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1 Introduction

1.1 Advanced Real-Time Systems

The evolution of information sciences and technologies is characterized by the
extensive integration of embedded components in systems used in various appl-
cation areas, from telecommunications to automotive, manufacturing, medical
applications, e-commerce etc. In most cases, embedded components are real-time
systems that continuously interact with other systems and the physical world.
Integration and continuous interaction of software and hardware components
makes the assurance of global quality a major issue in system design. The failure
of a component may have catastrophic consequences on systems performance,
security, safety, availability etc.

Building embedded real-time systems of guaranteed quality, in a cost-effective
manner, raises challenging scientific and technological problems. Existing the-
ory, techniques and technology are of little help as they fail to provide a global
framework relating various design parameters to system dynamics and its prop-
erties. Contrary to conventional real-time systems, the development of advanced
real-time systems, must take into account a variety of requirements about:

— Cost-effectiveness and time to market. These requirements are certainly the
most important for advanced real-time systems usually embedded in mass
market products. It is possible to improve quality by increasing costs and this
has been often the case for conventional real-time applications. For example,
the cost of the control equipment in a commercial aircraft is (still) a small
percentage of the cost of the whole. On the contrary, for cellular phones even
minimal optimizations of resources such as memory and energy or of time
to market is of paramount importance.

— Fast evolving environments with rich dynamics e.g. in multimedia and telecom-
munication systems.

— Combination of hard and soft real-time activities which implies the possibil-
ity to apply dynamic scheduling policies respecting optimality criteria. Soft
real-time is indeed harder than hard real-time as it requires that when neces-
sary, some timing constraints are relaxed in some optimal manner, provided
quality of service remains acceptable.



— Behavior which is dynamically adaptive, reconfigurable, reflexive, intelligent
and “any fashionable buzzword used to qualify properties meaning that sys-
tems behave less stupidly than they actually do”. Building systems meeting
such properties is essential for quality assurance if we want to increase system
interactivity and autonomy. Inventing new buzzwords does not help solving
problems which are intrinsically hard. In fact, it is easy to understand that
building systems enjoying such desirable properties amounts to designing
controllers and thus, advanced controller design techniques for complex and
heterogeneous systems are needed.

— Dependability covering in particular reliability, security, safety and availabil-
ity. The dynamic nature and heterogeneity of advanced real-time systems
makes most dependability evaluation techniques partial or obsolete.

Advanced real-time system developers lack theoretical and practical tools and
enabling technology for dependable and affordable products and services. The
emergence of such enabling technology requires tight and long term cooperation
between researchers and practitioners. From a theoretical point of view, it raises
foundational problems about systems modeling, design, analysis and control. The
concept of control appears to be a key concept in advanced real-time systems
engineering.

1.2 The role of modeling

Modeling plays a central role in systems engineering. The use of models can prof-
itably replace experimentation on actual systems with incomparable advantages
such as,

— enhanced modifiability of the model and its parameters

— ease of construction by integration of models of heterogeneous components,

— generality by using genericity, abstraction, behavioral non determinism

— enhanced observability and controllability especially, avoidance of probe ef-
fect and of disturbances due to experimentation

— finally, possibility of analysis and predictability by application of formal
methods.

Building models which faithfully represent complex systems is a non trivial
problem and a prerequisite to the application of formal analysis techniques.
Usually, modeling techniques are applied at early phases of system development
and at high abstraction level. Nevertheless, the need of a unified view of the
various lifecycle activities and of their interdependencies, motivated recently, the
so called model-based approaches [Ves97,BALS99,HHK01,L.+01] which heavily
rely on the use of modeling methods and tools to provide support and guidance
for system development and validation. Modeling systems in the large is an
important trend in software and systems engineering today.

Currently, validation of real-time systems is done by experimentation and
measurement on specific platforms in order to adjust design parameters and
hopefully achieve conformity to QoS requirements. The existence of modeling



techniques for real-time systems is a basis for rigorous design and should dras-
tically ease their validation.

The paper unifies results developed at Verimag over the past four years into
a methodological framework for modeling advanced real-time systems. Most of
the ideas are applicable to arbitrary systems modeling. Current trends in ad-
vanced real-time systems foreshadow trends in general systems as integration
and interactivity increase.

