An Algebraic Framework for Urgency

Sébastien Bornot and Joseph Sifakis
Sebastien.Bornot@imag.fr Joseph.Sifakis@imag.fr

VERIMAG, 2 rue Vignate, 38610 Gieres, France

1 Introduction

Timed formalisms are extensions of untimed ones by adding clocks, real-valued
variables that can be tested and modified at transitions. Clocks measure the time
elapsed at states when some implicitly or explicitly given time progress conditions
are satisfied. Timed automata, timed process algebras and timed Petri nets can
be considered as timed formalisms.

The semantics of timed formalisms can be defined by means of transition sys-
tems that perform time steps or (timeless) transitions. Clearly, such transition
systems must satisfy well-timedness requirements related with the possibility
for time to progress forever. It is recognized that the compositional description
of timed systems that satisfy even weak well-timedness requirements, is a non
trivial problem. An inherent difficulty is that usually, the semantics of operators
compose separately time steps and transitions by preserving urgency: time can
progress in a system by some amount if all its components respect their time
progress constraints. This leads to very elegant semantics based on a nice “or-
thogonality principle” between time progress and discrete state changes. Parallel
composition and other operators have been defined according to this principle for
timed process algebras and hybrid automata. However, composing independently
time steps and transitions may easily introduce timelocks. It is questionable if
the application of a strong synchronization rule for time progress is always ap-
propriate. For instance, if two systems are in states from which they will never
synchronize, it may be desirable not to further constrain time progress by the
strong synchronization rule.

In several papers ([SY96,BS98,BST97]) we have studied compositional de-
scription methods that are based on “flexible” composition rules that relax ur-
gency constraints so as to preserve a weak well-timedness property that we call
time reactivity. The latter means that if no discrete transition can be executed
from a state then time can progress. Contrary to other stronger properties, time
reactivity is very easy to satisfy by relating directly time progress conditions and
enabling conditions of discrete transitions. We have proposed a simple sub-class
of timed automata, called timed automata with deadlines that are time reactive
and we have shown how can be defined choice and parallel composition opera-
tors that preserve time reactivity. In this paper, we present a unified algebraic
framework that encompasses the already presented results and provides laws for
choice and parallel composition on timed systems, modulo strong bisimulation.
The algebraic framework is characterized by the following.

— Timed systems are obtained as the composition of timed actions by using
operators. A timed action is a discrete transition, labeled with an action
name, a guard, a deadline and a jump. Guards and deadlines are predicates
on clocks characterizing respectively, the states at which the action is enabled
and the states at which the action becomes urgent (time progress stops). We
require that the deadline implies the corresponding guard which guarantees
time reactivity. The jumps are functions that specify clock assignments when
the action is executed.

— The operators are timed extensions of untimed operators. They preserve

both time reactivity and activity of components. The latter is the property
meaning that if some action can be executed after waiting by some time in a
component, then some action of the composed system can be executed after
waiting by some (not necessarily the same) time.
We propose timed extensions of choice and parallel composition operators
that are associative and commutative and are related by an expansion the-
orem. Choice operators are parameterized by an order relation on actions
that is proven to be useful, in particular to define parallel composition with
maximal progress.

— In addition to the usual laws of untimed operators, timed operators satisfy
specific laws reflecting the structure of timed actions and assumptions about
their synchronization. We identify different synchronization modes that take
into account the possibility of waiting of the components and study their
properties.

The paper is organized as follows. Section 2 presents the basic model, which
is essentially automata with clocks, an abstraction of timed automata without
the usual restrictions on guards and assignments. Section 3 and section 4 present
respectively, basic results on priority choice operators and parallel composition,
such as associativity, activity preservation and the expansion theorem. Section
5 presents the algebraic framework.

