R o A

N \
Imbevmoctional Sywposiun ov Proy g
LN CS /3 ’7) /qg’I%[;ICATION AND VERIFICATION OF
CONCURRENT SYSTEMS IN CESAR

J.P. Queille and J. Sifakis
Laboratoire IMAG, BP 53X
38041 Grenoble Cedex, France

Abstract :

The aim of this paper is to illustrate by an example, the alternating bit protocol,
the use of CESAR, an interactive system for aiding the design of distributed appli-
cations.

CESAR allows the progressive validation of the algorithmic description of a system
of communicating sequential processes with respect to a given set of specifications.
The algorithmic description is done in a high level language inspired from CSP and
specifications are a set of formulas of a branching time logic, the temporal opera-
tors of which can be computed iteratively as fixed points of monotonic predicate
transformers. The verification of a system consists in obtaining by automatic trans-
lation of its description program an Interpreted Petri Net representing it and

evaluating each formula of the specifications.

1. INTRODUCTION

The aim of this paper is to illustrate by an example the use of the system CESAR for

the analysis of the properties of parallel systems.

CESAR is a system for aiding the design and integration of distributed applications.

Its input language is a high level language, inspired from CSP [Hoare 78], for the

algorithmic description of systems of communicating sequential processes. CESAR

allows a progressive validation during the design process by considering two comple-

mentary aspects in a description :

- coherence in data manipulation (static characteristics of data and exchanged
variables, visibility and access rights...)

- validation of the dynamic behaviour of a description with respect to its specifi-
cations.

Behavioural analysis of a system described by a program in the input language is

based on the study of a representation of it in terms of Interpreted Petri Nets

(IPN). Figure 1 illustrates the general principle of the system CESAR : given an

, algorithmic description of a system by a program in a high level language, a model

representing some aspects of the described functioning is obtained by automatic

translation. This model (an IPN) is treated by an analyzer in order to verify the
conformity of the described system to given specifications. Specifications are a set
of formulas of a branching time logic and express correctness properties which must
be satisfied by the system. Using branching time logic instead of linear time logic
as it has often been done [Gabbay 80] [Lamport 80] [Manna 81], is one of the pecu-

liarities of our approach. It is shown that in this logic it is possible to compute

description specification

formulas

program

' L]
H]
! |
+ '
]
t
TRANSIATOR :
L
[]
L}
: :
4 1
]
*

model : IPN }--- - pre ===~ ANALYZER
'
‘

diagnostics

Figure 1

iteratively the interpretation of temporal operators as fixed points of monotonic
predicate transformers.

Our approach presents some similarities to these followed in [Jensen 79] [Lauer 75]
as far as the use of Petri nets as a model for the semantical analysis is concerned.
The example considered throughout this paper is the alternating bit protocol. We

have chosen this example because protocol modelling and verification is one of the
principal application domains for CESAR. Furthemore, as protocols have been the object

of many studies and especially the alternating bit protocol [Bartlett 69] [Bremer 79]

1
1
:

[Schwartz 81] [SIGPN 81], a rather precise comparison between the different approa-
ches can be done.

This paper is organized in four parts. In part 2, the features of the description
language are given and an illustration of its use for the description of the AB-
protocol. After presenting the specification language, a part of the specifications
of this protocol is given (part 3). In part 4 are exposed the analysis principle

applied in CESAR and the theoretical results on which it is based.

2. DESCRIPTION IN CESAR

2.1. The description language

A system is described as a set of communicating sequential processes. Communications
are declared as names of "exchanged variables". Exchange is done by rendez-vous bet-
ween two processes, the one executing an output operation !V:=exp and the other an
input operation ?V where V is the exchanged variable. The process executing the input
operation has a local copy of the exchanged variable also denoted by V (not preceded
by 7).

In addition to exchanged variables, processes have internal variables (which cannot
be used for communication). Internal and exchanged variables are typed. Usual stan-
dard types and type constructors are available but the user can also introduce non-
specified types for which it is not necessary to make manipulation rules explicit.
The basic statement of the language is the vectorial assignment. An input or output
operation can be executed simultaneously with a vectorial assignment. We denote by
nop the assignment.whose right member is the identity function.