We consider modeling as an activity integrated in the system development
process, strongly related to design and synthesis. Based on this view, we identify
some challenging problems and arelated research agenda. A central thesis is that
a dynamic model of a real-time system can be obtained by adequately restricting
the behavior of its application software with timing information. We present a
composition/decomposition methodology and experimental results illustrating
the thesis. The methodology raises some very basic and challenging problems
about relating functional to non functional (time dependent) aspects of the be-
havior by application of composition techniques. Its application requires building
models in the large by composition of software components and is illustrated by
results obtained within the Taxys project.

2 Challenges and open problems

We identify main challenging problems and work directions for their solution.

2.1 The divide between application software and real-time system

It is generally agreed that a main obstacle to the application of rigorous devel-
opment techniques is the lack of methodology for relating application software
and functional design to physical architecture and implementation.

At functional design level, a system is specified as a set of interacting com po-
nents. The functional architecture adopts a decomposition which may be differ-
ent from the one adopted by physical architecture. High level real-time languages
such as ADA, Esterel and SDL, very often use simplifying assumptions about
components behavior and their cooperation e.g. instantaneous and perfect com-
munication of components, synchrony of interaction with the external environ-
ment or atomicity of actions. These are very useful abstractions that drastically
simplify description. The lack of associated methods for correct implementation
of the high level constructs and concepts may be a serious limitation for the
effective use of high level languages.

The deep distinction between real-time application software and a corre-
sponding real-time system resides in the fact that the former is immaterial and
thus untimed. Its real-time properties depend on the speed of the underlying
platform and the interaction with external environment. By the operational se-
mantics of the language, it represents a reactive machine triggered by external
stimuli. Even if there are actions depending on time e.g. timeouts, time is ex-
ternal and provided by the execution platform. Expiration of a timeout is an



event that is treated in the same manner as any external event such as hitting
an obstacle. The study of a real time system requires the use of timed models,
that can describe the combined effect of both actions of the application software
and time progress.

The transition from application software to implementation involves steps
and choices that determine the dynamic behavior of the real-time system. These
steps consist in

— partitioning the application software into parallel tasks or threads and map-
ping them to the physical architecture.

— ensuring resource management and task synchronization by means of syn-
chronization primitives offered by the underlying platform

— finding adequate scheduling policies so that given quality of service require-
ments (non functional properties) are met; this requires in principle, taking
into account the dynamics of the execution platform e.g. WCET for atomic
actions and the dynamics of the external environment.

There exist today reasonably good methods, tools and technology for sup-
porting functional system design and application software development activi-
ties. Nevertheless, the rigorous transition to implementation comes up against
several problems, such as

— relating properties of the functional design with properties of the implemen-
tation e.g. it is desirable that functional properties are preserved by the
implementation methods

— modeling the dynamics of an implementation for simulation, analysis and
validation purposes

— evaluating the influence of design choices on non functional properties.

2.2 Synchronous vs. Asynchronous real-time

Current practice in real-time systems design follows two well-established para-
digms.

The synchronous paradigm based on a synchronous execution model has been
developed in order to better control reaction times and interaction with the ex-
ternal environment. It assumes that a system interacts with its environment by
performing global computation steps. In a step, the system computes its reac-
tion to environment stimuli by propagating their effects through its components.
The synchrony assumption says that system reaction is fast enough with respect
to its external environment. This practically means that environment changes
occurring during a step are treated at the next step and implies that responsive-
ness and precision are limited by step duration. Hardware description languages
and languages such as Esterel [BG92], Lustre [HCRP91], and Signal [BLJ91]
adopt the synchronous paradigm. For correct implementation of these languages
care should be taken to meet the synchrony assumption by guaranteeing not
only termination of the actions performed in a step but also that their execution
times have known upper bounds.



Synchronous programs are implemented by adopting scheduling policies that
guarantee that within a step all the tasks make some progress even though high
priority tasks get alarger share of CPU. They are used in signal processing, mul-
timedia and automatic control. Safety critical applications are often synchronous
and are implemented as single sequential tasks on single processors. Sy nchronous
language compilers generate sequential code by adopting very simple scheduling
principles.

