researchers in all
scientific communities. Research in Computer Science is not exempt from this syndrome.

5.2.2. The hype syndrome
More than in other disciplines, research in Computer Science has been over-optimistic regarding the possibility to solve
hard problems and overcome obstacles. This can probably be explained by strong demand and incentives for innovation
by funding agencies as well as strong push from applications and market needs.
Very often scientific roadmaps and position papers present “challenges” that are mere visions and take desires for reality.
A scientific challenge is a designated and significant obstacle to the development of knowledge and its effective use in a
given area [11]. It is distinct from incremental scientific progress, in that there is a clear break between before and after
the accomplishment. It implicitly has some “positive” connotation as it must comply with the established ethical and
public interest criteria. Finally, it is different from a vision which also represents a long-term objective with a broader
scope but fails to meet at least one of the following criteria:

• well-defined either as a single problem (e.g. Fermat’s Last Theorem) or a set of strongly related problems for
which a framework is needed to provide the basis for tackling them (e.g. relativity theory).

• plausibile, that is it takes into account the existing body of knowledge, including well-established theoretical
limitations e.g. complexity, computability and does not contradict or ignore experimental evidence.

• relevant, that is the resources needed for its achievement are proportionate to the importance of its goals and
the risks for feasibility. Nonetheless, challenges can (and should) be formulated without taking into account the
resources necessary for their accomplishment.

All of the following were once hyped as main breakthroughs: Artificial Intelligence, Fifth Generation Computers, Program
Synthesis, True Concurrency, Web Science. Each item of this list fails to meet at least one of the above criteria. Most
are not well-defined and others are simply not plausible due to theoretical limitations.

5.2.3. The nice theory syndrome
The proper goal of theory in any field is to make models that accurately describe real systems. Models can be used to
explain phenomena and predict system behavior. They should help system builders do their jobs better.
A very common attitude is to work on mathematically clean theoretical frameworks no matter how relevant they can be.
Paul Krugman Nobel Prize in Economics prize says, “… in the academic world the theories that are more likely to attract
a devoted following are those that best allow a clever but not very original young man to demonstrate his cleverness.”
Very often in Computer Science simple mathematical frameworks attract the most brilliant researchers who produce sterile
“low-level theory” that has no point of contact with real computing. This leads to a separation between theoretical and
practical work harmful for the discipline. To quote Einstein, “Make everything as simple as possible, but not simpler”.
The opposite attitude is also observed. Frameworks exist intended to describe real systems such as UML and AADL
constructed in an ad hoc manner. These include a large number of semantically unrelated constructs and primitives. It
is practically impossible to obtain rigorous formalizations and build any useful theory for such frameworks.
We need theoretical frameworks that are expressive enough to directly encompass a minimal set of high level concepts
and primitives for describing systems and amenable to formalization and analysis. As Saint-Exupéry said, “Perfection
is reached not when there is no longer anything to add, but when there is no longer anything to take away”.
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Is it possible to find a mathematically elegant and still practicable theoretical framework for computing systems? As
explained, due to fundamental differences, we cannot expect to have theoretical settings as beautiful and powerful as
for physical systems. There is also a more profound reason: computing systems are human artifacts while the physical
systems are the result of a very long evolution. When you throw a stone it will describe a parabola. There is no such
an intelligible law governing the execution of a program.
Einstein used to say, ”The most incomprehensible thing about the world is that it is at all comprehensible.”
Computer Science deals with building artifacts. The key issue is constructivity, that is, the ability to effectively build
correct systems [1]. As system synthesis from requirements is intractable for complex systems, we should study principles
for building correct systems from components. The aim is to avoid a posteriori monolithic verification as much as possible.
There already exists a large body of constructivity results in Computer Science such as algorithms, architectures and
protocols. Their application allows correctness for (almost) free. How can global properties of a composite system
be effectively inferred from the properties of its constituents? This remains an old, open problem that urgently needs
answers. Failure in bringing satisfactory solutions will be a limiting factor for system integration. It would also mean
that Computer Science is definitely relegated to second-class status with respect to other disciplines.

5.3. Teaching computer science
Computer Science curricula seldom recognize the importance of systems and fail to provide a holistic view of the
discipline. I have the following recommendations:

• Teach students how to think in terms of systems (design process, tools, interaction with users and physical
environment). Computer Science curricula should be extended and enriched by including principles, paradigms,
techniques from Control Theory and Electrical Engineering.

• Teach principles rather than facts (foundations, architectures, protocols, compilers, simulation, etc.). Very often,
courses are descriptive and present details that can be acquired later as needed along professional life. Students
should be prepared to deal with the constant change induced by technology and applications. They also should
be kept aware of the limitations of existing theory of computing. Very often theory makes assumptions that
oversimplify reality.

• Put emphasis on information and computation as universal concepts which are applicable not only to computers
and provide the background for triggering critical thinking, understanding and mastering the digital world.
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