2 Timed Systems

Definition 1. Timed systems
A Timed System is :

— A discrete labeled transition system (S, —, A) where
e S is a discrete set of states
e A is a finite vocabulary of actions
e ->C S x A xS is a discrete transition relation
— A dense set V of states isomorphic to R}
— A labeling function h mapping discrete transitions, elements of —, into timed
transitions: h(s,a,s’) = (s, (a,9,d, f),s'), where
e g, d are respectively the guard and the deadline of the transition. Guards
and deadlines are unary predicates on V' such that d = g.
o fisajump f:V = V.

According to the above definition, a timed system can be obtained from an
untimed one by associating with each action a a timed action (a,g,d, f).

Definition 2. Semantics of timed systems
A state of a timed system is a pair (s,v), where s € S is a discrete state and
v € V. We associate with a timed system a transition relation -C (S x V' x
(AURL) x (S x V). Transitions labeled by elements of A correspond to discrete
state changes while transitions labeled by non-negative reals correspond to time
steps.

Given s € S, if {(s, ai, i) }ier is the set of all the discrete transitions issued
from s and h(s,a;, s;) = (s, (ai, gi,di, fi), si) then :

~VieIVYveR, . (s,0) B (s;, fi(vy)) if gi(v) .

- (s,v) 4 (s,v+1)if Vi' <t .cs(v+1t') where c; = = \/;.; d; and v + ¢ is the
valuation obtained from v by increasing all the components of v by t.
We call ¢ the time progress condition associated with the discrete state s.

We consider timed systems such that for any state s the time progress condi-
tion ¢y is right-open. The semantics of a timed system is its associated transition
relation, modulo strong bisimulation.

Notice that the simplest timed system is a single transition labeled with the
timed action (a, g,d, f). The guard g characterizes the set of states from which
the timed transition is possible while the deadline d characterizes the subset of
these states where the timed transition is enforced by stopping time progress.
The relative position of d with respect to g determines the urgency of the action.
For a given g, the corresponding d may take two extreme values: d = g, meaning
that the action is eager, and d = false, meaning that the action is lazy. A
particularly interesting case is the one of a delayable action where d = g | is the
falling edge of a right-closed guard g (cannot be disabled without enforcing its
execution). The above cases are illustrated in figure 1.

g

d=g eager
d=gl delayable
d = false lazy

Fig. 1. Using deadlines to specify urgency.

The condition d = g guarantees that if time cannot progress at some state,
then some action is enabled from this state. Restriction to right-open time
progress conditions guarantees that deadlines can be reached by continuous time
trajectories and permits to avoid deadlock situations in the case of eager tran-
sitions. For instance, consider the case where d = g = x > 2, implying the time
progress condition x < 2, which is not right-open. Then, if x is initially 2, time
cannot progress by any delay ¢, according to definition 2 above. The guard g
is not satisfied either. Thus, the system is deadlocked. The assumptions above
ensure the property of time reactivity, that is, time can progress at any state
unless some untimed transition is enabled.

3 Choice Operators

3.1 Non-deterministic Choice

Branching from a state s of a timed system can be considered as a non-deterministic
choice operator between all the timed transitions issued from this state. The
resulting untimed transition relation is the union of the untimed transition re-
lations of the combined timed transitions. The resulting time step relation is
the intersection of the time step relations of the combined timed transitions. We
introduce standard process algebra notation to represent timed systems [BK85].

A discrete labeled transition system (S, —, A) can be represented as a set of
equations of the form s =)7, a;.s; where {(s,a;,s;)}icr is the set of all the
transitions issued from s € S and the right-hand sides of the equations are terms
p of the form,

pu= Nil |s€S | ap | p+p

where Nil is a constant and a € A.
The semantics is defined, as usual, by the rules

ap>p
p1 = pi' implies pi1 +p2 = pi’ and po +p1 = pi’
5= ;e @i-s; implies s HKsViel

As usual, we consider that + is an associative, commutative and idempotent
operator with Nil as neutral element. The term), a;.s; is taken to be Nil,
if 1=0.