The asynchronous paradigm does not impose any notion of global compu-
tation step in program or system execution. Asynchronous real-time is a still
unexplored area, especially for distributed computing systems that are inher-
ently dynamic and must adapt to accommodate workload changes and to counter
uncertainties in the system and its environment.

A simple instance of the asynchronous paradigm is the one developed around
the ADA 95 [Whe96] language and associated implementation techniques, es-
sentially RMA techniques [HKO'93,GKL91]. The latter provide a collection of
quantitative methods that allow to estimate response times of a system com-
posed of periodic or sporadic tasks with fixed priorities.

In asynchronous implementations, tasks are granted resources according to
criteria based on the use of priorities. This is usually implemented by using
RTOS and schedulers.

There exists a basic difference between the two paradigms. The synchronous
one guarantees, due to the existence of global computation steps, that “every-
body gets something”. The asynchronous paradigm applies the principle that the
“winner takes all”, the winner being elected by application of scheduling crite-
ria. This implies that in asynchronous implementations, a high priority external
stimulus can be taken into account “as soon as possible” while in synchronous
implementations reaction time is bounded by the execution time of a step. Nev-
ertheless, “immediate” reaction to high priority external stimuli does not imply
satisfaction of global real-time properties. Existing theory based on the use of an-
alytic models, allows to guarantee simple real-time properties, typically meeting
deadlines and is applicable only to simple task arrival models [LL73].

For advanced real-time applications it is desirable to combine the synchronous
and asynchronous paradigm at both description and implementation levels. We
need programming and specification languages combining the two description
sty les as some applications haveloosely coupled subsystems composed of strongly
synchronized components.

Even in the case where purely synchronous or asynchronous programming
languages are used, it is interesting to mix synchronous and asynchronous im-
plementation to cope with inherent limitations of each paradigm. For instance,
for synchronous languages it is possible to get more efficient implementations
that respect the abstract semantics, by scheduling components execution within
astep and thus making the system sensitive to environment state changes within
a step. Furthermore, for synchronous software it is possible to relax synchrony
at implementation level by mapping components solicited at different rates to
different non pre-emptible tasks coordinated by a runtime system.



Proposals of real-time versions of object-based languages such as Java [Gro00]
and UML [Gro01], provide concepts and constructs allowing to mix the two
paradigms and even to go beyond the distinction synchronous/asynchronous. In
principle, it is possible to associate with objects general scheduling constraints to
bemet when they are executed. The concept of dynamic scheduling policy should
allow combining the synchronous and asynchronous paradigms or most impor-
tantly, finding intermediate policies corresponding to tradeoffs between these
two extreme policies. The development of technology enabling such a practice is
certainly an important work direction.

3 Modeling real-time systems

3.1 Component-based modeling

Definition: The purpose of modeling is to build models of software and systems
which satisfy given requirements. We assume that models are built by composing
components which are model units (building blocks) fully characterized by their
interface. We use the notation || to denote an arbitrary composition operation
including simple com position operations a la CCS [Mil89] or CSP [Hoa85], pro-
tocols or any kind of “glue” used in an integration process: C'1||C2 represents a
system composed of two components C'1 and C2. We assume that the meaning
of || can be defined by operational semantics rules determining the behavior of
the composite system from the behavior of the components.

The modeling problem: Given a component C' and a property P find a
com position operation || and a component C' such that the system C||C" satisfies
P.

Notice that by this definition, we consider that modeling does not essen-
tially differ from design or synthesis. In practice, the property P is very often
implicit as it may express the conjunction of all the requirements to be met
by the composite system. The above definition provides a basis for hierarchical
or incremental modeling as composite systems can themselves be considered as
components. Thus, complex systems can be obtained by iterative application.

Incremental modeling: To cope with complexity, it is desirable that the
model of a complex system is obtained incrementally by further restricting some
initial model. This can be done in two manners:

— By integration of components, that is building a system C1||C2. .. ||Cn by
adding to C'1 interacting components C2. .. Cn so that the obtained system
satisfies a given property. We want, throughout the integration process, al-
ready established properties of components to be preserved. Composability,
means that if a property P holds for a component C then this property holds
in systems of the form C||C’ obtained by further integration. For example,
if C' is deadlock-free then it remains deadlock-free by integration. Com pos-
ability is essential for building models which are by construction correct.
Unfortunately, time dependent properties are non composable, in general
[AGS00,AGS01,Lee00].