Besides the usual control structures, the CESAR description language provides the
two following non-deterministic composed statements :

if b1 > s // b2 > s, /... fi
do bl > s // b2 > s, /l ... od

where the bi's are boolean conditions (guards) and the si's are sequences of state-
ments. Their meaning is the following.
- IF : wait until one of the conditions is true and execute the corresponding
sequence of statements.
- DO : repetition of an IF statement until a statement EXIT is encountered
during the execution of some ;-
For both of these constructs, if more than one conditions are true, the choice is
non~deterministic. If a statement s; begins with an input or output operation, the
condition "the exchange can be executed" (i.e. the rendez-vous is possible) implici-

tely strengthens the guard bi' The interpretation of the IF and DO constructs are

the same as the interpretation of the WHEN and CYCLE statements in [Brinch Hansen 78].

>

2.2. Translation of description programs into interpreted Petri nets

Given a program in the input language, the translator generates an Interpreted Petri

Net (IPN) representing the main aspects of its behaviour. It performs also the type

verification and deletes the internal variables of non-specified types.

The IPN corresponding to a program is obtained by composing the IPN's representing

its sequential processes. The translation method of the process uses a graph grammar,

every rule of which is associated with a rule of the grammar of the description lan-

guage [Queille 81].

An IPN is a Petri net with :

— a vector of variables X,

— a mapping associating with each transition of the net a guarded command c; *a;
where s is a condition on X and a; is a vectorial assignment a; = (X:=ai(X)).

Functioning rules of an IPN are those of standard Petri nets, with the addition of

the following rules :

- a transition can fire only when its associated condition is true,

- when a transition fires, its associated action is executed.

IPN's are a useful tool for representing parallel programs in a non-deterministic way

[Reller 76]. They can be graphically represented by the corresponding Petri net, the

transitions of which are inscribed by the associated guarded commands. By convention,

the always true condition and the identity assignment can be omitted. Thus, if a tran-

sition has no inscription its firing rule is the same as in a standard Petri net.

The translation method is such that each net representing a sequential process is a

safe state graph. The composition rule expresses the rendez-vous by merging transi-

tions and so, it preserves safety of each process. This property is used by the ana-

lyzer in order to simplify predicate manipulations.

2.3 Example : The Alternating Bit Protocol

2.3.1 Presentation of the protocol

The Alternating Bit Protocol (AB-Protocol) introduced in [Barlett 69] to provide a
reliable full-duplex transmission over half-duplex links, is a protocol where the
control information of each transmitted message or acknowledgement is a 'single con-
trol bit which can be used to detect loss of messages or acknowledgements and recover
from them. In this paper, we are not interested in transmission errors which at the
protocol level are not distinguished from losses. Since this protocol is completely
symmetrical we suppose transmission of data in a single direction and describe it by

considering a Sender and a Receiver as follows :

The Sender'sends messages to the Receiver, which answers by sending acknowledgements.
The Sender associates with each message a control bit which takes alternating values.
After sending a message, the Sender does not change the control bit and does not send
the next message before the reception of the corresponding acknowledgement (an acknow-
ledgement with the same control bit). To recover from loss of messages or of acknow-
ledgements, the Sender awaits the acknowledgement during a finite delay (measured by
an arbitrary local clock) and then repeats the same message (without changing the
control bit).

The Receiver behaves symmetrically. After receiving a message, it sends an acknowled-
gement with the same control bit and then awaits the next message (with a control bit
of alternate value) . If the next message does not arrive within an arbitrary local delay,
the Receiver repeats the previous acknowledgement.

If we assume that the line cannot loose all the messages and acknowledgements (i.e.
the line is not cut), this protocol ensures the correct transmission of each message

after a sufficient number of repetitions. Message duplication does not cause any pro-~

blem because the protocol guarantees that any sequence of received messages with the

same control bit are duplications of the same message and the bit is changed by the

Sender for all new messages. Thus, the Receiver has just to skip all the messages of
such sequences except the first one. Symmetrically, the Sender has to skip duplica-

tions of acknowledgements in the same way.