We extend the algebraic notation to timed systems (S, A, —,V,h) by re-
placing untimed actions by the corresponding timed actions via the labeling h.
The timed extension of the term s =) . a;.s; is represented by the equation
s =y bi.si, if h(s,ai,8;) = (s,b;,8;) with b; of the form (a;, gi,d;, f;). We
consider the b;’s as uninterpreted symbols and simplify the timed terms by as-
suming that + is an associative commutative and idempotent operator with Nl
as neutral element. This is obviously compatible with strong bisimulation.

3.2 Priority Choice

Motivation

It is often useful to consider that some priority is applied when from a given
state several timed actions are enabled. Intuitively, applying priority implies
preventing low priority actions from being executed when higher priority actions
are enabled. This amounts to taking the non-deterministic choice between the
considered actions by adequately restricting the guards of the actions with lower
priority.

Consider, for example, two timed transitions (s, (a;,g:,d;, fi),si), for i =
1,2, with a common source state s. If action a; has lower priority than as in
the resulting timed system, the transition labeled by as does not change while
the transition labeled by a; would be of the form (s, (a1,9';,d'1,71), s1), where
gi=>granddy =di Ng';.

For untimed systems, gi is usually taken to be g; A g2, which means that
whenever a; and a, are simultaneously enabled, a; is disabled in the prioritized
choice. However, for timed systems other ways to define g; are possible. One
may want to prevent action a; to be executed if it is established that as will be
eventually executed within a given delay. For this reason, we need the following
notations.

Definition 3. Modal operators
Given a predicate p on V, we define the modal operators ¢y p (“eventually p
within k”) and © 4, p (“once p since k”), for k € R4 U {o0}.

Orp ifIeRL 0<t <k plv+t)
CSrpWif#eRL0<t<k.- T eV.v=0v +tApH)

We write Op and © p for O p and © o, p, respectively, and Op and & p for
—=$=p and =© —p, respectively.

Coming back to the previous example, we can take ¢g; = g1 A =Opgo or even
g1 = g1 A O=gs. In the former case, a; gives priority up to as if as is eventually
enabled within & time units. In the latter case, a; is enabled only if as is disabled
forever.

Notice that for classes of timed systems such as timed automata [AD94]
modalities can be eliminated to obtain predicates without quantifiers. For ex-
ample, O(1 < z < 2) is equivalent to < 2. We shall be using in the sequel
guards and deadlines with modalities.

Definition and Results

For timed systems, priorities between actions can be parameterized by the
time actions of lower priority leave precedence to actions of higher priority. This
motivates the following definition.

Definition 4. Priority order
Consider the relation <C A x (NU{oo}) x A. We write a1 <y as for (a1, k,a2) €<
and suppose that

— < is a partial order relation for all kK € N U {oo}
— ay <y as implies VE' < k. a1 <y a2
— a1 <p az A ay <; as implies a; <p4; as

Property : The relation a; < as = Ik a; <y a- is an order relation.

Definition 5. Binary priority choice

Let Br = {bi}icr and By = {b;};cs denote sets of timed actions with b; =
(ai, 9i,d;, fi), for i € IUJ. The operator F is a binary operator on timed system
defined by R

(Ziel bi-si)_'_(zj'e,] b]‘.S]’) = (Zze[(bZ\BJ)Sl) + (ZjeJ(bj\BI)'sj) With

bi\B; = (ai,9:\Bs,di\By, f:)
9i\Bs = gi \ /\(ajygjvdjvfj)EBlvai<kaj ~Org;
di\B‘] = di A gi\B‘] = di A /\(ajygj7djyfj)€BJ,ai<kﬂj _|<>kgj

and the b;\By’s are defined in a similar manner.

From the above definition it is clear that priority restrictions are applied
Illutually with respect to actions that are not on the same side of the operator
+.

Notice that if a; <k as then in b1.81-/|:b3.82 = bl\{bg}.s1 + b2\{b1}.82 =
b1\{b2}.s1 + ba2.s2, a1 is disabled if ay will be enabled within & time units.

Consider the guards g1, g» of the actions a1, as. Figure 2 gives the guard
9'y = g1\{b2} obtained when g; is restricted by considering the priority orders
a1 <p a2, a1 <1 G2, @1 < A2.