— By refinement, that is by getting from an abstract description C a more con-
crete (restricted) one C' in the sense that the behaviors of C' are “contained”
in the behaviors of C'. Refinement relations are captured as simulation re-
lations modulo some observability criterion establishing a correspondence
between concrete and abstract states and/or actions. We want, throughout
the modeling process, refinement to be preserved by composition operators.
That is, if components of a system arereplaced by components refining them,
then the obtained system is a refinement of the initial system. This property
called refinement compositionality, is essential for relating models at differ-
ent abstraction levels. Refinement compositionality should play an important
role in relating application software to its implementations. Existing results
are not satisfactory in that they deal only with preservation of safety prop-
erties. The application of constructive techniques requires stronger results
e.g. preservation of progress properties.

3.2 About Timed Models

A real-time system is a layered system consisting of the application software
implemented as a set of interacting tasks, and the underlying execution plat-
form. It continuously interacts with an external environment to provide a ser-
vice satisfying requirements, usually called QoS requirements. The requirements
characterize essential properties of the dynamics of the interaction.

Models of real-time systems should represent faithfully the system’s inter-
active behavior taking into account relevant implementation choices related to
resource management and scheduling as well as execution speed of the under-
lying hardware. They are timed models as they represent the dynamics of the
interaction not only in terms of actions but also in terms of time. Building such
models is clearly a non trivial problem.

Timed models can be defined as extensions of untimed models by adding time
variables which are state variables used to measure the time elapsed. They can
be represented as machines that perform two kinds of state changes: transitions
and time steps. Transitions are timeless state changes that represent the effect
of actions of the untimed system; their execution may depend on and modify
time variables. Time steps represent time progress and increase uniformly only
time variables. They are specified by time progress conditions [BS00]: time can
progress from a state by t if the time progress condition remains true in all
intermediate states reached by the system. During time steps state components of
the untimed model remain unchanged. There exists a variety of timed formalisms
extensions of Petri nets [Sif77], process algebras [NS91] and automata [AD94].
Any executable untimed description e.g. application software, can be extended
into a timed one by adding explicitly time variables or other timing constraints
about action execution times, deadlines etc.

Timed models use a notion of logical time. Contrary to physical time, logical
time progress can block especially as a result of inconsistency of timing con-
straints. The behavior of a timed model is characterized by the set of its runs,



that is the set of maximal sequences of consecutive states reached by perform-
ing transitions or time steps. The time elapsed between two states of a run is
computed by summing up the durations of all the time steps between them. For
a timed model to represent a system, it is necessary that it is well-timed in the
sense that in all runs time diverges.

As arule, in timed models there exist states from which time cannot progress.
If time can progress from any state of a timed model, then it is always possible to
wait and postpone the execution of actions which means that it is not possible to
model action urgency. Such models represent degenerated timed systems which
are in fact untimed systems as time can be uniformly abstracted away. Action
urgency at a state is modeled by disallowing time progress. This possibility
of stopping time progress goes against our intuition about physical time and
constitutes a basic difference between the notions of physical and logical time.
It has deep consequences on timed systems modeling by composition of timed
components.

Composition of timed models can be defined as extensions of untimed com-
position. They compose actions exactly as untimed composition. Furthermore,
for time steps, a synchronous composition rule is applied as a direct consequence
of the assumption about a global notion of time. For a time step of duration t
to occur in a timed system, all its components should allow time progress by t.
Well-timedness is not composable in general, especially when components have
urgent synchronization actions.

3.3 Building the timed model

We present a methodology for building timed models of real-time systems as
layered descriptions composed of

— Models of the tasks
— A synchronization layer
— A scheduler that controls execution so as to meet QoS requirements.

Timed models of tasks The application of the methodology requires com-
pilation and WCET analysis tools. We discuss the principle of construction of
the timed model without addressing efficiency or even effectiveness issues. We
assume that code for tasks (execution units) is obtained by partitioning the ap-
plication software and separate compilation. Furthermore, we assume that for a
given implementation platform and by using analysis tools, the following infor-
mation can be obtained about each task:

— Which sequences of statements are atomic during execution
— For atomic sequences of statements, estimates of execution times e.g. WCET
or interval timing constraints with lower and upper bounds.