2.3.2 Description programs and IPN's for the AB-protocol

We introduce two non-specified types :

- data to represent the data part of the messages

and the type ack for the acknowledgements as two structures :

(MESSAGE : data ;

B : boolean) ;
type ack = (ACKNOWLEDGEMENT : pattern ;
B : boolean) ;

type nsg

The program for the sender is given in the following page (T means true ; ~ is the

complementation operator).

341

process SENDER
¢ output M 3 nsg ;
input A ¢ ack) ;

X 1 data ;
Y t boolean := 0 ; -~ initial value
begin
loop
send: 'N o= (X, Y) ; == send the nessage
do
receiveack: T->Mm; == receive acknowledgesent
if
acceptack: AB =Y =) Y s2 -y HE == expected acknowledgment
exit 7/
skipack: AB # Y -> nop -- else skip
i //
repeat: T~> 18 z= (X, V) == repeat the message
od
end loop

end SENDER ;

The program for the Receiver is the following :

process RECEIVER
(input NN 3 msg ;
output AA ¢ ack)

Z 3 boolean 3= 0 ; -~ initial value

begin
loop
do
receives T-> MmN ; -- receive message
if
accept: MN.B = 7 -> exit // -- expecteq nessage
skipe 4.3 # Z -> nop ~- else skip
i //
repeatack: T <> tAA = (“ack“, “Z) -- repeat previous acknowledgenent
od;
sendack: !A; t= (“ack", Z), Z 1= “Z -- send acknowledgement
end loop

end RECEIVER ;

The transmission line is described by the two following processes :

process SENDTORECEIVE
¢ input ¥ 3 nsg ;
output MM : asg) ;

begin
loap
get: ™ -- message is sent
it
transmit: T=> UM =N/ -- nessage 1s transmitted
loose: T -> nop == nessage is lost
fi
end loop

end SENDTORECEIVE

342

process RECEIVETOSEND
(input AA t ack ;
output A : ack) }

begin
loop
getack: TAA ; -- acknowledgenent is sent
it
transnitack: T -> {A 3= AA // -- acknowledgenent is transmitted
looseacks T => nop -~ acknowledgenment is lost
fi
end loop

end RECEIVETOSEND ;

Figure 2 presents the IPN obtained by translation of the description program.

J

MM.B=Z || accept

vM.B#2 [skip

transmit/receive - getack/sendack
MM:=M AA:=("ack",2), i,
Z:="2

RECEIVER
x2
repeatack/

getack
AA:=("ack","2)

looseack

repeat/get
M:=(X,Y)

SENDER

transmitack/
receiveack

A.B#Y{'skipack

1N

A.B=Y+Y:="Y|| acceptack

s1

Figure 2

3. SPECIFICATION IN CESAR

3.1 The specification language

The specification language of CESAR is a branching time logic L [Lamport 80]

[Rescher 71] constructed from a set of propositional variables F and the constants
true, false, by using the logical connectives, ~, A, V, =?> and the unary temporal
operators POT and INEV. The abbreviations ALL(f) and SOME(f) are used for respectively
“POT(Tf) and TINEV(TE).

The formulas of L represent assertions about the functioning of a given system if we
consider that propositional variables represent predicates on its state and give a
precise meaning to the operators POT and INEV. In order to do this, we consider tran-
sition systems as a model for L since IPN's can be given a semantics in terms of

them [Keller 76].

A transition system is defined as a doublet § = (Q,») where Q is a set of states and

> is a binary relation on Q (+cQxQ). The relation > represents the actions or tran-—
sitions of the system : gq*q' means that there is an action executable from g which

after its execution leads to a state q'. An execution sequence from a given state q,

is a sequence s of states such that if s is finite then its last element q, is a sink
state (i.e. 9¢"(q.*q")). In order to simplify the notations we take s(k) to be equal
to the k-th element of s if it is defined ; if not, we take s(k)=wwhere wrepresents
some ficticious non accessible state adjoined to Q such that 4qeQ(q-w). Thus, rela-
tion s(0) k s(k) is satisfied iff s(k)#w. The set of all the execution sequences from
a state q will be denoted by EXq.