For b; = (a;,9:,ds, fi), 1 = 1,2, two timed actions, we write by = bs if a1 = as,
g1 = g2, dy =dy and f1 = f.

Lemma 6. For a timed action b and sets of timed actions B, By, Bs,

b\{b} UB = b\B
(0\B1)\B; = b\(B, U B,)

Notice that the operator + is commutative and Nil is the neutral element.
Commutativity results from the symmetry of the definition and the commuta-
tivity of +. Moreover, for any term p, p+Nil = p as Nil cannot restrict p and
Nil is the neutral element for +.

It is important to notice that + is not distributive with respect to + :

(b1.81 + b2.82):f\-b3.83 ;é (b1.81$b3.83) + (b2.821b3.83) equivalent to
bl\{b3}.81+ bg\{b3}.82 + b3\{b1, b2}.83 ;é
bl\{b3}.81 + b3\{b1}.83 + bg\{b3}.82 + b3\{b2}.83

e N <o

g1 . S : = a1 <1 a2
, : Lo f .

g1 : — : L 01 <0 02

01 2 3 456 7 8 9

gi u
g . |

Fig. 2. Different priorities for a» over a;

In fact, if a3 (the label of b3) is the action with the lowest priority then in (b .s; +
by.s2)+bs.s3, bs is restricted jointly by both b; and by , while in (by.s1+bs3.53) +
(b2.s2+Dbs.s3), the non deterministic choice of bz is restricted separately by by
and bs.

Proposition 7. The binary priority operator is associative i.e., for timed ac-
tions bz = (ai7 Gi, di: fl)7

(Cier bi-si) (X e b5-57) F(Xrex br..$k) = ~
(Xier bi-si)+((X e bj-55)+ ek be-sk)

The above proposition allows the definition of a n-ary priority choice opera-
tor. We denote by), b;.s; the term obtained by combining the terms {b;.s; }ier
by means of +.

Proposition 8. Reduction to non-deterministic choice
Priority choice can be expressed in terms of non-deterministic choice. For any
set of terms {b;.s;}icr with b; = (ai, gi, di, fi)

/z?bi-si = Z b'zsz

el i€l

with Vi = (ai, 9'5, d's, fi), 9's = 9i N Mgy <0, 7OrYs and d's = di Ng';.

Proposition 9. Activity preservation
The n-ary priority choice operator defined above satisfies the following properties.

1. 0gi = O(9'i V Vaica, 93)
2. <>Vie[gi = <& Vie[g’i

This proposition has been proved in [BS98].

The first property means that if action a; can occur in the non-prioritized
choice then either a; can occur in the prioritized choice or some action of higher
priority. .

The second property follows from the first and simply says that) preserves
activity : if some action can be executed in the non-prioritized choice then some
action can be executed in the prioritized choice and vice versa.

Non-deterministic choice is a special case of priority choice when the priority
order is empty. Priority choice is also commutative, associative, idempotent and
Nil is the neutral element. For these reasons, we will use priority choice to
describe terms, in the sequel.

4 Parallel Composition

In this section, we propose a general method for the definition of parallel com-
position operators for timed systems as an extension of parallel composition for
untimed systems.

4.1 Parallel composition of untimed systems

We consider that for parallel composition of untimed terms the following frame-
work is given.

— The action vocabulary A is provided with an operator | such that (A4,1) is
a commutative semi-group with absorbing element L. Words of this monoid
represent the action resulting from the synchronization of their elements.
The absorbing element | means impossibility of synchronization.

— A parallel composition operator || on terms which is supposed to be associa-
tive, commutative, has Nil as neutral element and is defined by an expansion
rule of the form:

Ifp1=3c; aisiand pr =3, ; a;.s; then

pillp2 =) aitsillp) + Y aplsillp) + Y ailag(sillsy) (o)
il jeJ (4,5)EIxJ

where I' and J' are subsets of I and J respectively.