The code of a task C' with this information constitutes its timed model Cr.
The latter can perform the actions of C' - which are atomic sequences of state-
ments of C' - and time steps.



Synchronization of timed tasks We assume that task synchronization is de-
scribed in terms of synchronization primitives of the underlying platform such as
semaphores and monitors, to resolve task cooperation and resource management
issues. In principle, untimed tasks code with their synchronization constraints is
a refinement of the application software.

We want to get compositionally the timed model corresponding to the system
of synchronized tasks. For this, it is necessary to extend the meaning of synchro-
nization operations on timed behavior. For example, if C'1 and C2is the code of
two tasks and C||C2 represents the system after application of synchronization
constraints, then we need a timed extension || of || to compose the timed mod-
els Cly and C27 of C'1 and C2. Cly||7C2r is the timed model of C1]|C2. In
[BS00], it has been shown that untimed composition operators || admit various
timed extensions ||z depending on the way urgency constraints (deadlines) of
timed tasks are composed.

Extending untimed composition operators to timed ones is an important
problem for the construction of the global timed model. It is desirable that es-
sential properties of the timed components such as deadlock-freedom and well-
timedness are preserved by timed composition. We have shown that usual com po-
sition operators for timed models do not preserve well-timedness [BGS00,BS00].
The existence of methodology and theory relating properties of untimed appli-
cation software to the associated timed model is instrumental for getting correct
implementations. Usually, correct implementation of the operator || used in the
software development language, requires a fairly complex definition of ||7. The
reasons for this are twofold.

1. Whenever the interaction between untimed components is supposed to be
instantaneous, the application of the same composition principle to timed
components may lead to inconsistency such as deadlocks or timelocks. The
obvious reason for this is that in the timed model (the implementation)
component reactions to external stimuli do take time. When a component
computes a reaction, its environment state changes must be recorded to be
taken into account later. So, contrary to instantaneous untimed composition,
timed composition needs memory to store external environment events.

2. In many composition operations for untimed systems, independent actions of
components may interleave. Interleaving implicitly allows indefinite waiting
of a component before achieving synchronization. It may happen that an
untimed system is deadlock-free and the corresponding timed system has
deadlocks. Adding timing constraints may restrict waiting times and destroy
smooth cooperation between components (see example in [BST98BS00]).

Composition of timed components should preserve the main functional prop-
erties of the corresponding untimed system. Otherwise, most of the benefit from
formal verification of functional properties is lost. To our knowledge, this is a
problem not thoroughly investigated and which cannot be solved by directly
transposing usual untimed composition concepts. We need results for correct
implementation of untimed interaction primitives relying on the concepts of pro-
tocol or architecture.



Scheduler modeling The real-time system model must be “closed” by a timed
model of the external environment. We assume that this model characterizes the
expected QoS from the system. That is, instead of using extra notation such
as temporal logic or diagrams to express the QoS requirements, we represent
them as a timed model. It can be shown that their satisfaction boils down as
for untimed systems, to absence of deadlock in the product system obtained by
composition of the environment and the real-time system models. This method
applied to verify safety properties for untimed systems can be used to verify
also liveness properties if the timed models are well-timed and this property is
preserved by parallel composition.

Scheduler modeling is a challenging problem. Schedulers coordinate the exe-
cution of system activities so that requirements about their timed behavior are
met, especially QoS requirements. We have shown that schedulers can be con-
sidered as controllers of the system model composed of its timed tasks with their
synchronization and of a timed model of the external environment [AGS00,A GS01].
They apply execution strategies which satisfy, on the one hand timing constraints
resulting from the underlying implementation, essentially execution times, and
on the other hand QoS requirements represented by a timed model of the envi-
ronment. Under some conditions, correct scheduling can be reduced to a deadlock
avoidance problem.