Given L and a transition system S=(Q,”) we define an interpretation of L as a function
ll associating to each formula of L a truth-valued function of the system state in
the following manner :

v£eF |£]| e [Q{tt,£f}] where [Q{tt,ff}] is the set of the unary predicates on Q
¥qeQ |true| (q) = tt

Vil |Tf|(q) = tt iff |£]| (q) = ff

- ¥, Epel £\ Af,] (0 =et iff 1£,] (@) = tt and [£,] (@ = et

¥fel |POT(E)|(q) = dscEXq JkeN [q ¥ s(k) and |£| (s(k))]

- ¥EeL |INEV(E)|(q) = VscEXq dkaN [q 5 s(k) and |£] (s())]

Obviously, |POT(f)| represents the set of the states q of S such that there exists an
execution sequence starting from q containing a state satisfying |f|. We say that
|POT(f)| is the set of the states from which some state of |f| is potentially reacha-
ble. In the same way, |INEV(f)| is the set of the states from which |f] is inevitably
reachable in the sense that every execution sequence starting from a state of this

set contains a state satisfying |f].

The interpretation of the dual operators ALL and SOME is,
|ALL(f)] (q) = ¥seEXq VkeN [q k s(k) implies |f] (s(k))]

|SOME(£) | (q) = IseEXq ¥keN[q § s(k) implies |f] (s(k))1

Remark that if the state q of a transition system satisfies |ALL(f)|then all the sta-~
tes of all the execution sequences from q verify |f]. Also, if a state q satisfies
|SOME(f)| then there exists some execution sequence from q such that all its states
verify |f].

The properties of a branching time logic similar to L have been studied in [Ben-Ari 81]

where a decision procedure and a complete deduction system are given.

3.2 Example

In this section we give examples illustrating the use of the specification language
for expressing system properties. The formulas of this languages are constructed from
the following set of propositional variables

~- propositional variables representing predicates on the variables of the description
program (only program variables of specified types are consigered),

- the propositional variable Init which characterizes the set of all the possible

initial (control and data) states,

- propositional variables on the control of the system referring to names of actions
(labels) defined in the description program ; for each labelled action a, the pro-
positional variables enable a and after a are introduced such that |enable a| and
|after a| characterize respectively the set of the states from which this action
can be executed and the set of the states reached just after the termination of this

action. The following abbreviations are used :

. enable (al,...,ak) = i§ enable a,, where {al,...,ak} is a set of actions,

1
. enable P = enable A(P) where P is a process the set of the actions of which

is A(P),

. after (al,...,ak) = igl after a,, where {al,...,ak} is a set of actionms.

Obviously, a large number of properties can be formulated concerning the behaviour

of a system. For methodological reasons, it is interesting to classify the most impor-
tant of them as this has already been done for linear time logic in [Gabbay 80] [Lam-—
port 80] and [Manna 81]. Hereafter we introduce three families of properties and give

specifications of the AB-protocol in terms of them.

Invariant properties

Invariant properties express the fact that a predicate P, constructed by using only
logical operators, is always true.
They are formulas of the type : Init ==> ALL(P)

In the case of the AB-protocol such formulas can be used to express

* Init => ALL(after(send,repeat) ==> (M.B=Y))
i.e. after the emission of a message the value of the control bit emitted

M.B is equal to the control bit Y of the SENDER.

* Init => ALL(after receive ==> (MM=M))
i.e. after the reception of a message the value of the received message MM ié
equal to the value of the emitted message M, i.e. the line does not modify
the transmitted information.

* EEEE ==> ALL(after receive ==> (MM.B=Y))

i.e. after reception of a message the value of the received control bit MM.B

is equal to the value of the control bit of the SENDER at the same time.

Liveness properties

These properties express the fact that an action can always be executed.