The first two summands correspond to behaviors starting with interleaving

of actions. The sets of interleaving actions may be empty, depending on

the semantics of || The third summand contains terms with synchronization
transitions where only terms such that a;la; # L appear.

When such a parallel composition operator is used to compose sequential
systems, it is important to combine interleaving and synchronization so as to
satisfy two often conflicting requirements:

— activity preservation, that is, if in one of the components some action is
enabled then in the product some action is enabled too.

— magzimal progress, that is, when in the product both synchronization and
interleaving transitions are enabled, synchronization is taken.

Clearly, it is easy to satisfy each requirement separately.

— If all the actions interleave (I = I',J = J' in the expansion rule) then ac-
tivity is preserved. However, in this case to achieve maximal progress the
description language should provide with mechanisms for eliminating dy-
namically all the interleaving transitions that are systematically introduced.
This is the approach adopted in languages such as CCS [Mil89] where all the
actions interleave and a global restriction operator is often applied to prune
off interleaving transitions.

— Maximal progress can be easily achieved by not allowing interleaving of
actions that may synchronize. However, in this case there is an obvious risk of
deadlock when the synchronization actions do not match. This point of view
is adopted in languages such as CSP [Hoa85], where actions are partitioned
into two classes, synchronizing and interleaving actions.

To our knowledge, there exists no specification methodology for writing un-
timed specifications satisfying both requirements. We show that such a method-
ology can be defined for timed systems due to the possibility of controlling
waiting times by means of priority choice operators.

4.2 Parallel composition of timed systems

We extend the parallel composition operator || to timed systems in the following
manner:

extension of | We assume that the operator | can be extended componentwise
on the set B of timed actions b of the form (a,g,d, f) where a € A, in
such a manner that (B, 1) is a commutative semi-group with a distinguished
absorbing element L. We take (L, g,d, f) = L for any g, d, and f.
As ambiguity is resolved by the context, and to simplify notation, we overload
the operator I.

extension of the priority order If < is a priority order on A we suppose that
it is preserved by |

Yai,as,a3 € A . a; < ax implies ailaz <y aslas

extension of || The parallel composition operator || for timed systems is defined
by extension of the expansion rule («) for untimed terms, where b; is the
timed action associated with a;.

Ifp, = Z b;.s; and py = Z bj.s; then

ieJ JjeJ
pillpe = bi(sillpa) # bi(sillp) + D bilby(sills5)
el jeJ’ (¢,4)ETXT

Proposition 10. The timed extension of || is associative, commutative, idem-
potent and Nil is the neutral element.

Proposition 11. If all the actions interleave then || preserves activity

Proof. (hint) If in the expansion rule priority choice is replaced by non-deterministic
choice, activity is trivially preserved due to the presence of interleaving actions.
Proposition 9 says that replacing non-deterministic choice by priority choice
preserves activity.

Proposition 12. The parallel composition guarantees mazximal progress if the
priority order gives infinite priority to synchronizations :

Vai,as € A . a1 <o a1las and as <o a1las

5 The Algebraic Framework

In this section we develop an algebraic framework for the specification of timed
systems by using (priority) choice and parallel composition. We study a simple
algebra for the composition of timed actions and deduce laws for terms.

5.1 Composition of Guards and Deadlines

We show how the commutative semi-group (B, |) can be defined. We assume that
the composition of timed actions b; = (a;, 9:,d;, fi),7 = 1,2, is a timed action of
the form b1 |b2 = ((Ll |(Lz, g1 |gz, d1 |dQ7 fl |f2)

The definition of f;|fs does not pose particular problems. An associative and
commutative operator | can be defined on jumps (consider for instance, the easy
case where synchronizing actions transform disjoint state spaces).