More concretely, a scheduler monitors the state of the timed model and selects
among pending requests for using common resources. The role of scheduler can be
specified by requirements expressed as a constraint K , set of timed states of the
scheduled system. The scheduler keeps the system states in a control invariant
K' subset of K, set of states from which the constraint K can be maintained in
spite of “disturbances” of the environment and of internal actions of the tasks.
The existence of a scheduler maintaining K depends on the existence of non
empty control invariants contained in K [MPS95,AGP"99]. Control invariants
can be characterized as fixpoints of monotonic functions (predicate transformers)
representing the transition relation of the timed system to be scheduled. There
exists a scheduler maintaining K iff there exist non empty fixpoints implying K.
Computing such fixpoints is a non trivial problem of prohibitive complexity when
it is decidable - essentially, for scheduling without preemption. This relation of
scheduler modeling to controller synthesis explains the inherent difficulties in
the application of model-based techniques to scheduling.

A methodology based on composability results has been studied in [AGS01]
to circumvent the difficulties in scheduler modeling. It consists in decomposing
the constraint K into a conjunction of two constraints K = Ky.peq AKpor. Kycpea
specifies the fact that timing requirements are satisfied. K, specifies schedul-
ing policies for resource allocation and can be expressed as the conjunction of
resource allocation constraints K", K, = A\,cr K", where R is the set of the
shared resources. The constraint K" can again be decomposed into two types of
constraints K" = K’ ANK” K7 .0 specifies how conflicts for the ac-

resolve admit "
quisition of r are resolved while K7 , .. characterizes admission control policies

admi
and says when a request for r is taken into account by the scheduler.



According to results presented in [AGS01] such a decomposition allows to
simplify the modeling problem of a scheduler maintaining Kschea A Kpot by pro-
ceeding in two steps. First, getting a scheduler that maintains K, 4; this does not
require the application of synthesis algorithms. The second step aims at finding
by restriction of this scheduler, a scheduler which maintains Kscned and requires
in general, the application of synthesis or verification techniques.

The construction of the scheduler maintaining Kschea heavily relies on the
use of dynamic priority rules. It uses composability results allowing to obtain
incrementally the scheduler. A priority rule is a pair consisting of a condition and
of an order relation on task actions. When the condition is true, the associated
priority order is applied and its effect is to prevent actions of low priority to
occur when actions of higher priority are enabled. It has been shown that non
trivial scheduling policies and algorithms can be modeled, by using priority rules.
Furthermore, there exist composabilty results that guarantee preservation of
absence of deadlock and in some cases of liveness, by application of dynamic
priority rules [BGSO00].

Interesting research directions in scheduler modeling are:

— Composability: An important observation is that scheduling methods are not
composable, in the sense that if a scheduler maintains K1 and a scheduler
maintains K2 then even if they control access to disjoint sets of resources,
their application does not in general maintain K1 A K2. In [AGS00] a suf-
ficient condition for scheduler composability is given. There is a lot to be
done in that direction.

— Connections to the controller synthesis paradigm: This is a very interesting
research direction, especially because controller synthesis provides a gen-
eral theoretical framework that allows better understanding the scheduling
problem and the inherent difficulties. Controller synthesis provides also the
general framework for tackling more pragmatic and methodological ques-
tions.

— Combining model-based scheduling and scheduling theory: Scheduling the-
ory proposes sufficient conditions for schedulability of simple tasks, usually
periodic or sporadic, for specific scheduling policies. It is based on the use
of analytic models that lead to more tractable analysis techniques at the
price of approximation [ABR91,HKO+93 EZR199]. Some combination and
unification of the two approaches seems feasible and should give results of
highest interest.

3.4 Application to modeling embedded telecommunication systems

The Taxys project, in collaboration with France Telecom and Alcatel Business
Systems uses the principle given in 3.3 to build timed models of real-time sys-
tems. The purpose of this project is the analysis of embedded real-time ap-
plications used in cellular phones, to check QoS requirements. The latter are
expressed as properties of the form “the time distance between an input signal
and the associated reaction is bounded by some delay” or “the time distance
between two consecutive output signals is within a given interval”.



The application software is written in Esterel extended with C functions and
data. The design environment comprises a compiler used to generate C code
from application software and a parametric code generator used to generate
executable code for DSP’s. The implementation consists of one task and does
not use OS or scheduler. Scheduling issues are resolved by the compiler which
determines causally correct orders of execution between processes.