~ Liveness of an action a : from every state q, successor of a state satisfying Init,
there exists an execution sequence of EXq containing a state which enables a. This
is expressed by the formula : Init ==> ALL POT enable a

~ Liveness of a set of actions {al,...,akl ¢ each one of the actions a; is live. This

can be expressed by the formula : Init => izl(ALL POT enable ai).

Or, by distributivity of ALL with respect to A : Init => ALL(iZ POT enable ai).

1

- Absence of deadlock for a set of actions {a,,...,a,} : from every state q, successor
4 L3

of a state satisfying Init, there exists an execution sequence of EXq which contains
a state enabling at least one of the actions a;. This is expressed by :
Init ==> ALL POT enable (al,...,ak),
Some interesting liveness properties of the given example are (starting from the
weakest ones) :
* Init => ALL POT enable (SENDER), i.e. absence of deadlock for the SENDER
* Init ==> ALL POT enable (RECEIVER), i.e. absence of deadlock for the RECEIVER
* Init ==> ALL POT enable send, i.e. the action of emitting a new message is live

* Init ==> ALL POT enable accept, i.e. the action of receiving a new message is
live.

Properties of response to an action

They are properties expressing the fact that an action b is a consequence of an
action a.

~ Possible response : if an action a is executed then it is possible that an action

b becomes executable. This is expressed by the formula :
Init => ALL(after a => PQOT enable b)

- Inevitably possible response : if an action a is executed then necessarily b becomes

executable. This is expressed by the formula :

Init => ALL(after a =—> INEV enable b)

346

some interesting properties of this family for the given example are :
* Eﬂiﬁ => ALL (after (send,repeat) => POT enable receive)
i.e. the line from the SENDER to the RECEIVER is able to transmit messages.
* Init => ALL (after(sendack,repeatack) ==> POT enable receivack)
i.e. the line from the RECEIVER to the SENDER is able to transmit acknowled-
gements.
* Init => ALL(after(send,repeat) ==> INEV enable receivack)
i.e. after sending a message the SENDER waits for an acknowledgement.
* Init => ALL[(after accept ==> INEV(enable sendack)) A
- {;EEEE sendack => AA.B:;;T;;]
i.e. when the RECEIVER receives a new message, it will send the corresponding

acknowledgement.

4, PROVING SPECIFICATIONS IN CESAR

4.1. The results used by the analyser

In this paragraph we present the basic theoretical results used by the analyser. The
method consists in iteratively computing fixed points of predicate transformers
obtained from the IPN under study. Fixed points are precisely the interpretations of
temporal operators as it is shown by the following results proved in detail in
[sifakis 79].
Let S = (Q,?) be a transition system. It is convenient to identify any unary predicate
on Q with its characteristic set. (2Q,U,n, M) representé the lattice of predicatesand
[2Q - 2Q] the set of the internal mappings of 2Q (predicate transformers). For
f,ge[ZQ - 2Q], fug, fng, f, f and Id denote the functions fug = Ap. £(P)ug(P),
fng = AP. £(P)ng(P), f = AP, £(P), £ = AP. £(P), Id = AP. P.
We also introduce the notations :

£* = 1dufuslu... £t = Ly £l

it €

£ = Idnfnfzn... fkn... = a £t
EN

Definition 1 : Given S = (Q,*) a transition system, PeZQ and qeQ, we define the pre-
dicate transformer pre : pre P(q) = dq'(q>q’ and P(q")).

Proposition | :

Let f be a formula of L, S = (Q,>) a transition system such that + be image-finite
and || an interpretation of L in S.

a) |ALL(f)| = pre®|f|

b) |SOME(f)]| = (Idn(preupre))™|f|

Proposition 2

Let f be a formula of L, § = (Q,>) a transition system such that + be image-finite

and || an interpretation of L in S.

347

a) IPOT(f)] = pre*lf]
b) |INEV(f)| = (Id u prenpre)” |£]

4.2 The principle of the verification method

According to the results of the preceding section, it is possible to compute itera-
tively the interpretation of the temporal operators. We present hereafter the prin-
ciple of the verification method applied by the analyzer : g
Let f be a formula to be verified on a given program PROG and N the IPN obtained by %
translation from PROG. Denote by F = {fl""’fn} the set of the propositional variablegj

‘

occuring in f.