We suppose that the guard g;lgo is defined as a monotonic function of gy
and go called synchronization mode, of the general form

gilg2 = (91 Am(g2)) V (m(g1) A g2)

where m is a function such that:

- Vg .g=m(g)
— Vg,9' . m(gVg')=m(g)Vm(g)
- Vg,9' -m(gAm(g")Vm(g) Ag')=m(gAg')

Proposition 13. For guards (state predicates) g1, go and | synchronization
mode,
(91192)1g5 = g11(g21g3)
gilga = g21g1
gGiNg2 = gilg2 = g1 Vg2
(91V g2)lgs = (911g3) V (g2193)

The above properties imply that synchronization may occur only if at least
one of the synchronizing actions is enabled. Furthermore, if both synchronizing
actions are enabled at a state then synchronization is enabled. Distributivity of
the composition of guards with respect to disjunction is an important property

for the parallel composition to preserve strong bisimulation. More precisely, if S’

,9,d,
(a 9.4 f)

is the system S where we replace a transition s s' by the two transitions

,91,d1, ,g2,d2,
s (a e f s" and s (a 9282 f s' such that g = ¢1 V g2 et d = dy V d3 then S and

S’ are bisimilar and their parallel composition with a third system should give
bisimilar systems.

In previous papers [BST97] we use the following synchronization modes for
their practical interest:

— and-synchronization when g;1gs = giand g» = g1 A g».

— max-synchronization when g;1gs = g1maz g2 = (© g1 A g2) V (91 A © g2).
This condition characterizes synchronization with waiting.

— min-synchronization when g;lgs = gimin g = (Og1 A g2) V (g1 A Og2).
This condition characterizes synchronization by interrupt, in the sense that
synchronization occurs when one of the two actions is enabled provided that
the other will be enabled in the future.

— or-synchronization when gilgs = gi0or g2 = 91 V g2

It is trivial to check that the above functions are indeed synchronization modes.

For a given synchronization guard ¢, g2, the associated deadline d; |dy must
be such that d;ldy = g11gs, to preserve time reactivity. On the other hand, it is
desirable to preserve urgency which means d; ldy = d; Vd,. For maximal urgency
and time reactivity we take djlds = (g11g2) A (dy V d2).

5.2 Laws for Extended Guards

We call extended guard any pair of predicates G = (g,d) such that d = g. We
extend the equivalence on predicates to equivalence on extended guards : if g; is
equivalent to g, (noted g; = g2) and d; is equivalent to d» (noted d; = dy) then
(91,d1) is equivalent to (gz,d2) (noted (g1,d1) = (g2,d)).

IfG; = (gi,d;), fori = 1,2, are two extended guards and | is a synchronization
mode, we take G1|G2 = (g1|g2,g1|92 AN (d1 \Y dg))

Proposition 14. If gi1ga = (g1 Am(g2)) V (m(g1) A g2) and G; = (gi,d;), for
i=1,2, then G11G2 = (g11g2, (di Am(g2)) V (m(g1) Adz)) .

This proposition says that the deadline of the synchronization guard has
the same form as the synchronization guard. The following are useful laws that
follow as a direct application of the proposition.

Gland Gz = (91 /\QQ,dl /\gz \Y g1 N d2)

Gror Gy = (gl V g2,d1 V dg)

Gimaz Gy = (g1maz g2, (i1 A g2) V (© g1 A g2))

Gimin G2 = (g1min go, (di A Og2) V (Cg1 A g2))

Proposition 15. For extended guards G; = (g;,d;), i = 1,2,3, and | a synchro-
nization mode, the following laws hold

(G1 |G2)|G3 - G1|(G2|G3)

(G11G3) = (G21G)

(Gror G2)IGs = (G11G3)or (G21G3)

It is important to notice that any expression involving extended guards and
synchronization modes can be reduced to an equivalent extended guard.

5.3 Laws for Timed Actions

We naturally lift the structure of extended guards to timed actions b = (a, G, f).
For b; = (a;, Gy, fi),i = 1,2, we take

- (0,1,G1,f1) = (a2,G2,f2) if a; = az, G1 = G2 and f1 = f2.