The C code is structured as a reactive machine whose transitions are trig-
gered by signals provided by the external environment. A transition occurrence
changes atomically control state and data state by executing an associated C
function. To build a timed model of the application, the C code is instrumented
by adding timing constraints about execution times of C functions. These con-
straints are lower and upper bounds of execution times estimated by using an
execution time analysis tool. The global timed model of the embedded real-time
system is obtained by composition of the timed model of the C code with a timed
model of the environment and an external events handler. The latter is used to
store signals emitted by the environment. It is important to notice that while
according to Esterel semantics, the interaction between an Esterel program and
its environment is instantaneous, the composition between the timed application
software and the timed environment requires the use of memory. In fact, instan-
taneous actions of the untimed model take time when executed and during this
time the environment changes must be registered to be taken into account in the
next application cycle. This is an instance of the general problem evoked in 3.3.
Global timed models of the real-time system, are analyzed by using the Kronos
[DOTY96,Yov97,BSS97] timing analysis tool.

The Esterel compiler has been engineered to generate the instrumented C
code from pragmas describing timing constraints. Thus, the timed models of
both the application software and of the environment can be described in Es-
terel appropriately extended with pragmas to express timing constraints. The
obtained results are very encouraging [BPS00,CPPT01,TY01b, TY0la] and we
plan to apply this principle to modeling real-time systems with multitasking.

4 Discussion

Modeling is a central activity in systems development intimately related to de-
sign, programming and specification. We consider only modeling by using exe-
cutable languages. Although we do not deny theinterest of using notations based
on logic and declarative languages, we do not consider them as essential in con-
trol dominated modeling. Some notation encompassing abstraction such as the
various kinds of charts (message charts, sequence charts) is certainly useful for
requirements expression. Nevertheless, we consider that the main challenges con-
cern modeling by using executable languages at different levels from specification
to implementation and for different execution models.

We believe that an important trend is relating implementation to models at
different abstraction levels. For this, it seems inevitable that models are built by
using or rather reusing components written in languages such as C and C++. We



need modeling environments which support methodologies and tools for build-
ing models from heterogeneous components, synchronous and asynchronous. The
use of C and C++ code in such environments requires methodology and tools
for monitoring and instrumenting code execution, in particular to change ab-
straction, granularity of execution and execution model. Modeling systems in
the large is an important and practically relevant work direction.

4.1 For a common conceptual basis

Building general modeling environments requires a common conceptual basis for
component based modeling, a unifying notation with clean and natural opera-
tional semantics. Such a notation should distinguish 3 basic and complementary
ingredients in models: components, interaction model and execution model. A
model is a layered description consisting of a set of components, on which are
applied successively an interaction model and an execution model. Interaction
and execution models describe two complementary aspects of an architecture
model.

Components are system units characterized by their interface specified as a
set of mmteraction points. An interaction point corresponds to a shared action
(event-based approach) or a shared variable ( state-based approach). An inter-
action point can be conceived as a pair consisting of a name (port, signal, mput,
output) and a list parameters.

A system is modeled as a set of interacting components. A component state
determines which interaction points can participate in an interaction and the
values of their parameters. For given component states, an interaction between
aset of components can be specified as a subset of compatible interacting points.
The compatibility relation may be statically determined or may depend on the
states of the components involved in the interaction. Usually, we distinguish
between the initiator of the interaction and the other participating components
as in some interaction models it is necessary to take into account the flow of
causality. Interactions may be n-ary, in general. For general modeling languages
there is no reason for restricting to interactions of particular arity.

The interaction model describes the effect of interactions on the states of
the participating components. We need languages encompassing the following
different interaction types.

— blocking and non blocking interaction: Blocking interactions are inter-
actions that cannot take place unless all the involved interaction points are
enabled for instance, synchronous message passing in CSP and CCS. Non
blocking interactions can take place when the initiator of the interaction is
enabled and involve all the enabled participants. Synchronous languages and
hardware description languages use non blocking interaction.

— atomic and non atomic interaction: Atomic interaction means that in-
teraction is completed without interference of other system events. Clearly,
non atomic interaction can be modeled in terms of atomic interaction by
using memory such as shared variables and fifo queues. It is desirable that



modeling languages offer primitives for the direct description of non atomic
interaction mechanisms.

Some papers distinguish also between event-based and state-based interac-
tion. We do not consider this distinction to be foundationally relevant although
in practice it can be convenient to use rather one than the other type of inter-
action.