— Associate a boolean variable with each place of N.

= For each after acF, express ,35535 al as a predicate on these variables (if necessa-
ry, N is transformed by adding new places). Q

= For each enable acF, express |enab1e al as a predicate on the boolean control va-
riables and program variables.

~ Express Init as a predicate representing the set of all possible initial states
(knowing the initial marking of the net and the initial values of program variables),

- Reduce N without transforming the places which are involved in the expression of
the predicates of |F| ={|£l|,...,[fn|}. Reducing N consists in applying transforma-
tion rules preserving the property expressed by f in order to obtain an IPN of
less complexity. »

- Compute the predicate transformer pre associated to the reduced IPN and then, the
interpretation of temporal operators following the evaluation order imposed by the
formula f. During these computations simplification rules are applied, taking advan-
tage of the fact that sequential processes correspond to state graphs. Given that
there is no criterion on the speed of the convergence of these iterations, the user
can impose a maximum number of iterations.

= If some iterative computation yields no result within the acceptable number of ite-
rations then the analyzer fails to give an answer. If not, it evaluates [£]: the

property described by f is wrified iff lf] (@) = tt for every state q.
4.3 Example

For the AB-protocol, the liveness property Init => ALL POT enable (SENDER) is veri-
fied by computing successively :

1) Init = slmlalrlyz. Intersection operators are omitted. The boolean variables ;,ms,

ai,ri, represent the fact that the places with the same name have a token

(see figure 2).
2) enable(SENDER) = Slmluszm1U82a2US3 _
3) the interpretation of POT enable (SENDER) as the limit of : Pk+1=Pkupre(Pk) with

348

P, = enable (SENDER).

The following relations are invariants generated by the translator expressing the
fact that each process is a safe state graph and they are used to simplify the boole-

an expressions computed by the analyzer :

5.8 §3 us, s 53 us E s, = T (T is the always true predicate)

5] 3

2r3urlr2r3ur1r2r3 =T

mmumm=T

17277172
a]azuala2 T
The first step of the computation gives, pre(PO) 3ur2ur3uazum2. Thus,
p1 = Poupre(PO) = T and POT enable (SENDER) =

4) ALL POT enable (SENDER) =
5) [Init ==> ALL POT enable (SENDER)] = T (the property is verified).

5. CONCLUSION

We have tried to illustrate with an example, the AB-protocol, the analysis method
applied in CESAR.

This method is based on the idea of translating the description of a system, given

in some high-level formalism, into a model for which there exists a verification theo-
ry. This approach presents the advantage, on the one hand of abstracting from all the
details which are not relevant to the verification of the behaviour (for example,

data represented by variables of non-specified types), on the other hand, of displaying
the control structure (invariants, for instance). In particular, the translation into
a Petri net gives the possibility of naming control points which makes the expression
of the properties easier.

The language of the formulas allows the expression of a great number of foundamental
properties (invariant properties, liveness properties, properties of response to an
action). The use of such a language is interesting from a methodological point of view
as it provides the possibility of classification and comparison of the properties
according to various criteria. Also, the representation of properties by formulas
using temporal operators leads to mechanizable proofs provided that a method for
obtaining from a given description the associated predicate transformer pre be given.
Computing fixed points of monotonic functions is, from a practical point of view, a cen-
tral problem and it determines the limitations of our approach. Appart from the limi-
tations of theoretical nature (non-decidability of the "interesting" system properties)
serious problems appear when applying iterative methods which require the manipulation,
simplification and comparison of predicates on many variables. For this reason, the

current version of CESAR can verify formulas with variables of type boolean, enumerated

and integer with known bounds, only.In order to simplify computations, the analyzer

349

encodes the enumerated and bounded integer variables so that it manipulates only
boolean variables ; this coding is completely transparent to the user.