- 1=(,G,f)

Proposition 16. Let B be a set of timed actions on a vocabulary A as in para-
graph 4.1. (B,1) is a commutative semi-group with absorbing element L where
bi1by = (a1las, G11G2, filf2), for by = (a;, Gy, fi), @ = 1,2, and | is a given
synchronization mode in G11G5.

The above proposition holds for a given synchronization mode. However,
it can be easily extended to allow composition of timed actions with different
synchronization modes under the following conditions.

Suppose that a partial function pu is given from A into the set of modes. If p is
defined for a € A, p(a) denotes the synchronization mode associated with a. We
require that actions with different synchronization modes cannot synchronize,
that is, p(a1) # p(as) implies aqlas = L.

It is trivial to check that (B, 1) with bylbs = (a1laz, Gipu(ar)Ga, filf2) is a
commutative semi-group with L as absorbing element. We consider in the sequel,
that parallel composition of timed systems is defined in terms of such a general
synchronization function.

5.4 Laws for Timed Systems

For timed systems we take 1.s = Nil, as | means impossibility of synchroniza-
tion.

Proposition 17. The following laws hold for timed systems modulo strong bisim-
ulation.

— ¥ is associative, commutative, idempotent, and Nil is the neutral element.
— || is associative, commutative, and Nil is the neutral element.

pullpe = bilsillp) #D bilsillp) + Y bilbj(sillsy)
i€l jeJ’ (irf)EIXJ

- bl.S = b2.8 Zf b1 = b2 N
— (a,Gior Ga, f).s = (a,G1, f).s+(a,G2, f).s

The laws for F and || follow from propositions in section 3 and 4, respectively.
They are extensions of well-known laws characterizing strong bisimulation for
untimed systems. The two last laws are specific to timed systems and take into
account properties of timed actions.

5.5 Typed Timed Actions

Given an extended guard G = (g,d), it can be decomposed into G = (g A
—d, false)or (d,d). That is, any extended guard can be expressed as the dis-
junction of one lazy and one eager guard. This remark motivates the definition
of typed guards. If ¢ is a guard, we write g* and ¢¢ to denote respectively,
9" = (g, false) and ¢ = (g, 9).

Proposition 18. For a € {¢,\} and a synchronization mode g1lgo = g1 A
m(g2) V- m(g1) A g2,

— 97195 = (91192)"
~ g5 orxg% = gior (g2 A —g1)> .
- gilgs = (g1 Am(g2))or (m(g1) A g2)

A consequence of the above results is that any expression involving typed guards
and synchronization modes can be reduced to the disjunction of disjoint eager
and lazy guards.

It is often useful to define a type of delayable guards denoted by §. We take
g° = g*or g |, where g | is the falling edge of the guard g.

Proposition 19. Any expression involving delayable guards and the synchro-
nization modes and, max, min, or, can be reduced into the disjunction of de-
layable guards.

giand g3 = (g1 A g2)°

gimaz g3 = (g1 A ® g2)°or (¢ g1 Age)°

gimin g5 = (g1 A ©g2)’or (Ogi A ga)°

Using typed timed actions, drastically simplifies the general model. Further-
more, the most commonly used type, in practice, is delayable. The following
example illustrates the use of max and min synchronization modes.

Ezxample 20. Traffic light for tramway crossing

() (o)

y:=0 , (y = da)°
ay

a. Traffic light

(I <7 <wug)®

b. A Tramway

Fig. 3. Traffic light and Tramway

The light controlling the car traffic in a crossroads is a cyclic timed process
with two states G (Green) and R (Red) and a clock y to enforce sojourn times
de and dg, respectively, at G and R (figure 3a).

We want to modify the light so as to control the traffic of tramways. When
a tramway approaches the crossing, it sends a signal ag after which the light
must be green within some interval [ly,u;]. This guarantees that the tramway
crosses without stopping. Then, the light remains green until the tramway exits
the crossing. Figure 3b represents a tramway as a process with states O (Out),
A (Approach), C (Cross). We assume the tramway exits the cross section within
time in the interval [l2, us] since the beginning of the approach phase.