The execution model contains information about component concurrency
control in a given architecture. It further constrains the behavior obtained by
application of an interaction model by reducing non determinism inherent to
interactive behavior. Its effect can be represented by adding extra components
that restrict the behavior of the interacting components. For methodological
reasons, it is very important to separate component interaction from execution
control. Component interaction deals with satisfaction of functional properties,
essentially safety properties, such as mutual exclusion. The execution model
deals with component progress and sharing computing power. It determines the
computation threads and is strongly related to fairness, scheduling, run to com-
pletion, time step properties. Usually, in existing languages, the execution model
is strongly related to their interaction model: atomic interaction for synchronous
languages and non atomic interaction for asynchronous languages. Nevertheless,
it is desirable to dissociate interaction from execution aspects. An important
trend in proposals for real-time versions of object-based languages, is associat-
ing with objects priorities and scheduling constraints.

4.2 Relating functional to non functional models

Relating untimed to timed, functional to non functional models by using as much
as possible composability and compositionality is a very important work direc-
tion. Existing theory on system modeling and composition such as process alge-
bra, has been developed on low level models e.g. transitions systems, and badly
resists to extensions with data and time. For programs, we have com positionality
results for simple sequential programs e.g. Hoare logic whose extension to concur-
rent systems leads to complicated methodologies. The concepts of composition
studied so far, consider essentially composition as intersection of behaviors. They
lend themselves to theoretical treatment but are not appropriate for component-
based modeling. For the latter, we need composition concepts that modulo some
assumptions about component properties, guarantee properties of the whole sys-
tem. Results using assume/guarantee rules seem difficult to apply. We believe
that for component-based modeling, we need “flexible” composition rules that
compose the components behavior by preserving essential component properties
such as deadlock-freedom. Contrary to usual composition, flexible composition
operators seek consensus (avoid “clashes”) between interacting components. A
notion of flexible composition for timed systems have been studied in [BS00]. The
basic idea is not to compose separately timing requirements and actions which
may easily lead to inconsistency: a deadlock is reached if a component offers an
urgent synchronization action that cannot be accepted by its environment with-
out letting time pass. Instead, flexible composition adopts a “non Newtonian” or



“relativistic” view of time by assuming that time is “bent by the action space”.
To avoid deadlock in the previous example, time is allowed to pass as long as no
action is enabled. This may lead to violation of the individual timing constraints
of components but guarantees well-timedness of the composed system.

Existing implementation theories do not preserve properties such as deadlock-
freedom of components, or more general progress properties, especially when
going from functional to non functional (timed) models. Usually, for timed mod-
els obtained by adding timing requirements to an untimed model, component
deadlock-freedom is not preserved in either way. Timing can introduce dead-
locks to deadlock-free untimed systems and deadlocks of untimed systems can
be removed by adding timing constraints. In absence of any theoretical results
about preservation of properties other than safety properties, it is questionable
whether it is worthwhile verifying at functional model level properties which are
not preserved by implementation techniques such as deadlock-freedom, liveness
and fairness properties. We badly lack implementation theories for high level
languages.

4.3 Scheduler and controller modeling

The distinction between interaction and execution models determines two kinds
of modeling problems of uneven difficulty. Modeling interaction seems to be an
easier and in any case a better understood problem than modeling execution.
We consider the latter to be a still unexplored problem, especially in the case of
timed models. To describe execution models, we need languages with powerful
constructs allowing compositional description of dynamic priorities, preemption
and urgency. The distinction between synchronous and asynchronous execution
should be captured by using execution models.

Schedulers are components that implement execution models. Their model-
ing deserves special attention as their role is crucial for correct implementation.
Scheduler modeling can be considered as an instance of a more general problem,
that of finding controllers which maintain given constraints. The development of
design and modeling methodologies for controllers leads to explore connections
to control theory. This is certainly a very interesting research direction confirmed
by trends in some areas such as multimedia where control algorithms are used
to solve traffic management problems. Connection to controller synthesis prob-
lems may also bring solutions to all the hard and still not very well understood
problems of building systems enjoying “magic” properties such as adaptivity,
reflectivity, survivability, and why not, intelligence.
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