However, in spite of these simplifications the problems due to the complexity of the
analyzed system remain crucial. We intend to increase the efficiency of the applied

method by working in the following directions :

~ Use of methods for approximating fixed points of monotonic operators in a lattice
[Cousot 78] [Clarke 80],

- Reduction of the complexity of the iterative computations by decomposing global E

assertions into a set of local assertions,
= Study of a methodology of description since the possibility of proving a property

greatly depends on the way the description is built.
REFERENCES

[Bartlett 69] K.A. BARTLETT, R.A. SCANTLEBURY and P.T. WILKINSON "A note on re-
liable full~duplex transmission over half-duplex links" CACM, Vol. 12, N°5, May 1969,
pPpP. 260-261.

[Ben-Ari 81] M. BEN-ARI, Z. MANNA and A. PNUELI "The temporal logic of bran-
ching time" Proc. 8th Annual ACM Symp. on Principles of Programming Languages, Jan.
1981, pp. 164-176.

[Bremer 79] J. BREMER and O. DROBNIK "A new approach to protocol design and
validation" IBM research report RC 8018, IBM Yorktown Heights, Dec. 1979

[Brinch Hansen 78] P. BRINCH HANSEN "Distributed Processes : A concurrent programming
concept" CACM, Vol. 21, N°5, Nov. 1978, pp. 934-941.

[Clarke 80] E.M. CLARKE Jr. "Synthesis of resource invariants for concurrent
programs' ACM Trans. on Progr. Languages and Systems, Vol. 2, N°3, July 1980, pp.
338-358.

[Cousot 78] P. COUSOT and N. HALBWACHS "Automatic discovery of linear restraints
among variables of a program" Proc. 5th ACM. Symp. on Principles of Programming Lan-
guages, Tucson, Ariz., 1978, pp. 84-96.

[Gabbay 80] D. GABBAY, A. PNUELLI, S. SHELAH and J. STAVI "On the temporal
analysis of fairness" Conference Record of the 7th Annual ACM Symposium on Principles
of Programming Languages, Jan. 1980, pp. 163-173.

[Hoare 78] C.A.R. HOARE "Communicating Sequential Processes" Comm. ACM 21-8,
August 1978, pp. 666-667.
[Jensen 79] K. JENSEN, M. KYNG and O.L. MADSEN "A Petri net definition of a

system description language" Semantics of Concurrent Computation in LNCS, Springer
Verlag, July 1979, pp. 348-368.

[Keller 76] R.M. KELLER "Formal verification of parallel programs" Comm. ACM
19, 7 (July 1976), pp. 371-384.
[Lamport 80] L. LAMPORT ""Sometime" is sometimes "not never" - On the temporal

logic of programs" Proc. of the 7th Annual ACM Symp. on Principles of Programming
Languages, Las Vegas, Janv. 1980, pp. 174-185.

[Lauer 75] P.E. LAUER and R.H. CAMPBELL "Formal semantics of a class of high
level primitives for coordinating concurrent processes' Acta Informatica 5, pp. 297-
332 (1975).

[Manna 81} 7. MANNA and A. PNUELI "Verification of concurrent programs : The
temporal framework" Intern. Summer School, Theoretical Foundations of Programming

Methodology, Munich, July 1981.

[Queille 81] J.P. QUEILLE "The CESAR system : An aided design and certification
system for distributed applications" Proc. 2nd Int. Conf. on Distributed Computing
Systems, April 1981, pp. 149-161.

[Rescher 71] N. RESCHER and A. URQUHART "Temporal Logic" Springer Verlag, Vienna,
1971.
[Schwartz 81] R.L. SCHWARTZ and P.M. MELLIAR-SMITH "Temporal logic specification

of distributed systems" Proc. 2nd Int. Conf. on Distributed Computing Systems,
April 1981, pp. 46-454.

[sifakis 79] J. SIFAKIS "A unified approach for studying the properties of tran-
sition systems" Research Report RR N° 179, IMAG December 1979 (Revised December 1980),

to appear in TCS January 1932.

[SIGPN 81] Special Interest Group : Petri nets and related system models.
Newsletter N° 7, Feb. 1981, p-. 17-20.

351