The modified behavior of the light can be obtained as the parallel composition
of the traffic light process and the tramway process by taking u(ai) = u(aj) =
min and p(az) = p(ah) = maz. The resulting timed controller handling one
tramway (at most) is given in figure 4. It corresponds to the product of the two
timed systems under the assumption of maximal progress and that all the actions
interleave. The dashed transitions will never be taken due to higher priority of

synchronizations. The typed guards Gy, G', G11 and G2y are the following:

Gu=@<wuAy=dg)’V(h <z<u Ay<dg)®
Gra=(lL<zAy=de)’V(h<z<usAds <y)°
Glz(ll S:L’S’U,l/\y>d3)6

L=y =dgpAz>0)°.

d a &
_ &
=do) | Y=y =dey
y:=0 y:=0 y:=0

Fig. 4. Controller for a tramway

6 Discussion

The paper presents a framework for extending compositionally the description
of untimed systems to timed systems by preserving time reactivity and activ-
ity of components. The adopted composition principle contrasts with the most
commonly adopted so far which is strong synchronization for time progress and
implies preservation of components urgency. Preserving time reactivity requires
sometimes to relax urgency constraints, depending on synchronization modes
associated with communication actions.

An important outcome of this work is that composition operators for un-
timed systems admit different timed extensions due to the possibility of control-
ling waiting times and “predicting” the future. The use of modalities in guards
drastically increases concision in modeling and is crucial for compositionality. It
does not imply extra expressive power for simple classes of timed systems, such
as linear hybrid automata [ACH'95], where quantification over time in guards
can be eliminated.

The definition of different synchronization modes has been motivated by the
study of high level specification languages for timed systems, such as Timed
Petri nets and their various extensions[SDdSS94,SDLdSS96,JLSIR97]. We have
shown that the proposed framework is a basis for the study of the underlying
semantics and composition techniques; if they are bounded then they can be
represented as timed systems with finite control. Another outstanding fact is
that using max-synchronization and min-synchronization, in addition to and-
synchronization, drastically helps keeping the complexity of the corresponding
timed system low [BST97].

The results concerning the algebraic framework itself are very recent. We are
currently studying their application to the compositional generation of timed
models of real-time applications.

References

[ACH'95] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid
systems. Theoretical Computer Science, 138:3-34, 1995.

[ADY94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183-235, 1994.
[BKS85] J. A. Bergstra and J. W. Klop. Algebra of communicating processes with

abstraction. Theoretical Computer Science, 37(1):77-121, May 1985. Fun-
damental studies.

[BS98] S. Bornot and J. Sifakis. On the composition of hybrid systems. Spinger-
Verlag, Berkeley, March 1998.

[BSTI7] S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in timed sys-
tems. In International Symposium: Compositionality - The Significant
Difference, Malente (Holstein, Germany), September 1997. Lecture Notes
in Computer Science 1536, Springer Verlag.

[Hoa85] C.AR. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[JLSIR97] M. Jourdan, N. Layaida, L. Sabry-Ismail, and C. Roisin. An integrated
authoring and presentation environment for interactive multimedia docu-
ments. In 4th Conference on Multimedia Modeling, Singapore, November
1997. World Scientific Publishing.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[SDASS94] P. Sénac, M. Diaz, and P. de Saqui-Sannes. Toward a formal specification
of multimedia scenarios. Annals of telecomunications, 49(5-6):297-314,
1994.

[SDLASS96] P. Seénac, M. Diaz, A. Léger, and P. de Saqui-Sannes. Modeling logical and
temporal synchronization in hypermedia systems. In Journal on Selected
Areas in Communications, volume 14. IEEE, jan. 1996.

[SY96] J. Sifakis and S. Yovine. Compositional specification of timed systems.
In 18th Annual Symposium on Theoretical Aspects of Computer Sci-
ence, STACS 96, pages 347-359, Grenoble, France, February 1996. Lecture
Notes in Computer Science 1046, Spinger-Verlag.

